Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kamil Alkhouri | 1179 | 61.66% | 2 | 33.33% |
Kurt Kanzenbach | 678 | 35.46% | 2 | 33.33% |
Andy Shevchenko | 46 | 2.41% | 1 | 16.67% |
Liang He | 9 | 0.47% | 1 | 16.67% |
Total | 1912 | 6 |
// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* * DSA driver for: * Hirschmann Hellcreek TSN switch. * * Copyright (C) 2019,2020 Hochschule Offenburg * Copyright (C) 2019,2020 Linutronix GmbH * Authors: Kamil Alkhouri <kamil.alkhouri@hs-offenburg.de> * Kurt Kanzenbach <kurt@linutronix.de> */ #include <linux/ptp_clock_kernel.h> #include "hellcreek.h" #include "hellcreek_ptp.h" #include "hellcreek_hwtstamp.h" u16 hellcreek_ptp_read(struct hellcreek *hellcreek, unsigned int offset) { return readw(hellcreek->ptp_base + offset); } void hellcreek_ptp_write(struct hellcreek *hellcreek, u16 data, unsigned int offset) { writew(data, hellcreek->ptp_base + offset); } /* Get nanoseconds from PTP clock */ static u64 hellcreek_ptp_clock_read(struct hellcreek *hellcreek) { u16 nsl, nsh; /* Take a snapshot */ hellcreek_ptp_write(hellcreek, PR_COMMAND_C_SS, PR_COMMAND_C); /* The time of the day is saved as 96 bits. However, due to hardware * limitations the seconds are not or only partly kept in the PTP * core. Currently only three bits for the seconds are available. That's * why only the nanoseconds are used and the seconds are tracked in * software. Anyway due to internal locking all five registers should be * read. */ nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); nsl = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); return (u64)nsl | ((u64)nsh << 16); } static u64 __hellcreek_ptp_gettime(struct hellcreek *hellcreek) { u64 ns; ns = hellcreek_ptp_clock_read(hellcreek); if (ns < hellcreek->last_ts) hellcreek->seconds++; hellcreek->last_ts = ns; ns += hellcreek->seconds * NSEC_PER_SEC; return ns; } /* Retrieve the seconds parts in nanoseconds for a packet timestamped with @ns. * There has to be a check whether an overflow occurred between the packet * arrival and now. If so use the correct seconds (-1) for calculating the * packet arrival time. */ u64 hellcreek_ptp_gettime_seconds(struct hellcreek *hellcreek, u64 ns) { u64 s; __hellcreek_ptp_gettime(hellcreek); if (hellcreek->last_ts > ns) s = hellcreek->seconds * NSEC_PER_SEC; else s = (hellcreek->seconds - 1) * NSEC_PER_SEC; return s; } static int hellcreek_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct hellcreek *hellcreek = ptp_to_hellcreek(ptp); u64 ns; mutex_lock(&hellcreek->ptp_lock); ns = __hellcreek_ptp_gettime(hellcreek); mutex_unlock(&hellcreek->ptp_lock); *ts = ns_to_timespec64(ns); return 0; } static int hellcreek_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct hellcreek *hellcreek = ptp_to_hellcreek(ptp); u16 secl, nsh, nsl; secl = ts->tv_sec & 0xffff; nsh = ((u32)ts->tv_nsec & 0xffff0000) >> 16; nsl = ts->tv_nsec & 0xffff; mutex_lock(&hellcreek->ptp_lock); /* Update overflow data structure */ hellcreek->seconds = ts->tv_sec; hellcreek->last_ts = ts->tv_nsec; /* Set time in clock */ hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C); hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C); hellcreek_ptp_write(hellcreek, secl, PR_CLOCK_WRITE_C); hellcreek_ptp_write(hellcreek, nsh, PR_CLOCK_WRITE_C); hellcreek_ptp_write(hellcreek, nsl, PR_CLOCK_WRITE_C); mutex_unlock(&hellcreek->ptp_lock); return 0; } static int hellcreek_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct hellcreek *hellcreek = ptp_to_hellcreek(ptp); u16 negative = 0, addendh, addendl; u32 addend; u64 adj; if (scaled_ppm < 0) { negative = 1; scaled_ppm = -scaled_ppm; } /* IP-Core adjusts the nominal frequency by adding or subtracting 1 ns * from the 8 ns (period of the oscillator) every time the accumulator * register overflows. The value stored in the addend register is added * to the accumulator register every 8 ns. * * addend value = (2^30 * accumulator_overflow_rate) / * oscillator_frequency * where: * * oscillator_frequency = 125 MHz * accumulator_overflow_rate = 125 MHz * scaled_ppm * 2^-16 * 10^-6 * 8 */ adj = scaled_ppm; adj <<= 11; addend = (u32)div_u64(adj, 15625); addendh = (addend & 0xffff0000) >> 16; addendl = addend & 0xffff; negative = (negative << 15) & 0x8000; mutex_lock(&hellcreek->ptp_lock); /* Set drift register */ hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_DRIFT_C); hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C); hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C); hellcreek_ptp_write(hellcreek, addendh, PR_CLOCK_DRIFT_C); hellcreek_ptp_write(hellcreek, addendl, PR_CLOCK_DRIFT_C); mutex_unlock(&hellcreek->ptp_lock); return 0; } static int hellcreek_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct hellcreek *hellcreek = ptp_to_hellcreek(ptp); u16 negative = 0, counth, countl; u32 count_val; /* If the offset is larger than IP-Core slow offset resources. Don't * consider slow adjustment. Rather, add the offset directly to the * current time */ if (abs(delta) > MAX_SLOW_OFFSET_ADJ) { struct timespec64 now, then = ns_to_timespec64(delta); hellcreek_ptp_gettime(ptp, &now); now = timespec64_add(now, then); hellcreek_ptp_settime(ptp, &now); return 0; } if (delta < 0) { negative = 1; delta = -delta; } /* 'count_val' does not exceed the maximum register size (2^30) */ count_val = div_s64(delta, MAX_NS_PER_STEP); counth = (count_val & 0xffff0000) >> 16; countl = count_val & 0xffff; negative = (negative << 15) & 0x8000; mutex_lock(&hellcreek->ptp_lock); /* Set offset write register */ hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_OFFSET_C); hellcreek_ptp_write(hellcreek, MAX_NS_PER_STEP, PR_CLOCK_OFFSET_C); hellcreek_ptp_write(hellcreek, MIN_CLK_CYCLES_BETWEEN_STEPS, PR_CLOCK_OFFSET_C); hellcreek_ptp_write(hellcreek, countl, PR_CLOCK_OFFSET_C); hellcreek_ptp_write(hellcreek, counth, PR_CLOCK_OFFSET_C); mutex_unlock(&hellcreek->ptp_lock); return 0; } static int hellcreek_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { return -EOPNOTSUPP; } static void hellcreek_ptp_overflow_check(struct work_struct *work) { struct delayed_work *dw = to_delayed_work(work); struct hellcreek *hellcreek; hellcreek = dw_overflow_to_hellcreek(dw); mutex_lock(&hellcreek->ptp_lock); __hellcreek_ptp_gettime(hellcreek); mutex_unlock(&hellcreek->ptp_lock); schedule_delayed_work(&hellcreek->overflow_work, HELLCREEK_OVERFLOW_PERIOD); } static enum led_brightness hellcreek_get_brightness(struct hellcreek *hellcreek, int led) { return (hellcreek->status_out & led) ? 1 : 0; } static void hellcreek_set_brightness(struct hellcreek *hellcreek, int led, enum led_brightness b) { mutex_lock(&hellcreek->ptp_lock); if (b) hellcreek->status_out |= led; else hellcreek->status_out &= ~led; hellcreek_ptp_write(hellcreek, hellcreek->status_out, STATUS_OUT); mutex_unlock(&hellcreek->ptp_lock); } static void hellcreek_led_sync_good_set(struct led_classdev *ldev, enum led_brightness b) { struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good); hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, b); } static enum led_brightness hellcreek_led_sync_good_get(struct led_classdev *ldev) { struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good); return hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD); } static void hellcreek_led_is_gm_set(struct led_classdev *ldev, enum led_brightness b) { struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm); hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, b); } static enum led_brightness hellcreek_led_is_gm_get(struct led_classdev *ldev) { struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm); return hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM); } /* There two available LEDs internally called sync_good and is_gm. However, the * user might want to use a different label and specify the default state. Take * those properties from device tree. */ static int hellcreek_led_setup(struct hellcreek *hellcreek) { struct device_node *leds, *led = NULL; enum led_default_state state; const char *label; int ret = -EINVAL; of_node_get(hellcreek->dev->of_node); leds = of_find_node_by_name(hellcreek->dev->of_node, "leds"); if (!leds) { dev_err(hellcreek->dev, "No LEDs specified in device tree!\n"); return ret; } hellcreek->status_out = 0; led = of_get_next_available_child(leds, led); if (!led) { dev_err(hellcreek->dev, "First LED not specified!\n"); goto out; } ret = of_property_read_string(led, "label", &label); hellcreek->led_sync_good.name = ret ? "sync_good" : label; state = led_init_default_state_get(of_fwnode_handle(led)); switch (state) { case LEDS_DEFSTATE_ON: hellcreek->led_sync_good.brightness = 1; break; case LEDS_DEFSTATE_KEEP: hellcreek->led_sync_good.brightness = hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD); break; default: hellcreek->led_sync_good.brightness = 0; } hellcreek->led_sync_good.max_brightness = 1; hellcreek->led_sync_good.brightness_set = hellcreek_led_sync_good_set; hellcreek->led_sync_good.brightness_get = hellcreek_led_sync_good_get; led = of_get_next_available_child(leds, led); if (!led) { dev_err(hellcreek->dev, "Second LED not specified!\n"); ret = -EINVAL; goto out; } ret = of_property_read_string(led, "label", &label); hellcreek->led_is_gm.name = ret ? "is_gm" : label; state = led_init_default_state_get(of_fwnode_handle(led)); switch (state) { case LEDS_DEFSTATE_ON: hellcreek->led_is_gm.brightness = 1; break; case LEDS_DEFSTATE_KEEP: hellcreek->led_is_gm.brightness = hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM); break; default: hellcreek->led_is_gm.brightness = 0; } hellcreek->led_is_gm.max_brightness = 1; hellcreek->led_is_gm.brightness_set = hellcreek_led_is_gm_set; hellcreek->led_is_gm.brightness_get = hellcreek_led_is_gm_get; /* Set initial state */ if (hellcreek->led_sync_good.brightness == 1) hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, 1); if (hellcreek->led_is_gm.brightness == 1) hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, 1); /* Register both leds */ led_classdev_register(hellcreek->dev, &hellcreek->led_sync_good); led_classdev_register(hellcreek->dev, &hellcreek->led_is_gm); ret = 0; out: of_node_put(leds); return ret; } int hellcreek_ptp_setup(struct hellcreek *hellcreek) { u16 status; int ret; /* Set up the overflow work */ INIT_DELAYED_WORK(&hellcreek->overflow_work, hellcreek_ptp_overflow_check); /* Setup PTP clock */ hellcreek->ptp_clock_info.owner = THIS_MODULE; snprintf(hellcreek->ptp_clock_info.name, sizeof(hellcreek->ptp_clock_info.name), dev_name(hellcreek->dev)); /* IP-Core can add up to 0.5 ns per 8 ns cycle, which means * accumulator_overflow_rate shall not exceed 62.5 MHz (which adjusts * the nominal frequency by 6.25%) */ hellcreek->ptp_clock_info.max_adj = 62500000; hellcreek->ptp_clock_info.n_alarm = 0; hellcreek->ptp_clock_info.n_pins = 0; hellcreek->ptp_clock_info.n_ext_ts = 0; hellcreek->ptp_clock_info.n_per_out = 0; hellcreek->ptp_clock_info.pps = 0; hellcreek->ptp_clock_info.adjfine = hellcreek_ptp_adjfine; hellcreek->ptp_clock_info.adjtime = hellcreek_ptp_adjtime; hellcreek->ptp_clock_info.gettime64 = hellcreek_ptp_gettime; hellcreek->ptp_clock_info.settime64 = hellcreek_ptp_settime; hellcreek->ptp_clock_info.enable = hellcreek_ptp_enable; hellcreek->ptp_clock_info.do_aux_work = hellcreek_hwtstamp_work; hellcreek->ptp_clock = ptp_clock_register(&hellcreek->ptp_clock_info, hellcreek->dev); if (IS_ERR(hellcreek->ptp_clock)) return PTR_ERR(hellcreek->ptp_clock); /* Enable the offset correction process, if no offset correction is * already taking place */ status = hellcreek_ptp_read(hellcreek, PR_CLOCK_STATUS_C); if (!(status & PR_CLOCK_STATUS_C_OFS_ACT)) hellcreek_ptp_write(hellcreek, status | PR_CLOCK_STATUS_C_ENA_OFS, PR_CLOCK_STATUS_C); /* Enable the drift correction process */ hellcreek_ptp_write(hellcreek, status | PR_CLOCK_STATUS_C_ENA_DRIFT, PR_CLOCK_STATUS_C); /* LED setup */ ret = hellcreek_led_setup(hellcreek); if (ret) { if (hellcreek->ptp_clock) ptp_clock_unregister(hellcreek->ptp_clock); return ret; } schedule_delayed_work(&hellcreek->overflow_work, HELLCREEK_OVERFLOW_PERIOD); return 0; } void hellcreek_ptp_free(struct hellcreek *hellcreek) { led_classdev_unregister(&hellcreek->led_is_gm); led_classdev_unregister(&hellcreek->led_sync_good); cancel_delayed_work_sync(&hellcreek->overflow_work); if (hellcreek->ptp_clock) ptp_clock_unregister(hellcreek->ptp_clock); hellcreek->ptp_clock = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1