Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dario Binacchi | 1650 | 45.78% | 15 | 31.91% |
Oliver Hartkopp | 1546 | 42.90% | 5 | 10.64% |
Andre Naujoks | 222 | 6.16% | 1 | 2.13% |
Tyler Hall | 66 | 1.83% | 1 | 2.13% |
Vincent Mailhol | 48 | 1.33% | 6 | 12.77% |
Marc Kleine-Budde | 23 | 0.64% | 6 | 12.77% |
Andy Shevchenko | 9 | 0.25% | 1 | 2.13% |
Jiri Slaby (SUSE) | 9 | 0.25% | 1 | 2.13% |
Richard Palethorpe | 8 | 0.22% | 1 | 2.13% |
Jiri Slaby | 7 | 0.19% | 3 | 6.38% |
Gustavo A. R. Silva | 4 | 0.11% | 1 | 2.13% |
Alexander Stein | 3 | 0.08% | 1 | 2.13% |
Linus Torvalds | 3 | 0.08% | 1 | 2.13% |
Jouni Högander | 2 | 0.06% | 1 | 2.13% |
Sebastian Andrzej Siewior | 2 | 0.06% | 1 | 2.13% |
Dan Carpenter | 1 | 0.03% | 1 | 2.13% |
Jeremiah Mahler | 1 | 0.03% | 1 | 2.13% |
Total | 3604 | 47 |
/* * slcan.c - serial line CAN interface driver (using tty line discipline) * * This file is derived from linux/drivers/net/slip/slip.c and got * inspiration from linux/drivers/net/can/can327.c for the rework made * on the line discipline code. * * slip.c Authors : Laurence Culhane <loz@holmes.demon.co.uk> * Fred N. van Kempen <waltje@uwalt.nl.mugnet.org> * slcan.c Author : Oliver Hartkopp <socketcan@hartkopp.net> * can327.c Author : Max Staudt <max-linux@enpas.org> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see http://www.gnu.org/licenses/gpl.html * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/uaccess.h> #include <linux/bitops.h> #include <linux/string.h> #include <linux/tty.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/workqueue.h> #include <linux/can.h> #include <linux/can/dev.h> #include <linux/can/skb.h> #include "slcan.h" MODULE_ALIAS_LDISC(N_SLCAN); MODULE_DESCRIPTION("serial line CAN interface"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>"); MODULE_AUTHOR("Dario Binacchi <dario.binacchi@amarulasolutions.com>"); /* maximum rx buffer len: extended CAN frame with timestamp */ #define SLCAN_MTU (sizeof("T1111222281122334455667788EA5F\r") + 1) #define SLCAN_CMD_LEN 1 #define SLCAN_SFF_ID_LEN 3 #define SLCAN_EFF_ID_LEN 8 #define SLCAN_STATE_LEN 1 #define SLCAN_STATE_BE_RXCNT_LEN 3 #define SLCAN_STATE_BE_TXCNT_LEN 3 #define SLCAN_STATE_FRAME_LEN (1 + SLCAN_CMD_LEN + \ SLCAN_STATE_BE_RXCNT_LEN + \ SLCAN_STATE_BE_TXCNT_LEN) struct slcan { struct can_priv can; /* Various fields. */ struct tty_struct *tty; /* ptr to TTY structure */ struct net_device *dev; /* easy for intr handling */ spinlock_t lock; struct work_struct tx_work; /* Flushes transmit buffer */ /* These are pointers to the malloc()ed frame buffers. */ unsigned char rbuff[SLCAN_MTU]; /* receiver buffer */ int rcount; /* received chars counter */ unsigned char xbuff[SLCAN_MTU]; /* transmitter buffer*/ unsigned char *xhead; /* pointer to next XMIT byte */ int xleft; /* bytes left in XMIT queue */ unsigned long flags; /* Flag values/ mode etc */ #define SLF_ERROR 0 /* Parity, etc. error */ #define SLF_XCMD 1 /* Command transmission */ unsigned long cmd_flags; /* Command flags */ #define CF_ERR_RST 0 /* Reset errors on open */ wait_queue_head_t xcmd_wait; /* Wait queue for commands */ /* transmission */ }; static const u32 slcan_bitrate_const[] = { 10000, 20000, 50000, 100000, 125000, 250000, 500000, 800000, 1000000 }; bool slcan_err_rst_on_open(struct net_device *ndev) { struct slcan *sl = netdev_priv(ndev); return !!test_bit(CF_ERR_RST, &sl->cmd_flags); } int slcan_enable_err_rst_on_open(struct net_device *ndev, bool on) { struct slcan *sl = netdev_priv(ndev); if (netif_running(ndev)) return -EBUSY; if (on) set_bit(CF_ERR_RST, &sl->cmd_flags); else clear_bit(CF_ERR_RST, &sl->cmd_flags); return 0; } /************************************************************************* * SLCAN ENCAPSULATION FORMAT * *************************************************************************/ /* A CAN frame has a can_id (11 bit standard frame format OR 29 bit extended * frame format) a data length code (len) which can be from 0 to 8 * and up to <len> data bytes as payload. * Additionally a CAN frame may become a remote transmission frame if the * RTR-bit is set. This causes another ECU to send a CAN frame with the * given can_id. * * The SLCAN ASCII representation of these different frame types is: * <type> <id> <dlc> <data>* * * Extended frames (29 bit) are defined by capital characters in the type. * RTR frames are defined as 'r' types - normal frames have 't' type: * t => 11 bit data frame * r => 11 bit RTR frame * T => 29 bit data frame * R => 29 bit RTR frame * * The <id> is 3 (standard) or 8 (extended) bytes in ASCII Hex (base64). * The <dlc> is a one byte ASCII number ('0' - '8') * The <data> section has at much ASCII Hex bytes as defined by the <dlc> * * Examples: * * t1230 : can_id 0x123, len 0, no data * t4563112233 : can_id 0x456, len 3, data 0x11 0x22 0x33 * T12ABCDEF2AA55 : extended can_id 0x12ABCDEF, len 2, data 0xAA 0x55 * r1230 : can_id 0x123, len 0, no data, remote transmission request * */ /************************************************************************* * STANDARD SLCAN DECAPSULATION * *************************************************************************/ /* Send one completely decapsulated can_frame to the network layer */ static void slcan_bump_frame(struct slcan *sl) { struct sk_buff *skb; struct can_frame *cf; int i, tmp; u32 tmpid; char *cmd = sl->rbuff; skb = alloc_can_skb(sl->dev, &cf); if (unlikely(!skb)) { sl->dev->stats.rx_dropped++; return; } switch (*cmd) { case 'r': cf->can_id = CAN_RTR_FLAG; fallthrough; case 't': /* store dlc ASCII value and terminate SFF CAN ID string */ cf->len = sl->rbuff[SLCAN_CMD_LEN + SLCAN_SFF_ID_LEN]; sl->rbuff[SLCAN_CMD_LEN + SLCAN_SFF_ID_LEN] = 0; /* point to payload data behind the dlc */ cmd += SLCAN_CMD_LEN + SLCAN_SFF_ID_LEN + 1; break; case 'R': cf->can_id = CAN_RTR_FLAG; fallthrough; case 'T': cf->can_id |= CAN_EFF_FLAG; /* store dlc ASCII value and terminate EFF CAN ID string */ cf->len = sl->rbuff[SLCAN_CMD_LEN + SLCAN_EFF_ID_LEN]; sl->rbuff[SLCAN_CMD_LEN + SLCAN_EFF_ID_LEN] = 0; /* point to payload data behind the dlc */ cmd += SLCAN_CMD_LEN + SLCAN_EFF_ID_LEN + 1; break; default: goto decode_failed; } if (kstrtou32(sl->rbuff + SLCAN_CMD_LEN, 16, &tmpid)) goto decode_failed; cf->can_id |= tmpid; /* get len from sanitized ASCII value */ if (cf->len >= '0' && cf->len < '9') cf->len -= '0'; else goto decode_failed; /* RTR frames may have a dlc > 0 but they never have any data bytes */ if (!(cf->can_id & CAN_RTR_FLAG)) { for (i = 0; i < cf->len; i++) { tmp = hex_to_bin(*cmd++); if (tmp < 0) goto decode_failed; cf->data[i] = (tmp << 4); tmp = hex_to_bin(*cmd++); if (tmp < 0) goto decode_failed; cf->data[i] |= tmp; } } sl->dev->stats.rx_packets++; if (!(cf->can_id & CAN_RTR_FLAG)) sl->dev->stats.rx_bytes += cf->len; netif_rx(skb); return; decode_failed: sl->dev->stats.rx_errors++; dev_kfree_skb(skb); } /* A change state frame must contain state info and receive and transmit * error counters. * * Examples: * * sb256256 : state bus-off: rx counter 256, tx counter 256 * sa057033 : state active, rx counter 57, tx counter 33 */ static void slcan_bump_state(struct slcan *sl) { struct net_device *dev = sl->dev; struct sk_buff *skb; struct can_frame *cf; char *cmd = sl->rbuff; u32 rxerr, txerr; enum can_state state, rx_state, tx_state; switch (cmd[1]) { case 'a': state = CAN_STATE_ERROR_ACTIVE; break; case 'w': state = CAN_STATE_ERROR_WARNING; break; case 'p': state = CAN_STATE_ERROR_PASSIVE; break; case 'b': state = CAN_STATE_BUS_OFF; break; default: return; } if (state == sl->can.state || sl->rcount < SLCAN_STATE_FRAME_LEN) return; cmd += SLCAN_STATE_BE_RXCNT_LEN + SLCAN_CMD_LEN + 1; cmd[SLCAN_STATE_BE_TXCNT_LEN] = 0; if (kstrtou32(cmd, 10, &txerr)) return; *cmd = 0; cmd -= SLCAN_STATE_BE_RXCNT_LEN; if (kstrtou32(cmd, 10, &rxerr)) return; skb = alloc_can_err_skb(dev, &cf); tx_state = txerr >= rxerr ? state : 0; rx_state = txerr <= rxerr ? state : 0; can_change_state(dev, cf, tx_state, rx_state); if (state == CAN_STATE_BUS_OFF) { can_bus_off(dev); } else if (skb) { cf->can_id |= CAN_ERR_CNT; cf->data[6] = txerr; cf->data[7] = rxerr; } if (skb) netif_rx(skb); } /* An error frame can contain more than one type of error. * * Examples: * * e1a : len 1, errors: ACK error * e3bcO: len 3, errors: Bit0 error, CRC error, Tx overrun error */ static void slcan_bump_err(struct slcan *sl) { struct net_device *dev = sl->dev; struct sk_buff *skb; struct can_frame *cf; char *cmd = sl->rbuff; bool rx_errors = false, tx_errors = false, rx_over_errors = false; int i, len; /* get len from sanitized ASCII value */ len = cmd[1]; if (len >= '0' && len < '9') len -= '0'; else return; if ((len + SLCAN_CMD_LEN + 1) > sl->rcount) return; skb = alloc_can_err_skb(dev, &cf); if (skb) cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; cmd += SLCAN_CMD_LEN + 1; for (i = 0; i < len; i++, cmd++) { switch (*cmd) { case 'a': netdev_dbg(dev, "ACK error\n"); tx_errors = true; if (skb) { cf->can_id |= CAN_ERR_ACK; cf->data[3] = CAN_ERR_PROT_LOC_ACK; } break; case 'b': netdev_dbg(dev, "Bit0 error\n"); tx_errors = true; if (skb) cf->data[2] |= CAN_ERR_PROT_BIT0; break; case 'B': netdev_dbg(dev, "Bit1 error\n"); tx_errors = true; if (skb) cf->data[2] |= CAN_ERR_PROT_BIT1; break; case 'c': netdev_dbg(dev, "CRC error\n"); rx_errors = true; if (skb) { cf->data[2] |= CAN_ERR_PROT_BIT; cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; } break; case 'f': netdev_dbg(dev, "Form Error\n"); rx_errors = true; if (skb) cf->data[2] |= CAN_ERR_PROT_FORM; break; case 'o': netdev_dbg(dev, "Rx overrun error\n"); rx_over_errors = true; rx_errors = true; if (skb) { cf->can_id |= CAN_ERR_CRTL; cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; } break; case 'O': netdev_dbg(dev, "Tx overrun error\n"); tx_errors = true; if (skb) { cf->can_id |= CAN_ERR_CRTL; cf->data[1] = CAN_ERR_CRTL_TX_OVERFLOW; } break; case 's': netdev_dbg(dev, "Stuff error\n"); rx_errors = true; if (skb) cf->data[2] |= CAN_ERR_PROT_STUFF; break; default: if (skb) dev_kfree_skb(skb); return; } } if (rx_errors) dev->stats.rx_errors++; if (rx_over_errors) dev->stats.rx_over_errors++; if (tx_errors) dev->stats.tx_errors++; if (skb) netif_rx(skb); } static void slcan_bump(struct slcan *sl) { switch (sl->rbuff[0]) { case 'r': fallthrough; case 't': fallthrough; case 'R': fallthrough; case 'T': return slcan_bump_frame(sl); case 'e': return slcan_bump_err(sl); case 's': return slcan_bump_state(sl); default: return; } } /* parse tty input stream */ static void slcan_unesc(struct slcan *sl, unsigned char s) { if ((s == '\r') || (s == '\a')) { /* CR or BEL ends the pdu */ if (!test_and_clear_bit(SLF_ERROR, &sl->flags) && sl->rcount > 4) slcan_bump(sl); sl->rcount = 0; } else { if (!test_bit(SLF_ERROR, &sl->flags)) { if (sl->rcount < SLCAN_MTU) { sl->rbuff[sl->rcount++] = s; return; } sl->dev->stats.rx_over_errors++; set_bit(SLF_ERROR, &sl->flags); } } } /************************************************************************* * STANDARD SLCAN ENCAPSULATION * *************************************************************************/ /* Encapsulate one can_frame and stuff into a TTY queue. */ static void slcan_encaps(struct slcan *sl, struct can_frame *cf) { int actual, i; unsigned char *pos; unsigned char *endpos; canid_t id = cf->can_id; pos = sl->xbuff; if (cf->can_id & CAN_RTR_FLAG) *pos = 'R'; /* becomes 'r' in standard frame format (SFF) */ else *pos = 'T'; /* becomes 't' in standard frame format (SSF) */ /* determine number of chars for the CAN-identifier */ if (cf->can_id & CAN_EFF_FLAG) { id &= CAN_EFF_MASK; endpos = pos + SLCAN_EFF_ID_LEN; } else { *pos |= 0x20; /* convert R/T to lower case for SFF */ id &= CAN_SFF_MASK; endpos = pos + SLCAN_SFF_ID_LEN; } /* build 3 (SFF) or 8 (EFF) digit CAN identifier */ pos++; while (endpos >= pos) { *endpos-- = hex_asc_upper[id & 0xf]; id >>= 4; } pos += (cf->can_id & CAN_EFF_FLAG) ? SLCAN_EFF_ID_LEN : SLCAN_SFF_ID_LEN; *pos++ = cf->len + '0'; /* RTR frames may have a dlc > 0 but they never have any data bytes */ if (!(cf->can_id & CAN_RTR_FLAG)) { for (i = 0; i < cf->len; i++) pos = hex_byte_pack_upper(pos, cf->data[i]); sl->dev->stats.tx_bytes += cf->len; } *pos++ = '\r'; /* Order of next two lines is *very* important. * When we are sending a little amount of data, * the transfer may be completed inside the ops->write() * routine, because it's running with interrupts enabled. * In this case we *never* got WRITE_WAKEUP event, * if we did not request it before write operation. * 14 Oct 1994 Dmitry Gorodchanin. */ set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags); actual = sl->tty->ops->write(sl->tty, sl->xbuff, pos - sl->xbuff); sl->xleft = (pos - sl->xbuff) - actual; sl->xhead = sl->xbuff + actual; } /* Write out any remaining transmit buffer. Scheduled when tty is writable */ static void slcan_transmit(struct work_struct *work) { struct slcan *sl = container_of(work, struct slcan, tx_work); int actual; spin_lock_bh(&sl->lock); /* First make sure we're connected. */ if (unlikely(!netif_running(sl->dev)) && likely(!test_bit(SLF_XCMD, &sl->flags))) { spin_unlock_bh(&sl->lock); return; } if (sl->xleft <= 0) { if (unlikely(test_bit(SLF_XCMD, &sl->flags))) { clear_bit(SLF_XCMD, &sl->flags); clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags); spin_unlock_bh(&sl->lock); wake_up(&sl->xcmd_wait); return; } /* Now serial buffer is almost free & we can start * transmission of another packet */ sl->dev->stats.tx_packets++; clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags); spin_unlock_bh(&sl->lock); netif_wake_queue(sl->dev); return; } actual = sl->tty->ops->write(sl->tty, sl->xhead, sl->xleft); sl->xleft -= actual; sl->xhead += actual; spin_unlock_bh(&sl->lock); } /* Called by the driver when there's room for more data. * Schedule the transmit. */ static void slcan_write_wakeup(struct tty_struct *tty) { struct slcan *sl = (struct slcan *)tty->disc_data; schedule_work(&sl->tx_work); } /* Send a can_frame to a TTY queue. */ static netdev_tx_t slcan_netdev_xmit(struct sk_buff *skb, struct net_device *dev) { struct slcan *sl = netdev_priv(dev); if (can_dev_dropped_skb(dev, skb)) return NETDEV_TX_OK; spin_lock(&sl->lock); if (!netif_running(dev)) { spin_unlock(&sl->lock); netdev_warn(dev, "xmit: iface is down\n"); goto out; } if (!sl->tty) { spin_unlock(&sl->lock); goto out; } netif_stop_queue(sl->dev); slcan_encaps(sl, (struct can_frame *)skb->data); /* encaps & send */ spin_unlock(&sl->lock); skb_tx_timestamp(skb); out: kfree_skb(skb); return NETDEV_TX_OK; } /****************************************** * Routines looking at netdevice side. ******************************************/ static int slcan_transmit_cmd(struct slcan *sl, const unsigned char *cmd) { int ret, actual, n; spin_lock(&sl->lock); if (!sl->tty) { spin_unlock(&sl->lock); return -ENODEV; } n = scnprintf(sl->xbuff, sizeof(sl->xbuff), "%s", cmd); set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags); actual = sl->tty->ops->write(sl->tty, sl->xbuff, n); sl->xleft = n - actual; sl->xhead = sl->xbuff + actual; set_bit(SLF_XCMD, &sl->flags); spin_unlock(&sl->lock); ret = wait_event_interruptible_timeout(sl->xcmd_wait, !test_bit(SLF_XCMD, &sl->flags), HZ); clear_bit(SLF_XCMD, &sl->flags); if (ret == -ERESTARTSYS) return ret; if (ret == 0) return -ETIMEDOUT; return 0; } /* Netdevice UP -> DOWN routine */ static int slcan_netdev_close(struct net_device *dev) { struct slcan *sl = netdev_priv(dev); int err; if (sl->can.bittiming.bitrate && sl->can.bittiming.bitrate != CAN_BITRATE_UNKNOWN) { err = slcan_transmit_cmd(sl, "C\r"); if (err) netdev_warn(dev, "failed to send close command 'C\\r'\n"); } /* TTY discipline is running. */ clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags); flush_work(&sl->tx_work); netif_stop_queue(dev); sl->rcount = 0; sl->xleft = 0; close_candev(dev); sl->can.state = CAN_STATE_STOPPED; if (sl->can.bittiming.bitrate == CAN_BITRATE_UNKNOWN) sl->can.bittiming.bitrate = CAN_BITRATE_UNSET; return 0; } /* Netdevice DOWN -> UP routine */ static int slcan_netdev_open(struct net_device *dev) { struct slcan *sl = netdev_priv(dev); unsigned char cmd[SLCAN_MTU]; int err, s; /* The baud rate is not set with the command * `ip link set <iface> type can bitrate <baud>' and therefore * can.bittiming.bitrate is CAN_BITRATE_UNSET (0), causing * open_candev() to fail. So let's set to a fake value. */ if (sl->can.bittiming.bitrate == CAN_BITRATE_UNSET) sl->can.bittiming.bitrate = CAN_BITRATE_UNKNOWN; err = open_candev(dev); if (err) { netdev_err(dev, "failed to open can device\n"); return err; } if (sl->can.bittiming.bitrate != CAN_BITRATE_UNKNOWN) { for (s = 0; s < ARRAY_SIZE(slcan_bitrate_const); s++) { if (sl->can.bittiming.bitrate == slcan_bitrate_const[s]) break; } /* The CAN framework has already validate the bitrate value, * so we can avoid to check if `s' has been properly set. */ snprintf(cmd, sizeof(cmd), "C\rS%d\r", s); err = slcan_transmit_cmd(sl, cmd); if (err) { netdev_err(dev, "failed to send bitrate command 'C\\rS%d\\r'\n", s); goto cmd_transmit_failed; } if (test_bit(CF_ERR_RST, &sl->cmd_flags)) { err = slcan_transmit_cmd(sl, "F\r"); if (err) { netdev_err(dev, "failed to send error command 'F\\r'\n"); goto cmd_transmit_failed; } } if (sl->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) { err = slcan_transmit_cmd(sl, "L\r"); if (err) { netdev_err(dev, "failed to send listen-only command 'L\\r'\n"); goto cmd_transmit_failed; } } else { err = slcan_transmit_cmd(sl, "O\r"); if (err) { netdev_err(dev, "failed to send open command 'O\\r'\n"); goto cmd_transmit_failed; } } } sl->can.state = CAN_STATE_ERROR_ACTIVE; netif_start_queue(dev); return 0; cmd_transmit_failed: close_candev(dev); return err; } static const struct net_device_ops slcan_netdev_ops = { .ndo_open = slcan_netdev_open, .ndo_stop = slcan_netdev_close, .ndo_start_xmit = slcan_netdev_xmit, .ndo_change_mtu = can_change_mtu, }; /****************************************** * Routines looking at TTY side. ******************************************/ /* Handle the 'receiver data ready' interrupt. * This function is called by the 'tty_io' module in the kernel when * a block of SLCAN data has been received, which can now be decapsulated * and sent on to some IP layer for further processing. This will not * be re-entered while running but other ldisc functions may be called * in parallel */ static void slcan_receive_buf(struct tty_struct *tty, const unsigned char *cp, const char *fp, int count) { struct slcan *sl = (struct slcan *)tty->disc_data; if (!netif_running(sl->dev)) return; /* Read the characters out of the buffer */ while (count--) { if (fp && *fp++) { if (!test_and_set_bit(SLF_ERROR, &sl->flags)) sl->dev->stats.rx_errors++; cp++; continue; } slcan_unesc(sl, *cp++); } } /* Open the high-level part of the SLCAN channel. * This function is called by the TTY module when the * SLCAN line discipline is called for. * * Called in process context serialized from other ldisc calls. */ static int slcan_open(struct tty_struct *tty) { struct net_device *dev; struct slcan *sl; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!tty->ops->write) return -EOPNOTSUPP; dev = alloc_candev(sizeof(*sl), 1); if (!dev) return -ENFILE; sl = netdev_priv(dev); /* Configure TTY interface */ tty->receive_room = 65536; /* We don't flow control */ sl->rcount = 0; sl->xleft = 0; spin_lock_init(&sl->lock); INIT_WORK(&sl->tx_work, slcan_transmit); init_waitqueue_head(&sl->xcmd_wait); /* Configure CAN metadata */ sl->can.bitrate_const = slcan_bitrate_const; sl->can.bitrate_const_cnt = ARRAY_SIZE(slcan_bitrate_const); sl->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY; /* Configure netdev interface */ sl->dev = dev; dev->netdev_ops = &slcan_netdev_ops; dev->ethtool_ops = &slcan_ethtool_ops; /* Mark ldisc channel as alive */ sl->tty = tty; tty->disc_data = sl; err = register_candev(dev); if (err) { free_candev(dev); pr_err("can't register candev\n"); return err; } netdev_info(dev, "slcan on %s.\n", tty->name); /* TTY layer expects 0 on success */ return 0; } /* Close down a SLCAN channel. * This means flushing out any pending queues, and then returning. This * call is serialized against other ldisc functions. * Once this is called, no other ldisc function of ours is entered. * * We also use this method for a hangup event. */ static void slcan_close(struct tty_struct *tty) { struct slcan *sl = (struct slcan *)tty->disc_data; unregister_candev(sl->dev); /* * The netdev needn't be UP (so .ndo_stop() is not called). Hence make * sure this is not running before freeing it up. */ flush_work(&sl->tx_work); /* Mark channel as dead */ spin_lock_bh(&sl->lock); tty->disc_data = NULL; sl->tty = NULL; spin_unlock_bh(&sl->lock); netdev_info(sl->dev, "slcan off %s.\n", tty->name); free_candev(sl->dev); } /* Perform I/O control on an active SLCAN channel. */ static int slcan_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct slcan *sl = (struct slcan *)tty->disc_data; unsigned int tmp; switch (cmd) { case SIOCGIFNAME: tmp = strlen(sl->dev->name) + 1; if (copy_to_user((void __user *)arg, sl->dev->name, tmp)) return -EFAULT; return 0; case SIOCSIFHWADDR: return -EINVAL; default: return tty_mode_ioctl(tty, cmd, arg); } } static struct tty_ldisc_ops slcan_ldisc = { .owner = THIS_MODULE, .num = N_SLCAN, .name = KBUILD_MODNAME, .open = slcan_open, .close = slcan_close, .ioctl = slcan_ioctl, .receive_buf = slcan_receive_buf, .write_wakeup = slcan_write_wakeup, }; static int __init slcan_init(void) { int status; pr_info("serial line CAN interface driver\n"); /* Fill in our line protocol discipline, and register it */ status = tty_register_ldisc(&slcan_ldisc); if (status) pr_err("can't register line discipline\n"); return status; } static void __exit slcan_exit(void) { /* This will only be called when all channels have been closed by * userspace - tty_ldisc.c takes care of the module's refcount. */ tty_unregister_ldisc(&slcan_ldisc); } module_init(slcan_init); module_exit(slcan_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1