Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Brownell | 1987 | 50.87% | 4 | 5.80% |
Boris Brezillon | 816 | 20.89% | 14 | 20.29% |
Miquel Raynal | 449 | 11.50% | 10 | 14.49% |
Heiko Schocher | 345 | 8.83% | 1 | 1.45% |
Ivan Khoronzhuk | 60 | 1.54% | 6 | 8.70% |
Murali Karicheri | 45 | 1.15% | 2 | 2.90% |
Sudhakar Rajashekhara | 40 | 1.02% | 1 | 1.45% |
Brian Norris | 22 | 0.56% | 2 | 2.90% |
Mark A. Greer | 22 | 0.56% | 1 | 1.45% |
Sekhar Nori | 21 | 0.54% | 4 | 5.80% |
Sandeep Paulraj | 14 | 0.36% | 1 | 1.45% |
Sneha Narnakaje | 12 | 0.31% | 1 | 1.45% |
Jingoo Han | 12 | 0.31% | 1 | 1.45% |
Wolfram Sang | 10 | 0.26% | 2 | 2.90% |
Rafał Miłecki | 7 | 0.18% | 2 | 2.90% |
Sachin Kamat | 6 | 0.15% | 1 | 1.45% |
Mike Dunn | 6 | 0.15% | 1 | 1.45% |
Bartosz Golaszewski | 5 | 0.13% | 1 | 1.45% |
Alexander Couzens | 4 | 0.10% | 1 | 1.45% |
Laurent Navet | 4 | 0.10% | 1 | 1.45% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.45% |
Dmitry Eremin-Solenikov | 2 | 0.05% | 1 | 1.45% |
Arnd Bergmann | 2 | 0.05% | 1 | 1.45% |
Sergei Shtylyov | 2 | 0.05% | 1 | 1.45% |
Linus Torvalds (pre-git) | 2 | 0.05% | 1 | 1.45% |
Uwe Kleine-König | 2 | 0.05% | 1 | 1.45% |
Mrugesh Katepallewar | 2 | 0.05% | 1 | 1.45% |
Hemant Pedanekar | 1 | 0.03% | 1 | 1.45% |
Karl Beldan | 1 | 0.03% | 1 | 1.45% |
Paul Cercueil | 1 | 0.03% | 1 | 1.45% |
H Hartley Sweeten | 1 | 0.03% | 1 | 1.45% |
Linus Torvalds | 1 | 0.03% | 1 | 1.45% |
Total | 3906 | 69 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * davinci_nand.c - NAND Flash Driver for DaVinci family chips * * Copyright © 2006 Texas Instruments. * * Port to 2.6.23 Copyright © 2008 by: * Sander Huijsen <Shuijsen@optelecom-nkf.com> * Troy Kisky <troy.kisky@boundarydevices.com> * Dirk Behme <Dirk.Behme@gmail.com> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/iopoll.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/slab.h> #include <linux/of_device.h> #include <linux/of.h> #include <linux/platform_data/mtd-davinci.h> #include <linux/platform_data/mtd-davinci-aemif.h> /* * This is a device driver for the NAND flash controller found on the * various DaVinci family chips. It handles up to four SoC chipselects, * and some flavors of secondary chipselect (e.g. based on A12) as used * with multichip packages. * * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC * available on chips like the DM355 and OMAP-L137 and needed with the * more error-prone MLC NAND chips. * * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY * outputs in a "wire-AND" configuration, with no per-chip signals. */ struct davinci_nand_info { struct nand_controller controller; struct nand_chip chip; struct platform_device *pdev; bool is_readmode; void __iomem *base; void __iomem *vaddr; void __iomem *current_cs; uint32_t mask_chipsel; uint32_t mask_ale; uint32_t mask_cle; uint32_t core_chipsel; struct davinci_aemif_timing *timing; }; static DEFINE_SPINLOCK(davinci_nand_lock); static bool ecc4_busy; static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) { return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); } static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, int offset) { return __raw_readl(info->base + offset); } static inline void davinci_nand_writel(struct davinci_nand_info *info, int offset, unsigned long value) { __raw_writel(value, info->base + offset); } /*----------------------------------------------------------------------*/ /* * 1-bit hardware ECC ... context maintained for each core chipselect */ static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) { struct davinci_nand_info *info = to_davinci_nand(mtd); return davinci_nand_readl(info, NANDF1ECC_OFFSET + 4 * info->core_chipsel); } static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode) { struct davinci_nand_info *info; uint32_t nandcfr; unsigned long flags; info = to_davinci_nand(nand_to_mtd(chip)); /* Reset ECC hardware */ nand_davinci_readecc_1bit(nand_to_mtd(chip)); spin_lock_irqsave(&davinci_nand_lock, flags); /* Restart ECC hardware */ nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); nandcfr |= BIT(8 + info->core_chipsel); davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); spin_unlock_irqrestore(&davinci_nand_lock, flags); } /* * Read hardware ECC value and pack into three bytes */ static int nand_davinci_calculate_1bit(struct nand_chip *chip, const u_char *dat, u_char *ecc_code) { unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip)); unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); /* invert so that erased block ecc is correct */ ecc24 = ~ecc24; ecc_code[0] = (u_char)(ecc24); ecc_code[1] = (u_char)(ecc24 >> 8); ecc_code[2] = (u_char)(ecc24 >> 16); return 0; } static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16); uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16); uint32_t diff = eccCalc ^ eccNand; if (diff) { if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { /* Correctable error */ if ((diff >> (12 + 3)) < chip->ecc.size) { dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); return 1; } else { return -EBADMSG; } } else if (!(diff & (diff - 1))) { /* Single bit ECC error in the ECC itself, * nothing to fix */ return 1; } else { /* Uncorrectable error */ return -EBADMSG; } } return 0; } /*----------------------------------------------------------------------*/ /* * 4-bit hardware ECC ... context maintained over entire AEMIF * * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED * since that forces use of a problematic "infix OOB" layout. * Among other things, it trashes manufacturer bad block markers. * Also, and specific to this hardware, it ECC-protects the "prepad" * in the OOB ... while having ECC protection for parts of OOB would * seem useful, the current MTD stack sometimes wants to update the * OOB without recomputing ECC. */ static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode) { struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); unsigned long flags; u32 val; /* Reset ECC hardware */ davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); spin_lock_irqsave(&davinci_nand_lock, flags); /* Start 4-bit ECC calculation for read/write */ val = davinci_nand_readl(info, NANDFCR_OFFSET); val &= ~(0x03 << 4); val |= (info->core_chipsel << 4) | BIT(12); davinci_nand_writel(info, NANDFCR_OFFSET, val); info->is_readmode = (mode == NAND_ECC_READ); spin_unlock_irqrestore(&davinci_nand_lock, flags); } /* Read raw ECC code after writing to NAND. */ static void nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) { const u32 mask = 0x03ff03ff; code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; } /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ static int nand_davinci_calculate_4bit(struct nand_chip *chip, const u_char *dat, u_char *ecc_code) { struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); u32 raw_ecc[4], *p; unsigned i; /* After a read, terminate ECC calculation by a dummy read * of some 4-bit ECC register. ECC covers everything that * was read; correct() just uses the hardware state, so * ecc_code is not needed. */ if (info->is_readmode) { davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); return 0; } /* Pack eight raw 10-bit ecc values into ten bytes, making * two passes which each convert four values (in upper and * lower halves of two 32-bit words) into five bytes. The * ROM boot loader uses this same packing scheme. */ nand_davinci_readecc_4bit(info, raw_ecc); for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { *ecc_code++ = p[0] & 0xff; *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); *ecc_code++ = (p[1] >> 18) & 0xff; } return 0; } /* Correct up to 4 bits in data we just read, using state left in the * hardware plus the ecc_code computed when it was first written. */ static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data, u_char *ecc_code, u_char *null) { int i; struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); unsigned short ecc10[8]; unsigned short *ecc16; u32 syndrome[4]; u32 ecc_state; unsigned num_errors, corrected; unsigned long timeo; /* Unpack ten bytes into eight 10 bit values. We know we're * little-endian, and use type punning for less shifting/masking. */ if (WARN_ON(0x01 & (uintptr_t)ecc_code)) return -EINVAL; ecc16 = (unsigned short *)ecc_code; ecc10[0] = (ecc16[0] >> 0) & 0x3ff; ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); ecc10[2] = (ecc16[1] >> 4) & 0x3ff; ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); ecc10[5] = (ecc16[3] >> 2) & 0x3ff; ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); ecc10[7] = (ecc16[4] >> 6) & 0x3ff; /* Tell ECC controller about the expected ECC codes. */ for (i = 7; i >= 0; i--) davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); /* Allow time for syndrome calculation ... then read it. * A syndrome of all zeroes 0 means no detected errors. */ davinci_nand_readl(info, NANDFSR_OFFSET); nand_davinci_readecc_4bit(info, syndrome); if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) return 0; /* * Clear any previous address calculation by doing a dummy read of an * error address register. */ davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); /* Start address calculation, and wait for it to complete. * We _could_ start reading more data while this is working, * to speed up the overall page read. */ davinci_nand_writel(info, NANDFCR_OFFSET, davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); /* * ECC_STATE field reads 0x3 (Error correction complete) immediately * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately * begin trying to poll for the state, you may fall right out of your * loop without any of the correction calculations having taken place. * The recommendation from the hardware team is to initially delay as * long as ECC_STATE reads less than 4. After that, ECC HW has entered * correction state. */ timeo = jiffies + usecs_to_jiffies(100); do { ecc_state = (davinci_nand_readl(info, NANDFSR_OFFSET) >> 8) & 0x0f; cpu_relax(); } while ((ecc_state < 4) && time_before(jiffies, timeo)); for (;;) { u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); switch ((fsr >> 8) & 0x0f) { case 0: /* no error, should not happen */ davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); return 0; case 1: /* five or more errors detected */ davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); return -EBADMSG; case 2: /* error addresses computed */ case 3: num_errors = 1 + ((fsr >> 16) & 0x03); goto correct; default: /* still working on it */ cpu_relax(); continue; } } correct: /* correct each error */ for (i = 0, corrected = 0; i < num_errors; i++) { int error_address, error_value; if (i > 1) { error_address = davinci_nand_readl(info, NAND_ERR_ADD2_OFFSET); error_value = davinci_nand_readl(info, NAND_ERR_ERRVAL2_OFFSET); } else { error_address = davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); error_value = davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); } if (i & 1) { error_address >>= 16; error_value >>= 16; } error_address &= 0x3ff; error_address = (512 + 7) - error_address; if (error_address < 512) { data[error_address] ^= error_value; corrected++; } } return corrected; } /*----------------------------------------------------------------------*/ /* An ECC layout for using 4-bit ECC with small-page flash, storing * ten ECC bytes plus the manufacturer's bad block marker byte, and * and not overlapping the default BBT markers. */ static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 2) return -ERANGE; if (!section) { oobregion->offset = 0; oobregion->length = 5; } else if (section == 1) { oobregion->offset = 6; oobregion->length = 2; } else { oobregion->offset = 13; oobregion->length = 3; } return 0; } static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 1) return -ERANGE; if (!section) { oobregion->offset = 8; oobregion->length = 5; } else { oobregion->offset = 16; oobregion->length = mtd->oobsize - 16; } return 0; } static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { .ecc = hwecc4_ooblayout_small_ecc, .free = hwecc4_ooblayout_small_free, }; #if defined(CONFIG_OF) static const struct of_device_id davinci_nand_of_match[] = { {.compatible = "ti,davinci-nand", }, {.compatible = "ti,keystone-nand", }, {}, }; MODULE_DEVICE_TABLE(of, davinci_nand_of_match); static struct davinci_nand_pdata *nand_davinci_get_pdata(struct platform_device *pdev) { if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { struct davinci_nand_pdata *pdata; const char *mode; u32 prop; pdata = devm_kzalloc(&pdev->dev, sizeof(struct davinci_nand_pdata), GFP_KERNEL); pdev->dev.platform_data = pdata; if (!pdata) return ERR_PTR(-ENOMEM); if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-chipselect", &prop)) pdata->core_chipsel = prop; else return ERR_PTR(-EINVAL); if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-mask-ale", &prop)) pdata->mask_ale = prop; if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-mask-cle", &prop)) pdata->mask_cle = prop; if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-mask-chipsel", &prop)) pdata->mask_chipsel = prop; if (!of_property_read_string(pdev->dev.of_node, "ti,davinci-ecc-mode", &mode)) { if (!strncmp("none", mode, 4)) pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE; if (!strncmp("soft", mode, 4)) pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; if (!strncmp("hw", mode, 2)) pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; } if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-ecc-bits", &prop)) pdata->ecc_bits = prop; if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-nand-buswidth", &prop) && prop == 16) pdata->options |= NAND_BUSWIDTH_16; if (of_property_read_bool(pdev->dev.of_node, "ti,davinci-nand-use-bbt")) pdata->bbt_options = NAND_BBT_USE_FLASH; /* * Since kernel v4.8, this driver has been fixed to enable * use of 4-bit hardware ECC with subpages and verified on * TI's keystone EVMs (K2L, K2HK and K2E). * However, in the interest of not breaking systems using * existing UBI partitions, sub-page writes are not being * (re)enabled. If you want to use subpage writes on Keystone * platforms (i.e. do not have any existing UBI partitions), * then use "ti,davinci-nand" as the compatible in your * device-tree file. */ if (of_device_is_compatible(pdev->dev.of_node, "ti,keystone-nand")) { pdata->options |= NAND_NO_SUBPAGE_WRITE; } } return dev_get_platdata(&pdev->dev); } #else static struct davinci_nand_pdata *nand_davinci_get_pdata(struct platform_device *pdev) { return dev_get_platdata(&pdev->dev); } #endif static int davinci_nand_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct davinci_nand_info *info = to_davinci_nand(mtd); struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev); int ret = 0; if (IS_ERR(pdata)) return PTR_ERR(pdata); /* Use board-specific ECC config */ chip->ecc.engine_type = pdata->engine_type; chip->ecc.placement = pdata->ecc_placement; switch (chip->ecc.engine_type) { case NAND_ECC_ENGINE_TYPE_NONE: pdata->ecc_bits = 0; break; case NAND_ECC_ENGINE_TYPE_SOFT: pdata->ecc_bits = 0; /* * This driver expects Hamming based ECC when engine_type is set * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo * field to davinci_nand_pdata. */ chip->ecc.algo = NAND_ECC_ALGO_HAMMING; break; case NAND_ECC_ENGINE_TYPE_ON_HOST: if (pdata->ecc_bits == 4) { int chunks = mtd->writesize / 512; if (!chunks || mtd->oobsize < 16) { dev_dbg(&info->pdev->dev, "too small\n"); return -EINVAL; } /* * No sanity checks: CPUs must support this, * and the chips may not use NAND_BUSWIDTH_16. */ /* No sharing 4-bit hardware between chipselects yet */ spin_lock_irq(&davinci_nand_lock); if (ecc4_busy) ret = -EBUSY; else ecc4_busy = true; spin_unlock_irq(&davinci_nand_lock); if (ret == -EBUSY) return ret; chip->ecc.calculate = nand_davinci_calculate_4bit; chip->ecc.correct = nand_davinci_correct_4bit; chip->ecc.hwctl = nand_davinci_hwctl_4bit; chip->ecc.bytes = 10; chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; chip->ecc.algo = NAND_ECC_ALGO_BCH; /* * Update ECC layout if needed ... for 1-bit HW ECC, the * default is OK, but it allocates 6 bytes when only 3 * are needed (for each 512 bytes). For 4-bit HW ECC, * the default is not usable: 10 bytes needed, not 6. * * For small page chips, preserve the manufacturer's * badblock marking data ... and make sure a flash BBT * table marker fits in the free bytes. */ if (chunks == 1) { mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops); } else if (chunks == 4 || chunks == 8) { mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); chip->ecc.read_page = nand_read_page_hwecc_oob_first; } else { return -EIO; } } else { /* 1bit ecc hamming */ chip->ecc.calculate = nand_davinci_calculate_1bit; chip->ecc.correct = nand_davinci_correct_1bit; chip->ecc.hwctl = nand_davinci_hwctl_1bit; chip->ecc.bytes = 3; chip->ecc.algo = NAND_ECC_ALGO_HAMMING; } chip->ecc.size = 512; chip->ecc.strength = pdata->ecc_bits; break; default: return -EINVAL; } return ret; } static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf, unsigned int len, bool force_8bit) { u32 alignment = ((uintptr_t)buf | len) & 3; if (force_8bit || (alignment & 1)) ioread8_rep(info->current_cs, buf, len); else if (alignment & 3) ioread16_rep(info->current_cs, buf, len >> 1); else ioread32_rep(info->current_cs, buf, len >> 2); } static void nand_davinci_data_out(struct davinci_nand_info *info, const void *buf, unsigned int len, bool force_8bit) { u32 alignment = ((uintptr_t)buf | len) & 3; if (force_8bit || (alignment & 1)) iowrite8_rep(info->current_cs, buf, len); else if (alignment & 3) iowrite16_rep(info->current_cs, buf, len >> 1); else iowrite32_rep(info->current_cs, buf, len >> 2); } static int davinci_nand_exec_instr(struct davinci_nand_info *info, const struct nand_op_instr *instr) { unsigned int i, timeout_us; u32 status; int ret; switch (instr->type) { case NAND_OP_CMD_INSTR: iowrite8(instr->ctx.cmd.opcode, info->current_cs + info->mask_cle); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) { iowrite8(instr->ctx.addr.addrs[i], info->current_cs + info->mask_ale); } break; case NAND_OP_DATA_IN_INSTR: nand_davinci_data_in(info, instr->ctx.data.buf.in, instr->ctx.data.len, instr->ctx.data.force_8bit); break; case NAND_OP_DATA_OUT_INSTR: nand_davinci_data_out(info, instr->ctx.data.buf.out, instr->ctx.data.len, instr->ctx.data.force_8bit); break; case NAND_OP_WAITRDY_INSTR: timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET, status, status & BIT(0), 100, timeout_us); if (ret) return ret; break; } if (instr->delay_ns) ndelay(instr->delay_ns); return 0; } static int davinci_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); unsigned int i; if (check_only) return 0; info->current_cs = info->vaddr + (op->cs * info->mask_chipsel); for (i = 0; i < op->ninstrs; i++) { int ret; ret = davinci_nand_exec_instr(info, &op->instrs[i]); if (ret) return ret; } return 0; } static const struct nand_controller_ops davinci_nand_controller_ops = { .attach_chip = davinci_nand_attach_chip, .exec_op = davinci_nand_exec_op, }; static int nand_davinci_probe(struct platform_device *pdev) { struct davinci_nand_pdata *pdata; struct davinci_nand_info *info; struct resource *res1; struct resource *res2; void __iomem *vaddr; void __iomem *base; int ret; uint32_t val; struct mtd_info *mtd; pdata = nand_davinci_get_pdata(pdev); if (IS_ERR(pdata)) return PTR_ERR(pdata); /* insist on board-specific configuration */ if (!pdata) return -ENODEV; /* which external chipselect will we be managing? */ if (pdata->core_chipsel > 3) return -ENODEV; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; platform_set_drvdata(pdev, info); res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res1 || !res2) { dev_err(&pdev->dev, "resource missing\n"); return -EINVAL; } vaddr = devm_ioremap_resource(&pdev->dev, res1); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); /* * This registers range is used to setup NAND settings. In case with * TI AEMIF driver, the same memory address range is requested already * by AEMIF, so we cannot request it twice, just ioremap. * The AEMIF and NAND drivers not use the same registers in this range. */ base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); if (!base) { dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); return -EADDRNOTAVAIL; } info->pdev = pdev; info->base = base; info->vaddr = vaddr; mtd = nand_to_mtd(&info->chip); mtd->dev.parent = &pdev->dev; nand_set_flash_node(&info->chip, pdev->dev.of_node); /* options such as NAND_BBT_USE_FLASH */ info->chip.bbt_options = pdata->bbt_options; /* options such as 16-bit widths */ info->chip.options = pdata->options; info->chip.bbt_td = pdata->bbt_td; info->chip.bbt_md = pdata->bbt_md; info->timing = pdata->timing; info->current_cs = info->vaddr; info->core_chipsel = pdata->core_chipsel; info->mask_chipsel = pdata->mask_chipsel; /* use nandboot-capable ALE/CLE masks by default */ info->mask_ale = pdata->mask_ale ? : MASK_ALE; info->mask_cle = pdata->mask_cle ? : MASK_CLE; spin_lock_irq(&davinci_nand_lock); /* put CSxNAND into NAND mode */ val = davinci_nand_readl(info, NANDFCR_OFFSET); val |= BIT(info->core_chipsel); davinci_nand_writel(info, NANDFCR_OFFSET, val); spin_unlock_irq(&davinci_nand_lock); /* Scan to find existence of the device(s) */ nand_controller_init(&info->controller); info->controller.ops = &davinci_nand_controller_ops; info->chip.controller = &info->controller; ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1); if (ret < 0) { dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); return ret; } if (pdata->parts) ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); else ret = mtd_device_register(mtd, NULL, 0); if (ret < 0) goto err_cleanup_nand; val = davinci_nand_readl(info, NRCSR_OFFSET); dev_info(&pdev->dev, "controller rev. %d.%d\n", (val >> 8) & 0xff, val & 0xff); return 0; err_cleanup_nand: nand_cleanup(&info->chip); return ret; } static void nand_davinci_remove(struct platform_device *pdev) { struct davinci_nand_info *info = platform_get_drvdata(pdev); struct nand_chip *chip = &info->chip; int ret; spin_lock_irq(&davinci_nand_lock); if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED) ecc4_busy = false; spin_unlock_irq(&davinci_nand_lock); ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); } static struct platform_driver nand_davinci_driver = { .probe = nand_davinci_probe, .remove_new = nand_davinci_remove, .driver = { .name = "davinci_nand", .of_match_table = of_match_ptr(davinci_nand_of_match), }, }; MODULE_ALIAS("platform:davinci_nand"); module_platform_driver(nand_davinci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Texas Instruments"); MODULE_DESCRIPTION("Davinci NAND flash driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1