Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 10770 | 90.14% | 26 | 30.95% |
Miquel Raynal | 363 | 3.04% | 14 | 16.67% |
Tudor-Dan Ambarus | 261 | 2.18% | 3 | 3.57% |
Andrew Victor | 128 | 1.07% | 1 | 1.19% |
Josh Wu | 95 | 0.80% | 6 | 7.14% |
Jean-Christophe Plagniol-Villard | 35 | 0.29% | 3 | 3.57% |
Xin Xiong | 33 | 0.28% | 1 | 1.19% |
Peter Rosin | 26 | 0.22% | 1 | 1.19% |
Ludovic Desroches | 23 | 0.19% | 1 | 1.19% |
Romain Izard | 22 | 0.18% | 2 | 2.38% |
Gustavo A. R. Silva | 22 | 0.18% | 2 | 2.38% |
Johan Hovold | 21 | 0.18% | 2 | 2.38% |
Alex Dewar | 20 | 0.17% | 1 | 1.19% |
Dmitry Torokhov | 18 | 0.15% | 1 | 1.19% |
Sergei Shtylyov | 18 | 0.15% | 1 | 1.19% |
Thomas Petazzoni | 12 | 0.10% | 1 | 1.19% |
Kai Stuhlemmer | 12 | 0.10% | 1 | 1.19% |
Joe Perches | 11 | 0.09% | 1 | 1.19% |
Richard Genoud | 9 | 0.08% | 1 | 1.19% |
Eric Xu | 6 | 0.05% | 1 | 1.19% |
Uwe Kleine-König | 6 | 0.05% | 2 | 2.38% |
Krzysztof Kozlowski | 6 | 0.05% | 1 | 1.19% |
Håvard Skinnemoen | 4 | 0.03% | 1 | 1.19% |
Christophe Jaillet | 4 | 0.03% | 1 | 1.19% |
Nicolas Ferre | 4 | 0.03% | 1 | 1.19% |
Masahiro Yamada | 3 | 0.03% | 1 | 1.19% |
Marc Gonzalez | 3 | 0.03% | 1 | 1.19% |
Hans-Christian Noren Egtvedt | 3 | 0.03% | 1 | 1.19% |
David S. Miller | 3 | 0.03% | 1 | 1.19% |
Simon Polette | 2 | 0.02% | 1 | 1.19% |
Dan Carpenter | 2 | 0.02% | 1 | 1.19% |
Kay Sievers | 2 | 0.02% | 1 | 1.19% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.19% |
Total | 11948 | 84 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2017 ATMEL * Copyright 2017 Free Electrons * * Author: Boris Brezillon <boris.brezillon@free-electrons.com> * * Derived from the atmel_nand.c driver which contained the following * copyrights: * * Copyright 2003 Rick Bronson * * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) * * Derived from drivers/mtd/spia.c (removed in v3.8) * Copyright 2000 Steven J. Hill (sjhill@cotw.com) * * * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 * * Derived from Das U-Boot source code * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas * * Add Programmable Multibit ECC support for various AT91 SoC * Copyright 2012 ATMEL, Hong Xu * * Add Nand Flash Controller support for SAMA5 SoC * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) * * A few words about the naming convention in this file. This convention * applies to structure and function names. * * Prefixes: * * - atmel_nand_: all generic structures/functions * - atmel_smc_nand_: all structures/functions specific to the SMC interface * (at91sam9 and avr32 SoCs) * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface * (sama5 SoCs and later) * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block * that is available in the HSMC block * - <soc>_nand_: all SoC specific structures/functions */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/genalloc.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/mfd/syscon.h> #include <linux/mfd/syscon/atmel-matrix.h> #include <linux/mfd/syscon/atmel-smc.h> #include <linux/module.h> #include <linux/mtd/rawnand.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/iopoll.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <soc/at91/atmel-sfr.h> #include "pmecc.h" #define ATMEL_HSMC_NFC_CFG 0x0 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) #define ATMEL_HSMC_NFC_CTRL 0x4 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0) #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) #define ATMEL_HSMC_NFC_SR 0x8 #define ATMEL_HSMC_NFC_IER 0xc #define ATMEL_HSMC_NFC_IDR 0x10 #define ATMEL_HSMC_NFC_IMR 0x14 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) #define ATMEL_HSMC_NFC_SR_BUSY BIT(8) #define ATMEL_HSMC_NFC_SR_WR BIT(11) #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) #define ATMEL_HSMC_NFC_SR_DTOE BIT(20) #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) #define ATMEL_HSMC_NFC_SR_AWB BIT(22) #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ ATMEL_HSMC_NFC_SR_UNDEF | \ ATMEL_HSMC_NFC_SR_AWB | \ ATMEL_HSMC_NFC_SR_NFCASE) #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) #define ATMEL_HSMC_NFC_ADDR 0x18 #define ATMEL_HSMC_NFC_BANK 0x1c #define ATMEL_NFC_MAX_RB_ID 7 #define ATMEL_NFC_SRAM_SIZE 0x2400 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) #define ATMEL_NFC_VCMD2 BIT(18) #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) #define ATMEL_NFC_CSID(cs) ((cs) << 22) #define ATMEL_NFC_DATAEN BIT(25) #define ATMEL_NFC_NFCWR BIT(26) #define ATMEL_NFC_MAX_ADDR_CYCLES 5 #define ATMEL_NAND_ALE_OFFSET BIT(21) #define ATMEL_NAND_CLE_OFFSET BIT(22) #define DEFAULT_TIMEOUT_MS 1000 #define MIN_DMA_LEN 128 static bool atmel_nand_avoid_dma __read_mostly; MODULE_PARM_DESC(avoiddma, "Avoid using DMA"); module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400); enum atmel_nand_rb_type { ATMEL_NAND_NO_RB, ATMEL_NAND_NATIVE_RB, ATMEL_NAND_GPIO_RB, }; struct atmel_nand_rb { enum atmel_nand_rb_type type; union { struct gpio_desc *gpio; int id; }; }; struct atmel_nand_cs { int id; struct atmel_nand_rb rb; struct gpio_desc *csgpio; struct { void __iomem *virt; dma_addr_t dma; } io; struct atmel_smc_cs_conf smcconf; }; struct atmel_nand { struct list_head node; struct device *dev; struct nand_chip base; struct atmel_nand_cs *activecs; struct atmel_pmecc_user *pmecc; struct gpio_desc *cdgpio; int numcs; struct atmel_nand_cs cs[]; }; static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) { return container_of(chip, struct atmel_nand, base); } enum atmel_nfc_data_xfer { ATMEL_NFC_NO_DATA, ATMEL_NFC_READ_DATA, ATMEL_NFC_WRITE_DATA, }; struct atmel_nfc_op { u8 cs; u8 ncmds; u8 cmds[2]; u8 naddrs; u8 addrs[5]; enum atmel_nfc_data_xfer data; u32 wait; u32 errors; }; struct atmel_nand_controller; struct atmel_nand_controller_caps; struct atmel_nand_controller_ops { int (*probe)(struct platform_device *pdev, const struct atmel_nand_controller_caps *caps); int (*remove)(struct atmel_nand_controller *nc); void (*nand_init)(struct atmel_nand_controller *nc, struct atmel_nand *nand); int (*ecc_init)(struct nand_chip *chip); int (*setup_interface)(struct atmel_nand *nand, int csline, const struct nand_interface_config *conf); int (*exec_op)(struct atmel_nand *nand, const struct nand_operation *op, bool check_only); }; struct atmel_nand_controller_caps { bool has_dma; bool legacy_of_bindings; u32 ale_offs; u32 cle_offs; const char *ebi_csa_regmap_name; const struct atmel_nand_controller_ops *ops; }; struct atmel_nand_controller { struct nand_controller base; const struct atmel_nand_controller_caps *caps; struct device *dev; struct regmap *smc; struct dma_chan *dmac; struct atmel_pmecc *pmecc; struct list_head chips; struct clk *mck; }; static inline struct atmel_nand_controller * to_nand_controller(struct nand_controller *ctl) { return container_of(ctl, struct atmel_nand_controller, base); } struct atmel_smc_nand_ebi_csa_cfg { u32 offs; u32 nfd0_on_d16; }; struct atmel_smc_nand_controller { struct atmel_nand_controller base; struct regmap *ebi_csa_regmap; struct atmel_smc_nand_ebi_csa_cfg *ebi_csa; }; static inline struct atmel_smc_nand_controller * to_smc_nand_controller(struct nand_controller *ctl) { return container_of(to_nand_controller(ctl), struct atmel_smc_nand_controller, base); } struct atmel_hsmc_nand_controller { struct atmel_nand_controller base; struct { struct gen_pool *pool; void __iomem *virt; dma_addr_t dma; } sram; const struct atmel_hsmc_reg_layout *hsmc_layout; struct regmap *io; struct atmel_nfc_op op; struct completion complete; u32 cfg; int irq; /* Only used when instantiating from legacy DT bindings. */ struct clk *clk; }; static inline struct atmel_hsmc_nand_controller * to_hsmc_nand_controller(struct nand_controller *ctl) { return container_of(to_nand_controller(ctl), struct atmel_hsmc_nand_controller, base); } static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) { op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; op->wait ^= status & op->wait; return !op->wait || op->errors; } static irqreturn_t atmel_nfc_interrupt(int irq, void *data) { struct atmel_hsmc_nand_controller *nc = data; u32 sr, rcvd; bool done; regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); done = atmel_nfc_op_done(&nc->op, sr); if (rcvd) regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); if (done) complete(&nc->complete); return rcvd ? IRQ_HANDLED : IRQ_NONE; } static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, unsigned int timeout_ms) { int ret; if (!timeout_ms) timeout_ms = DEFAULT_TIMEOUT_MS; if (poll) { u32 status; ret = regmap_read_poll_timeout(nc->base.smc, ATMEL_HSMC_NFC_SR, status, atmel_nfc_op_done(&nc->op, status), 0, timeout_ms * 1000); } else { init_completion(&nc->complete); regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); ret = wait_for_completion_timeout(&nc->complete, msecs_to_jiffies(timeout_ms)); if (!ret) ret = -ETIMEDOUT; else ret = 0; regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); } if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); ret = -ETIMEDOUT; } if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { dev_err(nc->base.dev, "Access to an undefined area\n"); ret = -EIO; } if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { dev_err(nc->base.dev, "Access while busy\n"); ret = -EIO; } if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { dev_err(nc->base.dev, "Wrong access size\n"); ret = -EIO; } return ret; } static void atmel_nand_dma_transfer_finished(void *data) { struct completion *finished = data; complete(finished); } static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, void *buf, dma_addr_t dev_dma, size_t len, enum dma_data_direction dir) { DECLARE_COMPLETION_ONSTACK(finished); dma_addr_t src_dma, dst_dma, buf_dma; struct dma_async_tx_descriptor *tx; dma_cookie_t cookie; buf_dma = dma_map_single(nc->dev, buf, len, dir); if (dma_mapping_error(nc->dev, dev_dma)) { dev_err(nc->dev, "Failed to prepare a buffer for DMA access\n"); goto err; } if (dir == DMA_FROM_DEVICE) { src_dma = dev_dma; dst_dma = buf_dma; } else { src_dma = buf_dma; dst_dma = dev_dma; } tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, DMA_CTRL_ACK | DMA_PREP_INTERRUPT); if (!tx) { dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); goto err_unmap; } tx->callback = atmel_nand_dma_transfer_finished; tx->callback_param = &finished; cookie = dmaengine_submit(tx); if (dma_submit_error(cookie)) { dev_err(nc->dev, "Failed to do DMA tx_submit\n"); goto err_unmap; } dma_async_issue_pending(nc->dmac); wait_for_completion(&finished); dma_unmap_single(nc->dev, buf_dma, len, dir); return 0; err_unmap: dma_unmap_single(nc->dev, buf_dma, len, dir); err: dev_dbg(nc->dev, "Fall back to CPU I/O\n"); return -EIO; } static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) { u8 *addrs = nc->op.addrs; unsigned int op = 0; u32 addr, val; int i, ret; nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; for (i = 0; i < nc->op.ncmds; i++) op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); op |= ATMEL_NFC_CSID(nc->op.cs) | ATMEL_NFC_ACYCLE(nc->op.naddrs); if (nc->op.ncmds > 1) op |= ATMEL_NFC_VCMD2; addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | (addrs[3] << 24); if (nc->op.data != ATMEL_NFC_NO_DATA) { op |= ATMEL_NFC_DATAEN; nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; if (nc->op.data == ATMEL_NFC_WRITE_DATA) op |= ATMEL_NFC_NFCWR; } /* Clear all flags. */ regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); /* Send the command. */ regmap_write(nc->io, op, addr); ret = atmel_nfc_wait(nc, poll, 0); if (ret) dev_err(nc->base.dev, "Failed to send NAND command (err = %d)!", ret); /* Reset the op state. */ memset(&nc->op, 0, sizeof(nc->op)); return ret; } static void atmel_nand_data_in(struct atmel_nand *nand, void *buf, unsigned int len, bool force_8bit) { struct atmel_nand_controller *nc; nc = to_nand_controller(nand->base.controller); /* * If the controller supports DMA, the buffer address is DMA-able and * len is long enough to make DMA transfers profitable, let's trigger * a DMA transfer. If it fails, fallback to PIO mode. */ if (nc->dmac && virt_addr_valid(buf) && len >= MIN_DMA_LEN && !force_8bit && !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, DMA_FROM_DEVICE)) return; if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit) ioread16_rep(nand->activecs->io.virt, buf, len / 2); else ioread8_rep(nand->activecs->io.virt, buf, len); } static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf, unsigned int len, bool force_8bit) { struct atmel_nand_controller *nc; nc = to_nand_controller(nand->base.controller); /* * If the controller supports DMA, the buffer address is DMA-able and * len is long enough to make DMA transfers profitable, let's trigger * a DMA transfer. If it fails, fallback to PIO mode. */ if (nc->dmac && virt_addr_valid(buf) && len >= MIN_DMA_LEN && !force_8bit && !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, len, DMA_TO_DEVICE)) return; if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit) iowrite16_rep(nand->activecs->io.virt, buf, len / 2); else iowrite8_rep(nand->activecs->io.virt, buf, len); } static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms) { if (nand->activecs->rb.type == ATMEL_NAND_NO_RB) return nand_soft_waitrdy(&nand->base, timeout_ms); return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio, timeout_ms); } static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms) { struct atmel_hsmc_nand_controller *nc; u32 status, mask; if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) return atmel_nand_waitrdy(nand, timeout_ms); nc = to_hsmc_nand_controller(nand->base.controller); mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR, status, status & mask, 10, timeout_ms * 1000); } static void atmel_nand_select_target(struct atmel_nand *nand, unsigned int cs) { nand->activecs = &nand->cs[cs]; } static void atmel_hsmc_nand_select_target(struct atmel_nand *nand, unsigned int cs) { struct mtd_info *mtd = nand_to_mtd(&nand->base); struct atmel_hsmc_nand_controller *nc; u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | ATMEL_HSMC_NFC_CFG_RSPARE; nand->activecs = &nand->cs[cs]; nc = to_hsmc_nand_controller(nand->base.controller); if (nc->cfg == cfg) return; regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | ATMEL_HSMC_NFC_CFG_RSPARE | ATMEL_HSMC_NFC_CFG_WSPARE, cfg); nc->cfg = cfg; } static int atmel_smc_nand_exec_instr(struct atmel_nand *nand, const struct nand_op_instr *instr) { struct atmel_nand_controller *nc; unsigned int i; nc = to_nand_controller(nand->base.controller); switch (instr->type) { case NAND_OP_CMD_INSTR: writeb(instr->ctx.cmd.opcode, nand->activecs->io.virt + nc->caps->cle_offs); return 0; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) writeb(instr->ctx.addr.addrs[i], nand->activecs->io.virt + nc->caps->ale_offs); return 0; case NAND_OP_DATA_IN_INSTR: atmel_nand_data_in(nand, instr->ctx.data.buf.in, instr->ctx.data.len, instr->ctx.data.force_8bit); return 0; case NAND_OP_DATA_OUT_INSTR: atmel_nand_data_out(nand, instr->ctx.data.buf.out, instr->ctx.data.len, instr->ctx.data.force_8bit); return 0; case NAND_OP_WAITRDY_INSTR: return atmel_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms); default: break; } return -EINVAL; } static int atmel_smc_nand_exec_op(struct atmel_nand *nand, const struct nand_operation *op, bool check_only) { unsigned int i; int ret = 0; if (check_only) return 0; atmel_nand_select_target(nand, op->cs); gpiod_set_value(nand->activecs->csgpio, 0); for (i = 0; i < op->ninstrs; i++) { ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]); if (ret) break; } gpiod_set_value(nand->activecs->csgpio, 1); return ret; } static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip, const struct nand_subop *subop) { struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; unsigned int i, j; nc = to_hsmc_nand_controller(chip->controller); nc->op.cs = nand->activecs->id; for (i = 0; i < subop->ninstrs; i++) { const struct nand_op_instr *instr = &subop->instrs[i]; if (instr->type == NAND_OP_CMD_INSTR) { nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode; continue; } for (j = nand_subop_get_addr_start_off(subop, i); j < nand_subop_get_num_addr_cyc(subop, i); j++) { nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j]; nc->op.naddrs++; } } return atmel_nfc_exec_op(nc, true); } static int atmel_hsmc_exec_rw(struct nand_chip *chip, const struct nand_subop *subop) { const struct nand_op_instr *instr = subop->instrs; struct atmel_nand *nand = to_atmel_nand(chip); if (instr->type == NAND_OP_DATA_IN_INSTR) atmel_nand_data_in(nand, instr->ctx.data.buf.in, instr->ctx.data.len, instr->ctx.data.force_8bit); else atmel_nand_data_out(nand, instr->ctx.data.buf.out, instr->ctx.data.len, instr->ctx.data.force_8bit); return 0; } static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip, const struct nand_subop *subop) { const struct nand_op_instr *instr = subop->instrs; struct atmel_nand *nand = to_atmel_nand(chip); return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms); } static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), NAND_OP_PARSER_PAT_CMD_ELEM(true)), NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw, NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw, NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)), NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy, NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), ); static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand, const struct nand_operation *op, bool check_only) { int ret; if (check_only) return nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op, true); atmel_hsmc_nand_select_target(nand, op->cs); ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op, false); return ret; } static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, bool oob_required) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_hsmc_nand_controller *nc; int ret = -EIO; nc = to_hsmc_nand_controller(chip->controller); if (nc->base.dmac) ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, nc->sram.dma, mtd->writesize, DMA_TO_DEVICE); /* Falling back to CPU copy. */ if (ret) memcpy_toio(nc->sram.virt, buf, mtd->writesize); if (oob_required) memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, mtd->oobsize); } static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, bool oob_required) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_hsmc_nand_controller *nc; int ret = -EIO; nc = to_hsmc_nand_controller(chip->controller); if (nc->base.dmac) ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, mtd->writesize, DMA_FROM_DEVICE); /* Falling back to CPU copy. */ if (ret) memcpy_fromio(buf, nc->sram.virt, mtd->writesize); if (oob_required) memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, mtd->oobsize); } static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_hsmc_nand_controller *nc; nc = to_hsmc_nand_controller(chip->controller); if (column >= 0) { nc->op.addrs[nc->op.naddrs++] = column; /* * 2 address cycles for the column offset on large page NANDs. */ if (mtd->writesize > 512) nc->op.addrs[nc->op.naddrs++] = column >> 8; } if (page >= 0) { nc->op.addrs[nc->op.naddrs++] = page; nc->op.addrs[nc->op.naddrs++] = page >> 8; if (chip->options & NAND_ROW_ADDR_3) nc->op.addrs[nc->op.naddrs++] = page >> 16; } } static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) { struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_nand_controller *nc; int ret; nc = to_nand_controller(chip->controller); if (raw) return 0; ret = atmel_pmecc_enable(nand->pmecc, op); if (ret) dev_err(nc->dev, "Failed to enable ECC engine (err = %d)\n", ret); return ret; } static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) { struct atmel_nand *nand = to_atmel_nand(chip); if (!raw) atmel_pmecc_disable(nand->pmecc); } static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) { struct atmel_nand *nand = to_atmel_nand(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand_controller *nc; struct mtd_oob_region oobregion; void *eccbuf; int ret, i; nc = to_nand_controller(chip->controller); if (raw) return 0; ret = atmel_pmecc_wait_rdy(nand->pmecc); if (ret) { dev_err(nc->dev, "Failed to transfer NAND page data (err = %d)\n", ret); return ret; } mtd_ooblayout_ecc(mtd, 0, &oobregion); eccbuf = chip->oob_poi + oobregion.offset; for (i = 0; i < chip->ecc.steps; i++) { atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, eccbuf); eccbuf += chip->ecc.bytes; } return 0; } static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, bool raw) { struct atmel_nand *nand = to_atmel_nand(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand_controller *nc; struct mtd_oob_region oobregion; int ret, i, max_bitflips = 0; void *databuf, *eccbuf; nc = to_nand_controller(chip->controller); if (raw) return 0; ret = atmel_pmecc_wait_rdy(nand->pmecc); if (ret) { dev_err(nc->dev, "Failed to read NAND page data (err = %d)\n", ret); return ret; } mtd_ooblayout_ecc(mtd, 0, &oobregion); eccbuf = chip->oob_poi + oobregion.offset; databuf = buf; for (i = 0; i < chip->ecc.steps; i++) { ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, eccbuf); if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) ret = nand_check_erased_ecc_chunk(databuf, chip->ecc.size, eccbuf, chip->ecc.bytes, NULL, 0, chip->ecc.strength); if (ret >= 0) { mtd->ecc_stats.corrected += ret; max_bitflips = max(ret, max_bitflips); } else { mtd->ecc_stats.failed++; } databuf += chip->ecc.size; eccbuf += chip->ecc.bytes; } return max_bitflips; } static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, bool oob_required, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); int ret; nand_prog_page_begin_op(chip, page, 0, NULL, 0); ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); if (ret) return ret; nand_write_data_op(chip, buf, mtd->writesize, false); ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); if (ret) { atmel_pmecc_disable(nand->pmecc); return ret; } atmel_nand_pmecc_disable(chip, raw); nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); return nand_prog_page_end_op(chip); } static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); } static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); } static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, bool oob_required, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(chip); int ret; nand_read_page_op(chip, page, 0, NULL, 0); ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); if (ret) return ret; ret = nand_read_data_op(chip, buf, mtd->writesize, false, false); if (ret) goto out_disable; ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false); if (ret) goto out_disable; ret = atmel_nand_pmecc_correct_data(chip, buf, raw); out_disable: atmel_nand_pmecc_disable(chip, raw); return ret; } static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); } static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); } static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, bool oob_required, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; int ret; atmel_hsmc_nand_select_target(nand, chip->cur_cs); nc = to_hsmc_nand_controller(chip->controller); atmel_nfc_copy_to_sram(chip, buf, false); nc->op.cmds[0] = NAND_CMD_SEQIN; nc->op.ncmds = 1; atmel_nfc_set_op_addr(chip, page, 0x0); nc->op.cs = nand->activecs->id; nc->op.data = ATMEL_NFC_WRITE_DATA; ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); if (ret) return ret; ret = atmel_nfc_exec_op(nc, false); if (ret) { atmel_nand_pmecc_disable(chip, raw); dev_err(nc->base.dev, "Failed to transfer NAND page data (err = %d)\n", ret); return ret; } ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); atmel_nand_pmecc_disable(chip, raw); if (ret) return ret; nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); return nand_prog_page_end_op(chip); } static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, false); } static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, true); } static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, bool oob_required, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; int ret; atmel_hsmc_nand_select_target(nand, chip->cur_cs); nc = to_hsmc_nand_controller(chip->controller); /* * Optimized read page accessors only work when the NAND R/B pin is * connected to a native SoC R/B pin. If that's not the case, fallback * to the non-optimized one. */ if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, raw); nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; if (mtd->writesize > 512) nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; atmel_nfc_set_op_addr(chip, page, 0x0); nc->op.cs = nand->activecs->id; nc->op.data = ATMEL_NFC_READ_DATA; ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); if (ret) return ret; ret = atmel_nfc_exec_op(nc, false); if (ret) { atmel_nand_pmecc_disable(chip, raw); dev_err(nc->base.dev, "Failed to load NAND page data (err = %d)\n", ret); return ret; } atmel_nfc_copy_from_sram(chip, buf, true); ret = atmel_nand_pmecc_correct_data(chip, buf, raw); atmel_nand_pmecc_disable(chip, raw); return ret; } static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, false); } static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, true); } static int atmel_nand_pmecc_init(struct nand_chip *chip) { const struct nand_ecc_props *requirements = nanddev_get_ecc_requirements(&chip->base); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_device *nanddev = mtd_to_nanddev(mtd); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_nand_controller *nc; struct atmel_pmecc_user_req req; nc = to_nand_controller(chip->controller); if (!nc->pmecc) { dev_err(nc->dev, "HW ECC not supported\n"); return -ENOTSUPP; } if (nc->caps->legacy_of_bindings) { u32 val; if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", &val)) chip->ecc.strength = val; if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-sector-size", &val)) chip->ecc.size = val; } if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; else if (chip->ecc.strength) req.ecc.strength = chip->ecc.strength; else if (requirements->strength) req.ecc.strength = requirements->strength; else req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; if (chip->ecc.size) req.ecc.sectorsize = chip->ecc.size; else if (requirements->step_size) req.ecc.sectorsize = requirements->step_size; else req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; req.pagesize = mtd->writesize; req.oobsize = mtd->oobsize; if (mtd->writesize <= 512) { req.ecc.bytes = 4; req.ecc.ooboffset = 0; } else { req.ecc.bytes = mtd->oobsize - 2; req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; } nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); if (IS_ERR(nand->pmecc)) return PTR_ERR(nand->pmecc); chip->ecc.algo = NAND_ECC_ALGO_BCH; chip->ecc.size = req.ecc.sectorsize; chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; chip->ecc.strength = req.ecc.strength; chip->options |= NAND_NO_SUBPAGE_WRITE; mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); return 0; } static int atmel_nand_ecc_init(struct nand_chip *chip) { struct atmel_nand_controller *nc; int ret; nc = to_nand_controller(chip->controller); switch (chip->ecc.engine_type) { case NAND_ECC_ENGINE_TYPE_NONE: case NAND_ECC_ENGINE_TYPE_SOFT: /* * Nothing to do, the core will initialize everything for us. */ break; case NAND_ECC_ENGINE_TYPE_ON_HOST: ret = atmel_nand_pmecc_init(chip); if (ret) return ret; chip->ecc.read_page = atmel_nand_pmecc_read_page; chip->ecc.write_page = atmel_nand_pmecc_write_page; chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; break; default: /* Other modes are not supported. */ dev_err(nc->dev, "Unsupported ECC mode: %d\n", chip->ecc.engine_type); return -ENOTSUPP; } return 0; } static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip) { int ret; ret = atmel_nand_ecc_init(chip); if (ret) return ret; if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) return 0; /* Adjust the ECC operations for the HSMC IP. */ chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; return 0; } static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, const struct nand_interface_config *conf, struct atmel_smc_cs_conf *smcconf) { u32 ncycles, totalcycles, timeps, mckperiodps; struct atmel_nand_controller *nc; int ret; nc = to_nand_controller(nand->base.controller); /* DDR interface not supported. */ if (!nand_interface_is_sdr(conf)) return -ENOTSUPP; /* * tRC < 30ns implies EDO mode. This controller does not support this * mode. */ if (conf->timings.sdr.tRC_min < 30000) return -ENOTSUPP; atmel_smc_cs_conf_init(smcconf); mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); mckperiodps *= 1000; /* * Set write pulse timing. This one is easy to extract: * * NWE_PULSE = tWP */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); totalcycles = ncycles; ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, ncycles); if (ret) return ret; /* * The write setup timing depends on the operation done on the NAND. * All operations goes through the same data bus, but the operation * type depends on the address we are writing to (ALE/CLE address * lines). * Since we have no way to differentiate the different operations at * the SMC level, we must consider the worst case (the biggest setup * time among all operation types): * * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE */ timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, conf->timings.sdr.tALS_min); timeps = max(timeps, conf->timings.sdr.tDS_min); ncycles = DIV_ROUND_UP(timeps, mckperiodps); ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; totalcycles += ncycles; ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, ncycles); if (ret) return ret; /* * As for the write setup timing, the write hold timing depends on the * operation done on the NAND: * * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) */ timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, conf->timings.sdr.tALH_min); timeps = max3(timeps, conf->timings.sdr.tDH_min, conf->timings.sdr.tWH_min); ncycles = DIV_ROUND_UP(timeps, mckperiodps); totalcycles += ncycles; /* * The write cycle timing is directly matching tWC, but is also * dependent on the other timings on the setup and hold timings we * calculated earlier, which gives: * * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); ncycles = max(totalcycles, ncycles); ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, ncycles); if (ret) return ret; /* * We don't want the CS line to be toggled between each byte/word * transfer to the NAND. The only way to guarantee that is to have the * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: * * NCS_WR_PULSE = NWE_CYCLE */ ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, ncycles); if (ret) return ret; /* * As for the write setup timing, the read hold timing depends on the * operation done on the NAND: * * NRD_HOLD = max(tREH, tRHOH) */ timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); ncycles = DIV_ROUND_UP(timeps, mckperiodps); totalcycles = ncycles; /* * TDF = tRHZ - NRD_HOLD */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); ncycles -= totalcycles; /* * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and * we might end up with a config that does not fit in the TDF field. * Just take the max value in this case and hope that the NAND is more * tolerant than advertised. */ if (ncycles > ATMEL_SMC_MODE_TDF_MAX) ncycles = ATMEL_SMC_MODE_TDF_MAX; else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) ncycles = ATMEL_SMC_MODE_TDF_MIN; smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; /* * Read pulse timing directly matches tRP: * * NRD_PULSE = tRP */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); totalcycles += ncycles; ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, ncycles); if (ret) return ret; /* * The write cycle timing is directly matching tWC, but is also * dependent on the setup and hold timings we calculated earlier, * which gives: * * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) * * NRD_SETUP is always 0. */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); ncycles = max(totalcycles, ncycles); ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, ncycles); if (ret) return ret; /* * We don't want the CS line to be toggled between each byte/word * transfer from the NAND. The only way to guarantee that is to have * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: * * NCS_RD_PULSE = NRD_CYCLE */ ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, ncycles); if (ret) return ret; /* Txxx timings are directly matching tXXX ones. */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TCLR_SHIFT, ncycles); if (ret) return ret; ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TADL_SHIFT, ncycles); /* * Version 4 of the ONFI spec mandates that tADL be at least 400 * nanoseconds, but, depending on the master clock rate, 400 ns may not * fit in the tADL field of the SMC reg. We need to relax the check and * accept the -ERANGE return code. * * Note that previous versions of the ONFI spec had a lower tADL_min * (100 or 200 ns). It's not clear why this timing constraint got * increased but it seems most NANDs are fine with values lower than * 400ns, so we should be safe. */ if (ret && ret != -ERANGE) return ret; ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TAR_SHIFT, ncycles); if (ret) return ret; ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TRR_SHIFT, ncycles); if (ret) return ret; ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TWB_SHIFT, ncycles); if (ret) return ret; /* Attach the CS line to the NFC logic. */ smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; /* Set the appropriate data bus width. */ if (nand->base.options & NAND_BUSWIDTH_16) smcconf->mode |= ATMEL_SMC_MODE_DBW_16; /* Operate in NRD/NWE READ/WRITEMODE. */ smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | ATMEL_SMC_MODE_WRITEMODE_NWE; return 0; } static int atmel_smc_nand_setup_interface(struct atmel_nand *nand, int csline, const struct nand_interface_config *conf) { struct atmel_nand_controller *nc; struct atmel_smc_cs_conf smcconf; struct atmel_nand_cs *cs; int ret; nc = to_nand_controller(nand->base.controller); ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); if (ret) return ret; if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; cs = &nand->cs[csline]; cs->smcconf = smcconf; atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); return 0; } static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand, int csline, const struct nand_interface_config *conf) { struct atmel_hsmc_nand_controller *nc; struct atmel_smc_cs_conf smcconf; struct atmel_nand_cs *cs; int ret; nc = to_hsmc_nand_controller(nand->base.controller); ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); if (ret) return ret; if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; cs = &nand->cs[csline]; cs->smcconf = smcconf; if (cs->rb.type == ATMEL_NAND_NATIVE_RB) cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, &cs->smcconf); return 0; } static int atmel_nand_setup_interface(struct nand_chip *chip, int csline, const struct nand_interface_config *conf) { struct atmel_nand *nand = to_atmel_nand(chip); const struct nand_sdr_timings *sdr; struct atmel_nand_controller *nc; sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); nc = to_nand_controller(nand->base.controller); if (csline >= nand->numcs || (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) return -EINVAL; return nc->caps->ops->setup_interface(nand, csline, conf); } static int atmel_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_nand_controller *nc; nc = to_nand_controller(nand->base.controller); return nc->caps->ops->exec_op(nand, op, check_only); } static void atmel_nand_init(struct atmel_nand_controller *nc, struct atmel_nand *nand) { struct nand_chip *chip = &nand->base; struct mtd_info *mtd = nand_to_mtd(chip); mtd->dev.parent = nc->dev; nand->base.controller = &nc->base; if (!nc->mck || !nc->caps->ops->setup_interface) chip->options |= NAND_KEEP_TIMINGS; /* * Use a bounce buffer when the buffer passed by the MTD user is not * suitable for DMA. */ if (nc->dmac) chip->options |= NAND_USES_DMA; /* Default to HW ECC if pmecc is available. */ if (nc->pmecc) chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; } static void atmel_smc_nand_init(struct atmel_nand_controller *nc, struct atmel_nand *nand) { struct nand_chip *chip = &nand->base; struct atmel_smc_nand_controller *smc_nc; int i; atmel_nand_init(nc, nand); smc_nc = to_smc_nand_controller(chip->controller); if (!smc_nc->ebi_csa_regmap) return; /* Attach the CS to the NAND Flash logic. */ for (i = 0; i < nand->numcs; i++) regmap_update_bits(smc_nc->ebi_csa_regmap, smc_nc->ebi_csa->offs, BIT(nand->cs[i].id), BIT(nand->cs[i].id)); if (smc_nc->ebi_csa->nfd0_on_d16) regmap_update_bits(smc_nc->ebi_csa_regmap, smc_nc->ebi_csa->offs, smc_nc->ebi_csa->nfd0_on_d16, smc_nc->ebi_csa->nfd0_on_d16); } static int atmel_nand_controller_remove_nand(struct atmel_nand *nand) { struct nand_chip *chip = &nand->base; struct mtd_info *mtd = nand_to_mtd(chip); int ret; ret = mtd_device_unregister(mtd); if (ret) return ret; nand_cleanup(chip); list_del(&nand->node); return 0; } static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, struct device_node *np, int reg_cells) { struct atmel_nand *nand; struct gpio_desc *gpio; int numcs, ret, i; numcs = of_property_count_elems_of_size(np, "reg", reg_cells * sizeof(u32)); if (numcs < 1) { dev_err(nc->dev, "Missing or invalid reg property\n"); return ERR_PTR(-EINVAL); } nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL); if (!nand) return ERR_PTR(-ENOMEM); nand->numcs = numcs; gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np), "det", GPIOD_IN, "nand-det"); if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { dev_err(nc->dev, "Failed to get detect gpio (err = %ld)\n", PTR_ERR(gpio)); return ERR_CAST(gpio); } if (!IS_ERR(gpio)) nand->cdgpio = gpio; for (i = 0; i < numcs; i++) { struct resource res; u32 val; ret = of_address_to_resource(np, 0, &res); if (ret) { dev_err(nc->dev, "Invalid reg property (err = %d)\n", ret); return ERR_PTR(ret); } ret = of_property_read_u32_index(np, "reg", i * reg_cells, &val); if (ret) { dev_err(nc->dev, "Invalid reg property (err = %d)\n", ret); return ERR_PTR(ret); } nand->cs[i].id = val; nand->cs[i].io.dma = res.start; nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); if (IS_ERR(nand->cs[i].io.virt)) return ERR_CAST(nand->cs[i].io.virt); if (!of_property_read_u32(np, "atmel,rb", &val)) { if (val > ATMEL_NFC_MAX_RB_ID) return ERR_PTR(-EINVAL); nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; nand->cs[i].rb.id = val; } else { gpio = devm_fwnode_gpiod_get_index(nc->dev, of_fwnode_handle(np), "rb", i, GPIOD_IN, "nand-rb"); if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { dev_err(nc->dev, "Failed to get R/B gpio (err = %ld)\n", PTR_ERR(gpio)); return ERR_CAST(gpio); } if (!IS_ERR(gpio)) { nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; nand->cs[i].rb.gpio = gpio; } } gpio = devm_fwnode_gpiod_get_index(nc->dev, of_fwnode_handle(np), "cs", i, GPIOD_OUT_HIGH, "nand-cs"); if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { dev_err(nc->dev, "Failed to get CS gpio (err = %ld)\n", PTR_ERR(gpio)); return ERR_CAST(gpio); } if (!IS_ERR(gpio)) nand->cs[i].csgpio = gpio; } nand_set_flash_node(&nand->base, np); return nand; } static int atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, struct atmel_nand *nand) { struct nand_chip *chip = &nand->base; struct mtd_info *mtd = nand_to_mtd(chip); int ret; /* No card inserted, skip this NAND. */ if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { dev_info(nc->dev, "No SmartMedia card inserted.\n"); return 0; } nc->caps->ops->nand_init(nc, nand); ret = nand_scan(chip, nand->numcs); if (ret) { dev_err(nc->dev, "NAND scan failed: %d\n", ret); return ret; } ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); nand_cleanup(chip); return ret; } list_add_tail(&nand->node, &nc->chips); return 0; } static int atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) { struct atmel_nand *nand, *tmp; int ret; list_for_each_entry_safe(nand, tmp, &nc->chips, node) { ret = atmel_nand_controller_remove_nand(nand); if (ret) return ret; } return 0; } static int atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) { struct device *dev = nc->dev; struct platform_device *pdev = to_platform_device(dev); struct atmel_nand *nand; struct gpio_desc *gpio; struct resource *res; /* * Legacy bindings only allow connecting a single NAND with a unique CS * line to the controller. */ nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), GFP_KERNEL); if (!nand) return -ENOMEM; nand->numcs = 1; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); nand->cs[0].io.virt = devm_ioremap_resource(dev, res); if (IS_ERR(nand->cs[0].io.virt)) return PTR_ERR(nand->cs[0].io.virt); nand->cs[0].io.dma = res->start; /* * The old driver was hardcoding the CS id to 3 for all sama5 * controllers. Since this id is only meaningful for the sama5 * controller we can safely assign this id to 3 no matter the * controller. * If one wants to connect a NAND to a different CS line, he will * have to use the new bindings. */ nand->cs[0].id = 3; /* R/B GPIO. */ gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); if (IS_ERR(gpio)) { dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", PTR_ERR(gpio)); return PTR_ERR(gpio); } if (gpio) { nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; nand->cs[0].rb.gpio = gpio; } /* CS GPIO. */ gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); if (IS_ERR(gpio)) { dev_err(dev, "Failed to get CS gpio (err = %ld)\n", PTR_ERR(gpio)); return PTR_ERR(gpio); } nand->cs[0].csgpio = gpio; /* Card detect GPIO. */ gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); if (IS_ERR(gpio)) { dev_err(dev, "Failed to get detect gpio (err = %ld)\n", PTR_ERR(gpio)); return PTR_ERR(gpio); } nand->cdgpio = gpio; nand_set_flash_node(&nand->base, nc->dev->of_node); return atmel_nand_controller_add_nand(nc, nand); } static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) { struct device_node *np, *nand_np; struct device *dev = nc->dev; int ret, reg_cells; u32 val; /* We do not retrieve the SMC syscon when parsing old DTs. */ if (nc->caps->legacy_of_bindings) return atmel_nand_controller_legacy_add_nands(nc); np = dev->of_node; ret = of_property_read_u32(np, "#address-cells", &val); if (ret) { dev_err(dev, "missing #address-cells property\n"); return ret; } reg_cells = val; ret = of_property_read_u32(np, "#size-cells", &val); if (ret) { dev_err(dev, "missing #size-cells property\n"); return ret; } reg_cells += val; for_each_child_of_node(np, nand_np) { struct atmel_nand *nand; nand = atmel_nand_create(nc, nand_np, reg_cells); if (IS_ERR(nand)) { ret = PTR_ERR(nand); goto err; } ret = atmel_nand_controller_add_nand(nc, nand); if (ret) goto err; } return 0; err: atmel_nand_controller_remove_nands(nc); return ret; } static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) { if (nc->dmac) dma_release_channel(nc->dmac); clk_put(nc->mck); } static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = { .offs = AT91SAM9260_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = { .offs = AT91SAM9261_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = { .offs = AT91SAM9263_MATRIX_EBI0CSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = { .offs = AT91SAM9RL_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = { .offs = AT91SAM9G45_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = { .offs = AT91SAM9N12_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = { .offs = AT91SAM9X5_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = { .offs = AT91_SFR_CCFG_EBICSA, .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16, }; static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = { { .compatible = "atmel,at91sam9260-matrix", .data = &at91sam9260_ebi_csa, }, { .compatible = "atmel,at91sam9261-matrix", .data = &at91sam9261_ebi_csa, }, { .compatible = "atmel,at91sam9263-matrix", .data = &at91sam9263_ebi_csa, }, { .compatible = "atmel,at91sam9rl-matrix", .data = &at91sam9rl_ebi_csa, }, { .compatible = "atmel,at91sam9g45-matrix", .data = &at91sam9g45_ebi_csa, }, { .compatible = "atmel,at91sam9n12-matrix", .data = &at91sam9n12_ebi_csa, }, { .compatible = "atmel,at91sam9x5-matrix", .data = &at91sam9x5_ebi_csa, }, { .compatible = "microchip,sam9x60-sfr", .data = &sam9x60_ebi_csa, }, { /* sentinel */ }, }; static int atmel_nand_attach_chip(struct nand_chip *chip) { struct atmel_nand_controller *nc = to_nand_controller(chip->controller); struct atmel_nand *nand = to_atmel_nand(chip); struct mtd_info *mtd = nand_to_mtd(chip); int ret; ret = nc->caps->ops->ecc_init(chip); if (ret) return ret; if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { /* * We keep the MTD name unchanged to avoid breaking platforms * where the MTD cmdline parser is used and the bootloader * has not been updated to use the new naming scheme. */ mtd->name = "atmel_nand"; } else if (!mtd->name) { /* * If the new bindings are used and the bootloader has not been * updated to pass a new mtdparts parameter on the cmdline, you * should define the following property in your nand node: * * label = "atmel_nand"; * * This way, mtd->name will be set by the core when * nand_set_flash_node() is called. */ mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, "%s:nand.%d", dev_name(nc->dev), nand->cs[0].id); if (!mtd->name) { dev_err(nc->dev, "Failed to allocate mtd->name\n"); return -ENOMEM; } } return 0; } static const struct nand_controller_ops atmel_nand_controller_ops = { .attach_chip = atmel_nand_attach_chip, .setup_interface = atmel_nand_setup_interface, .exec_op = atmel_nand_exec_op, }; static int atmel_nand_controller_init(struct atmel_nand_controller *nc, struct platform_device *pdev, const struct atmel_nand_controller_caps *caps) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; int ret; nand_controller_init(&nc->base); nc->base.ops = &atmel_nand_controller_ops; INIT_LIST_HEAD(&nc->chips); nc->dev = dev; nc->caps = caps; platform_set_drvdata(pdev, nc); nc->pmecc = devm_atmel_pmecc_get(dev); if (IS_ERR(nc->pmecc)) return dev_err_probe(dev, PTR_ERR(nc->pmecc), "Could not get PMECC object\n"); if (nc->caps->has_dma && !atmel_nand_avoid_dma) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); nc->dmac = dma_request_channel(mask, NULL, NULL); if (!nc->dmac) dev_err(nc->dev, "Failed to request DMA channel\n"); } /* We do not retrieve the SMC syscon when parsing old DTs. */ if (nc->caps->legacy_of_bindings) return 0; nc->mck = of_clk_get(dev->parent->of_node, 0); if (IS_ERR(nc->mck)) { dev_err(dev, "Failed to retrieve MCK clk\n"); ret = PTR_ERR(nc->mck); goto out_release_dma; } np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); if (!np) { dev_err(dev, "Missing or invalid atmel,smc property\n"); ret = -EINVAL; goto out_release_dma; } nc->smc = syscon_node_to_regmap(np); of_node_put(np); if (IS_ERR(nc->smc)) { ret = PTR_ERR(nc->smc); dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); goto out_release_dma; } return 0; out_release_dma: if (nc->dmac) dma_release_channel(nc->dmac); return ret; } static int atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) { struct device *dev = nc->base.dev; const struct of_device_id *match; struct device_node *np; int ret; /* We do not retrieve the EBICSA regmap when parsing old DTs. */ if (nc->base.caps->legacy_of_bindings) return 0; np = of_parse_phandle(dev->parent->of_node, nc->base.caps->ebi_csa_regmap_name, 0); if (!np) return 0; match = of_match_node(atmel_ebi_csa_regmap_of_ids, np); if (!match) { of_node_put(np); return 0; } nc->ebi_csa_regmap = syscon_node_to_regmap(np); of_node_put(np); if (IS_ERR(nc->ebi_csa_regmap)) { ret = PTR_ERR(nc->ebi_csa_regmap); dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret); return ret; } nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data; /* * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 * add 4 to ->ebi_csa->offs. */ if (of_device_is_compatible(dev->parent->of_node, "atmel,at91sam9263-ebi1")) nc->ebi_csa->offs += 4; return 0; } static int atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) { struct regmap_config regmap_conf = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, }; struct device *dev = nc->base.dev; struct device_node *nand_np, *nfc_np; void __iomem *iomem; struct resource res; int ret; nand_np = dev->of_node; nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc"); if (!nfc_np) { dev_err(dev, "Could not find device node for sama5d3-nfc\n"); return -ENODEV; } nc->clk = of_clk_get(nfc_np, 0); if (IS_ERR(nc->clk)) { ret = PTR_ERR(nc->clk); dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", ret); goto out; } ret = clk_prepare_enable(nc->clk); if (ret) { dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", ret); goto out; } nc->irq = of_irq_get(nand_np, 0); if (nc->irq <= 0) { ret = nc->irq ?: -ENXIO; if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get IRQ number (err = %d)\n", ret); goto out; } ret = of_address_to_resource(nfc_np, 0, &res); if (ret) { dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", ret); goto out; } iomem = devm_ioremap_resource(dev, &res); if (IS_ERR(iomem)) { ret = PTR_ERR(iomem); goto out; } regmap_conf.name = "nfc-io"; regmap_conf.max_register = resource_size(&res) - 4; nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); if (IS_ERR(nc->io)) { ret = PTR_ERR(nc->io); dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", ret); goto out; } ret = of_address_to_resource(nfc_np, 1, &res); if (ret) { dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", ret); goto out; } iomem = devm_ioremap_resource(dev, &res); if (IS_ERR(iomem)) { ret = PTR_ERR(iomem); goto out; } regmap_conf.name = "smc"; regmap_conf.max_register = resource_size(&res) - 4; nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); if (IS_ERR(nc->base.smc)) { ret = PTR_ERR(nc->base.smc); dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", ret); goto out; } ret = of_address_to_resource(nfc_np, 2, &res); if (ret) { dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", ret); goto out; } nc->sram.virt = devm_ioremap_resource(dev, &res); if (IS_ERR(nc->sram.virt)) { ret = PTR_ERR(nc->sram.virt); goto out; } nc->sram.dma = res.start; out: of_node_put(nfc_np); return ret; } static int atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) { struct device *dev = nc->base.dev; struct device_node *np; int ret; np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); if (!np) { dev_err(dev, "Missing or invalid atmel,smc property\n"); return -EINVAL; } nc->hsmc_layout = atmel_hsmc_get_reg_layout(np); nc->irq = of_irq_get(np, 0); of_node_put(np); if (nc->irq <= 0) { ret = nc->irq ?: -ENXIO; if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get IRQ number (err = %d)\n", ret); return ret; } np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); if (!np) { dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); return -EINVAL; } nc->io = syscon_node_to_regmap(np); of_node_put(np); if (IS_ERR(nc->io)) { ret = PTR_ERR(nc->io); dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); return ret; } nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, "atmel,nfc-sram", 0); if (!nc->sram.pool) { dev_err(nc->base.dev, "Missing SRAM\n"); return -ENOMEM; } nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool, ATMEL_NFC_SRAM_SIZE, &nc->sram.dma); if (!nc->sram.virt) { dev_err(nc->base.dev, "Could not allocate memory from the NFC SRAM pool\n"); return -ENOMEM; } return 0; } static int atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) { struct atmel_hsmc_nand_controller *hsmc_nc; int ret; ret = atmel_nand_controller_remove_nands(nc); if (ret) return ret; hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL, ATMEL_HSMC_NFC_CTRL_DIS); if (hsmc_nc->sram.pool) gen_pool_free(hsmc_nc->sram.pool, (unsigned long)hsmc_nc->sram.virt, ATMEL_NFC_SRAM_SIZE); if (hsmc_nc->clk) { clk_disable_unprepare(hsmc_nc->clk); clk_put(hsmc_nc->clk); } atmel_nand_controller_cleanup(nc); return 0; } static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, const struct atmel_nand_controller_caps *caps) { struct device *dev = &pdev->dev; struct atmel_hsmc_nand_controller *nc; int ret; nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); if (!nc) return -ENOMEM; ret = atmel_nand_controller_init(&nc->base, pdev, caps); if (ret) return ret; if (caps->legacy_of_bindings) ret = atmel_hsmc_nand_controller_legacy_init(nc); else ret = atmel_hsmc_nand_controller_init(nc); if (ret) return ret; /* Make sure all irqs are masked before registering our IRQ handler. */ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, IRQF_SHARED, "nfc", nc); if (ret) { dev_err(dev, "Could not get register NFC interrupt handler (err = %d)\n", ret); goto err; } /* Initial NFC configuration. */ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, ATMEL_HSMC_NFC_CFG_DTO_MAX); regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, ATMEL_HSMC_NFC_CTRL_EN); ret = atmel_nand_controller_add_nands(&nc->base); if (ret) goto err; return 0; err: atmel_hsmc_nand_controller_remove(&nc->base); return ret; } static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { .probe = atmel_hsmc_nand_controller_probe, .remove = atmel_hsmc_nand_controller_remove, .ecc_init = atmel_hsmc_nand_ecc_init, .nand_init = atmel_nand_init, .setup_interface = atmel_hsmc_nand_setup_interface, .exec_op = atmel_hsmc_nand_exec_op, }; static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { .has_dma = true, .ale_offs = BIT(21), .cle_offs = BIT(22), .ops = &atmel_hsmc_nc_ops, }; /* Only used to parse old bindings. */ static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { .has_dma = true, .ale_offs = BIT(21), .cle_offs = BIT(22), .ops = &atmel_hsmc_nc_ops, .legacy_of_bindings = true, }; static int atmel_smc_nand_controller_probe(struct platform_device *pdev, const struct atmel_nand_controller_caps *caps) { struct device *dev = &pdev->dev; struct atmel_smc_nand_controller *nc; int ret; nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); if (!nc) return -ENOMEM; ret = atmel_nand_controller_init(&nc->base, pdev, caps); if (ret) return ret; ret = atmel_smc_nand_controller_init(nc); if (ret) return ret; return atmel_nand_controller_add_nands(&nc->base); } static int atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) { int ret; ret = atmel_nand_controller_remove_nands(nc); if (ret) return ret; atmel_nand_controller_cleanup(nc); return 0; } /* * The SMC reg layout of at91rm9200 is completely different which prevents us * from re-using atmel_smc_nand_setup_interface() for the * ->setup_interface() hook. * At this point, there's no support for the at91rm9200 SMC IP, so we leave * ->setup_interface() unassigned. */ static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { .probe = atmel_smc_nand_controller_probe, .remove = atmel_smc_nand_controller_remove, .ecc_init = atmel_nand_ecc_init, .nand_init = atmel_smc_nand_init, .exec_op = atmel_smc_nand_exec_op, }; static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { .ale_offs = BIT(21), .cle_offs = BIT(22), .ebi_csa_regmap_name = "atmel,matrix", .ops = &at91rm9200_nc_ops, }; static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { .probe = atmel_smc_nand_controller_probe, .remove = atmel_smc_nand_controller_remove, .ecc_init = atmel_nand_ecc_init, .nand_init = atmel_smc_nand_init, .setup_interface = atmel_smc_nand_setup_interface, .exec_op = atmel_smc_nand_exec_op, }; static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { .ale_offs = BIT(21), .cle_offs = BIT(22), .ebi_csa_regmap_name = "atmel,matrix", .ops = &atmel_smc_nc_ops, }; static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { .ale_offs = BIT(22), .cle_offs = BIT(21), .ebi_csa_regmap_name = "atmel,matrix", .ops = &atmel_smc_nc_ops, }; static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { .has_dma = true, .ale_offs = BIT(21), .cle_offs = BIT(22), .ebi_csa_regmap_name = "atmel,matrix", .ops = &atmel_smc_nc_ops, }; static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = { .has_dma = true, .ale_offs = BIT(21), .cle_offs = BIT(22), .ebi_csa_regmap_name = "microchip,sfr", .ops = &atmel_smc_nc_ops, }; /* Only used to parse old bindings. */ static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { .ale_offs = BIT(21), .cle_offs = BIT(22), .ops = &atmel_smc_nc_ops, .legacy_of_bindings = true, }; static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { .ale_offs = BIT(22), .cle_offs = BIT(21), .ops = &atmel_smc_nc_ops, .legacy_of_bindings = true, }; static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { .has_dma = true, .ale_offs = BIT(21), .cle_offs = BIT(22), .ops = &atmel_smc_nc_ops, .legacy_of_bindings = true, }; static const struct of_device_id atmel_nand_controller_of_ids[] = { { .compatible = "atmel,at91rm9200-nand-controller", .data = &atmel_rm9200_nc_caps, }, { .compatible = "atmel,at91sam9260-nand-controller", .data = &atmel_sam9260_nc_caps, }, { .compatible = "atmel,at91sam9261-nand-controller", .data = &atmel_sam9261_nc_caps, }, { .compatible = "atmel,at91sam9g45-nand-controller", .data = &atmel_sam9g45_nc_caps, }, { .compatible = "atmel,sama5d3-nand-controller", .data = &atmel_sama5_nc_caps, }, { .compatible = "microchip,sam9x60-nand-controller", .data = µchip_sam9x60_nc_caps, }, /* Support for old/deprecated bindings: */ { .compatible = "atmel,at91rm9200-nand", .data = &atmel_rm9200_nand_caps, }, { .compatible = "atmel,sama5d4-nand", .data = &atmel_rm9200_nand_caps, }, { .compatible = "atmel,sama5d2-nand", .data = &atmel_rm9200_nand_caps, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); static int atmel_nand_controller_probe(struct platform_device *pdev) { const struct atmel_nand_controller_caps *caps; if (pdev->id_entry) caps = (void *)pdev->id_entry->driver_data; else caps = of_device_get_match_data(&pdev->dev); if (!caps) { dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); return -EINVAL; } if (caps->legacy_of_bindings) { struct device_node *nfc_node; u32 ale_offs = 21; /* * If we are parsing legacy DT props and the DT contains a * valid NFC node, forward the request to the sama5 logic. */ nfc_node = of_get_compatible_child(pdev->dev.of_node, "atmel,sama5d3-nfc"); if (nfc_node) { caps = &atmel_sama5_nand_caps; of_node_put(nfc_node); } /* * Even if the compatible says we are dealing with an * at91rm9200 controller, the atmel,nand-has-dma specify that * this controller supports DMA, which means we are in fact * dealing with an at91sam9g45+ controller. */ if (!caps->has_dma && of_property_read_bool(pdev->dev.of_node, "atmel,nand-has-dma")) caps = &atmel_sam9g45_nand_caps; /* * All SoCs except the at91sam9261 are assigning ALE to A21 and * CLE to A22. If atmel,nand-addr-offset != 21 this means we're * actually dealing with an at91sam9261 controller. */ of_property_read_u32(pdev->dev.of_node, "atmel,nand-addr-offset", &ale_offs); if (ale_offs != 21) caps = &atmel_sam9261_nand_caps; } return caps->ops->probe(pdev, caps); } static void atmel_nand_controller_remove(struct platform_device *pdev) { struct atmel_nand_controller *nc = platform_get_drvdata(pdev); WARN_ON(nc->caps->ops->remove(nc)); } static __maybe_unused int atmel_nand_controller_resume(struct device *dev) { struct atmel_nand_controller *nc = dev_get_drvdata(dev); struct atmel_nand *nand; if (nc->pmecc) atmel_pmecc_reset(nc->pmecc); list_for_each_entry(nand, &nc->chips, node) { int i; for (i = 0; i < nand->numcs; i++) nand_reset(&nand->base, i); } return 0; } static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL, atmel_nand_controller_resume); static struct platform_driver atmel_nand_controller_driver = { .driver = { .name = "atmel-nand-controller", .of_match_table = atmel_nand_controller_of_ids, .pm = &atmel_nand_controller_pm_ops, }, .probe = atmel_nand_controller_probe, .remove_new = atmel_nand_controller_remove, }; module_platform_driver(atmel_nand_controller_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); MODULE_ALIAS("platform:atmel-nand-controller");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1