Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Florian Fainelli | 2639 | 43.33% | 13 | 11.82% |
Herbert Valerio Riedel | 1312 | 21.54% | 2 | 1.82% |
Linus Torvalds | 722 | 11.86% | 5 | 4.55% |
Manuel Lauss | 649 | 10.66% | 6 | 5.45% |
Ralf Baechle | 187 | 3.07% | 3 | 2.73% |
Dave Jones | 120 | 1.97% | 2 | 1.82% |
Linus Torvalds (pre-git) | 107 | 1.76% | 26 | 23.64% |
Alexander Beregalov | 55 | 0.90% | 2 | 1.82% |
Wang Chen | 53 | 0.87% | 1 | 0.91% |
Lennert Buytenhek | 33 | 0.54% | 1 | 0.91% |
Philippe Reynes | 31 | 0.51% | 2 | 1.82% |
Andrew Lunn | 22 | 0.36% | 4 | 3.64% |
Jiri Pirko | 20 | 0.33% | 5 | 4.55% |
Arnd Bergmann | 19 | 0.31% | 2 | 1.82% |
Christoph Hellwig | 18 | 0.30% | 3 | 2.73% |
Peter Senna Tschudin | 11 | 0.18% | 1 | 0.91% |
Danny Kukawka | 11 | 0.18% | 1 | 0.91% |
Jeff Garzik | 9 | 0.15% | 3 | 2.73% |
Martin Gebert | 7 | 0.11% | 1 | 0.91% |
Adrian Bunk | 7 | 0.11% | 2 | 1.82% |
John W. Linville | 7 | 0.11% | 1 | 0.91% |
David S. Miller | 6 | 0.10% | 2 | 1.82% |
Michael S. Tsirkin | 4 | 0.07% | 1 | 0.91% |
Jingoo Han | 4 | 0.07% | 1 | 0.91% |
Yoichi Yuasa | 4 | 0.07% | 1 | 0.91% |
Andy Fleming | 3 | 0.05% | 1 | 0.91% |
Wilfried Klaebe | 3 | 0.05% | 1 | 0.91% |
Axel Lin | 3 | 0.05% | 1 | 0.91% |
Florian Westphal | 3 | 0.05% | 1 | 0.91% |
Pradeep A. Dalvi | 3 | 0.05% | 1 | 0.91% |
Kay Sievers | 2 | 0.03% | 1 | 0.91% |
Patrick McHardy | 2 | 0.03% | 2 | 1.82% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.91% |
Guofeng Yue | 2 | 0.03% | 1 | 0.91% |
Sergei Shtylyov | 2 | 0.03% | 1 | 0.91% |
Jakub Kiciński | 1 | 0.02% | 1 | 0.91% |
Eric Dumazet | 1 | 0.02% | 1 | 0.91% |
Wolfram Sang | 1 | 0.02% | 1 | 0.91% |
Arnaldo Carvalho de Melo | 1 | 0.02% | 1 | 0.91% |
Stephen Hemminger | 1 | 0.02% | 1 | 0.91% |
Andrew Morton | 1 | 0.02% | 1 | 0.91% |
Roel Kluin | 1 | 0.02% | 1 | 0.91% |
Heiner Kallweit | 1 | 0.02% | 1 | 0.91% |
Total | 6090 | 110 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Alchemy Au1x00 ethernet driver * * Copyright 2001-2003, 2006 MontaVista Software Inc. * Copyright 2002 TimeSys Corp. * Added ethtool/mii-tool support, * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de * or riemer@riemer-nt.de: fixed the link beat detection with * ioctls (SIOCGMIIPHY) * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> * converted to use linux-2.6.x's PHY framework * * Author: MontaVista Software, Inc. * ppopov@mvista.com or source@mvista.com */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/capability.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/ioport.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/crc32.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/cpu.h> #include <linux/io.h> #include <asm/mipsregs.h> #include <asm/irq.h> #include <asm/processor.h> #include <au1000.h> #include <au1xxx_eth.h> #include <prom.h> #include "au1000_eth.h" #ifdef AU1000_ETH_DEBUG static int au1000_debug = 5; #else static int au1000_debug = 3; #endif #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK) #define DRV_NAME "au1000_eth" #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" #define DRV_DESC "Au1xxx on-chip Ethernet driver" MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC); MODULE_LICENSE("GPL"); /* AU1000 MAC registers and bits */ #define MAC_CONTROL 0x0 # define MAC_RX_ENABLE (1 << 2) # define MAC_TX_ENABLE (1 << 3) # define MAC_DEF_CHECK (1 << 5) # define MAC_SET_BL(X) (((X) & 0x3) << 6) # define MAC_AUTO_PAD (1 << 8) # define MAC_DISABLE_RETRY (1 << 10) # define MAC_DISABLE_BCAST (1 << 11) # define MAC_LATE_COL (1 << 12) # define MAC_HASH_MODE (1 << 13) # define MAC_HASH_ONLY (1 << 15) # define MAC_PASS_ALL (1 << 16) # define MAC_INVERSE_FILTER (1 << 17) # define MAC_PROMISCUOUS (1 << 18) # define MAC_PASS_ALL_MULTI (1 << 19) # define MAC_FULL_DUPLEX (1 << 20) # define MAC_NORMAL_MODE 0 # define MAC_INT_LOOPBACK (1 << 21) # define MAC_EXT_LOOPBACK (1 << 22) # define MAC_DISABLE_RX_OWN (1 << 23) # define MAC_BIG_ENDIAN (1 << 30) # define MAC_RX_ALL (1 << 31) #define MAC_ADDRESS_HIGH 0x4 #define MAC_ADDRESS_LOW 0x8 #define MAC_MCAST_HIGH 0xC #define MAC_MCAST_LOW 0x10 #define MAC_MII_CNTRL 0x14 # define MAC_MII_BUSY (1 << 0) # define MAC_MII_READ 0 # define MAC_MII_WRITE (1 << 1) # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6) # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11) #define MAC_MII_DATA 0x18 #define MAC_FLOW_CNTRL 0x1C # define MAC_FLOW_CNTRL_BUSY (1 << 0) # define MAC_FLOW_CNTRL_ENABLE (1 << 1) # define MAC_PASS_CONTROL (1 << 2) # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16) #define MAC_VLAN1_TAG 0x20 #define MAC_VLAN2_TAG 0x24 /* Ethernet Controller Enable */ # define MAC_EN_CLOCK_ENABLE (1 << 0) # define MAC_EN_RESET0 (1 << 1) # define MAC_EN_TOSS (0 << 2) # define MAC_EN_CACHEABLE (1 << 3) # define MAC_EN_RESET1 (1 << 4) # define MAC_EN_RESET2 (1 << 5) # define MAC_DMA_RESET (1 << 6) /* Ethernet Controller DMA Channels */ /* offsets from MAC_TX_RING_ADDR address */ #define MAC_TX_BUFF0_STATUS 0x0 # define TX_FRAME_ABORTED (1 << 0) # define TX_JAB_TIMEOUT (1 << 1) # define TX_NO_CARRIER (1 << 2) # define TX_LOSS_CARRIER (1 << 3) # define TX_EXC_DEF (1 << 4) # define TX_LATE_COLL_ABORT (1 << 5) # define TX_EXC_COLL (1 << 6) # define TX_UNDERRUN (1 << 7) # define TX_DEFERRED (1 << 8) # define TX_LATE_COLL (1 << 9) # define TX_COLL_CNT_MASK (0xF << 10) # define TX_PKT_RETRY (1 << 31) #define MAC_TX_BUFF0_ADDR 0x4 # define TX_DMA_ENABLE (1 << 0) # define TX_T_DONE (1 << 1) # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) #define MAC_TX_BUFF0_LEN 0x8 #define MAC_TX_BUFF1_STATUS 0x10 #define MAC_TX_BUFF1_ADDR 0x14 #define MAC_TX_BUFF1_LEN 0x18 #define MAC_TX_BUFF2_STATUS 0x20 #define MAC_TX_BUFF2_ADDR 0x24 #define MAC_TX_BUFF2_LEN 0x28 #define MAC_TX_BUFF3_STATUS 0x30 #define MAC_TX_BUFF3_ADDR 0x34 #define MAC_TX_BUFF3_LEN 0x38 /* offsets from MAC_RX_RING_ADDR */ #define MAC_RX_BUFF0_STATUS 0x0 # define RX_FRAME_LEN_MASK 0x3fff # define RX_WDOG_TIMER (1 << 14) # define RX_RUNT (1 << 15) # define RX_OVERLEN (1 << 16) # define RX_COLL (1 << 17) # define RX_ETHER (1 << 18) # define RX_MII_ERROR (1 << 19) # define RX_DRIBBLING (1 << 20) # define RX_CRC_ERROR (1 << 21) # define RX_VLAN1 (1 << 22) # define RX_VLAN2 (1 << 23) # define RX_LEN_ERROR (1 << 24) # define RX_CNTRL_FRAME (1 << 25) # define RX_U_CNTRL_FRAME (1 << 26) # define RX_MCAST_FRAME (1 << 27) # define RX_BCAST_FRAME (1 << 28) # define RX_FILTER_FAIL (1 << 29) # define RX_PACKET_FILTER (1 << 30) # define RX_MISSED_FRAME (1 << 31) # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \ RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \ RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME) #define MAC_RX_BUFF0_ADDR 0x4 # define RX_DMA_ENABLE (1 << 0) # define RX_T_DONE (1 << 1) # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0) #define MAC_RX_BUFF1_STATUS 0x10 #define MAC_RX_BUFF1_ADDR 0x14 #define MAC_RX_BUFF2_STATUS 0x20 #define MAC_RX_BUFF2_ADDR 0x24 #define MAC_RX_BUFF3_STATUS 0x30 #define MAC_RX_BUFF3_ADDR 0x34 /* * Theory of operation * * The Au1000 MACs use a simple rx and tx descriptor ring scheme. * There are four receive and four transmit descriptors. These * descriptors are not in memory; rather, they are just a set of * hardware registers. * * Since the Au1000 has a coherent data cache, the receive and * transmit buffers are allocated from the KSEG0 segment. The * hardware registers, however, are still mapped at KSEG1 to * make sure there's no out-of-order writes, and that all writes * complete immediately. */ /* * board-specific configurations * * PHY detection algorithm * * If phy_static_config is undefined, the PHY setup is * autodetected: * * mii_probe() first searches the current MAC's MII bus for a PHY, * selecting the first (or last, if phy_search_highest_addr is * defined) PHY address not already claimed by another netdev. * * If nothing was found that way when searching for the 2nd ethernet * controller's PHY and phy1_search_mac0 is defined, then * the first MII bus is searched as well for an unclaimed PHY; this is * needed in case of a dual-PHY accessible only through the MAC0's MII * bus. * * Finally, if no PHY is found, then the corresponding ethernet * controller is not registered to the network subsystem. */ /* autodetection defaults: phy1_search_mac0 */ /* static PHY setup * * most boards PHY setup should be detectable properly with the * autodetection algorithm in mii_probe(), but in some cases (e.g. if * you have a switch attached, or want to use the PHY's interrupt * notification capabilities) you can provide a static PHY * configuration here * * IRQs may only be set, if a PHY address was configured * If a PHY address is given, also a bus id is required to be set * * ps: make sure the used irqs are configured properly in the board * specific irq-map */ static void au1000_enable_mac(struct net_device *dev, int force_reset) { unsigned long flags; struct au1000_private *aup = netdev_priv(dev); spin_lock_irqsave(&aup->lock, flags); if (force_reset || (!aup->mac_enabled)) { writel(MAC_EN_CLOCK_ENABLE, aup->enable); wmb(); /* drain writebuffer */ mdelay(2); writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE), aup->enable); wmb(); /* drain writebuffer */ mdelay(2); aup->mac_enabled = 1; } spin_unlock_irqrestore(&aup->lock, flags); } /* * MII operations */ static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) { struct au1000_private *aup = netdev_priv(dev); u32 *const mii_control_reg = &aup->mac->mii_control; u32 *const mii_data_reg = &aup->mac->mii_data; u32 timedout = 20; u32 mii_control; while (readl(mii_control_reg) & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { netdev_err(dev, "read_MII busy timeout!!\n"); return -1; } } mii_control = MAC_SET_MII_SELECT_REG(reg) | MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; writel(mii_control, mii_control_reg); timedout = 20; while (readl(mii_control_reg) & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { netdev_err(dev, "mdio_read busy timeout!!\n"); return -1; } } return readl(mii_data_reg); } static void au1000_mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value) { struct au1000_private *aup = netdev_priv(dev); u32 *const mii_control_reg = &aup->mac->mii_control; u32 *const mii_data_reg = &aup->mac->mii_data; u32 timedout = 20; u32 mii_control; while (readl(mii_control_reg) & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { netdev_err(dev, "mdio_write busy timeout!!\n"); return; } } mii_control = MAC_SET_MII_SELECT_REG(reg) | MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; writel(value, mii_data_reg); writel(mii_control, mii_control_reg); } static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) { struct net_device *const dev = bus->priv; /* make sure the MAC associated with this * mii_bus is enabled */ au1000_enable_mac(dev, 0); return au1000_mdio_read(dev, phy_addr, regnum); } static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value) { struct net_device *const dev = bus->priv; /* make sure the MAC associated with this * mii_bus is enabled */ au1000_enable_mac(dev, 0); au1000_mdio_write(dev, phy_addr, regnum, value); return 0; } static int au1000_mdiobus_reset(struct mii_bus *bus) { struct net_device *const dev = bus->priv; /* make sure the MAC associated with this * mii_bus is enabled */ au1000_enable_mac(dev, 0); return 0; } static void au1000_hard_stop(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); u32 reg; netif_dbg(aup, drv, dev, "hard stop\n"); reg = readl(&aup->mac->control); reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); writel(reg, &aup->mac->control); wmb(); /* drain writebuffer */ mdelay(10); } static void au1000_enable_rx_tx(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); u32 reg; netif_dbg(aup, hw, dev, "enable_rx_tx\n"); reg = readl(&aup->mac->control); reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE); writel(reg, &aup->mac->control); wmb(); /* drain writebuffer */ mdelay(10); } static void au1000_adjust_link(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); struct phy_device *phydev = dev->phydev; unsigned long flags; u32 reg; int status_change = 0; BUG_ON(!phydev); spin_lock_irqsave(&aup->lock, flags); if (phydev->link && (aup->old_speed != phydev->speed)) { /* speed changed */ switch (phydev->speed) { case SPEED_10: case SPEED_100: break; default: netdev_warn(dev, "Speed (%d) is not 10/100 ???\n", phydev->speed); break; } aup->old_speed = phydev->speed; status_change = 1; } if (phydev->link && (aup->old_duplex != phydev->duplex)) { /* duplex mode changed */ /* switching duplex mode requires to disable rx and tx! */ au1000_hard_stop(dev); reg = readl(&aup->mac->control); if (DUPLEX_FULL == phydev->duplex) { reg |= MAC_FULL_DUPLEX; reg &= ~MAC_DISABLE_RX_OWN; } else { reg &= ~MAC_FULL_DUPLEX; reg |= MAC_DISABLE_RX_OWN; } writel(reg, &aup->mac->control); wmb(); /* drain writebuffer */ mdelay(1); au1000_enable_rx_tx(dev); aup->old_duplex = phydev->duplex; status_change = 1; } if (phydev->link != aup->old_link) { /* link state changed */ if (!phydev->link) { /* link went down */ aup->old_speed = 0; aup->old_duplex = -1; } aup->old_link = phydev->link; status_change = 1; } spin_unlock_irqrestore(&aup->lock, flags); if (status_change) { if (phydev->link) netdev_info(dev, "link up (%d/%s)\n", phydev->speed, DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); else netdev_info(dev, "link down\n"); } } static int au1000_mii_probe(struct net_device *dev) { struct au1000_private *const aup = netdev_priv(dev); struct phy_device *phydev = NULL; int phy_addr; if (aup->phy_static_config) { BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); if (aup->phy_addr) phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr); else netdev_info(dev, "using PHY-less setup\n"); return 0; } /* find the first (lowest address) PHY * on the current MAC's MII bus */ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) if (mdiobus_get_phy(aup->mii_bus, phy_addr)) { phydev = mdiobus_get_phy(aup->mii_bus, phy_addr); if (!aup->phy_search_highest_addr) /* break out with first one found */ break; } if (aup->phy1_search_mac0) { /* try harder to find a PHY */ if (!phydev && (aup->mac_id == 1)) { /* no PHY found, maybe we have a dual PHY? */ dev_info(&dev->dev, ": no PHY found on MAC1, " "let's see if it's attached to MAC0...\n"); /* find the first (lowest address) non-attached * PHY on the MAC0 MII bus */ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { struct phy_device *const tmp_phydev = mdiobus_get_phy(aup->mii_bus, phy_addr); if (aup->mac_id == 1) break; /* no PHY here... */ if (!tmp_phydev) continue; /* already claimed by MAC0 */ if (tmp_phydev->attached_dev) continue; phydev = tmp_phydev; break; /* found it */ } } } if (!phydev) { netdev_err(dev, "no PHY found\n"); return -1; } /* now we are supposed to have a proper phydev, to attach to... */ BUG_ON(phydev->attached_dev); phydev = phy_connect(dev, phydev_name(phydev), &au1000_adjust_link, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { netdev_err(dev, "Could not attach to PHY\n"); return PTR_ERR(phydev); } phy_set_max_speed(phydev, SPEED_100); aup->old_link = 0; aup->old_speed = 0; aup->old_duplex = -1; phy_attached_info(phydev); return 0; } /* * Buffer allocation/deallocation routines. The buffer descriptor returned * has the virtual and dma address of a buffer suitable for * both, receive and transmit operations. */ static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup) { struct db_dest *pDB; pDB = aup->pDBfree; if (pDB) aup->pDBfree = pDB->pnext; return pDB; } void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB) { struct db_dest *pDBfree = aup->pDBfree; if (pDBfree) pDBfree->pnext = pDB; aup->pDBfree = pDB; } static void au1000_reset_mac_unlocked(struct net_device *dev) { struct au1000_private *const aup = netdev_priv(dev); int i; au1000_hard_stop(dev); writel(MAC_EN_CLOCK_ENABLE, aup->enable); wmb(); /* drain writebuffer */ mdelay(2); writel(0, aup->enable); wmb(); /* drain writebuffer */ mdelay(2); aup->tx_full = 0; for (i = 0; i < NUM_RX_DMA; i++) { /* reset control bits */ aup->rx_dma_ring[i]->buff_stat &= ~0xf; } for (i = 0; i < NUM_TX_DMA; i++) { /* reset control bits */ aup->tx_dma_ring[i]->buff_stat &= ~0xf; } aup->mac_enabled = 0; } static void au1000_reset_mac(struct net_device *dev) { struct au1000_private *const aup = netdev_priv(dev); unsigned long flags; netif_dbg(aup, hw, dev, "reset mac, aup %x\n", (unsigned)aup); spin_lock_irqsave(&aup->lock, flags); au1000_reset_mac_unlocked(dev); spin_unlock_irqrestore(&aup->lock, flags); } /* * Setup the receive and transmit "rings". These pointers are the addresses * of the rx and tx MAC DMA registers so they are fixed by the hardware -- * these are not descriptors sitting in memory. */ static void au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base) { int i; for (i = 0; i < NUM_RX_DMA; i++) { aup->rx_dma_ring[i] = (struct rx_dma *) (tx_base + 0x100 + sizeof(struct rx_dma) * i); } for (i = 0; i < NUM_TX_DMA; i++) { aup->tx_dma_ring[i] = (struct tx_dma *) (tx_base + sizeof(struct tx_dma) * i); } } /* * ethtool operations */ static void au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct au1000_private *aup = netdev_priv(dev); strscpy(info->driver, DRV_NAME, sizeof(info->driver)); snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME, aup->mac_id); } static void au1000_set_msglevel(struct net_device *dev, u32 value) { struct au1000_private *aup = netdev_priv(dev); aup->msg_enable = value; } static u32 au1000_get_msglevel(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); return aup->msg_enable; } static const struct ethtool_ops au1000_ethtool_ops = { .get_drvinfo = au1000_get_drvinfo, .get_link = ethtool_op_get_link, .get_msglevel = au1000_get_msglevel, .set_msglevel = au1000_set_msglevel, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; /* * Initialize the interface. * * When the device powers up, the clocks are disabled and the * mac is in reset state. When the interface is closed, we * do the same -- reset the device and disable the clocks to * conserve power. Thus, whenever au1000_init() is called, * the device should already be in reset state. */ static int au1000_init(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); unsigned long flags; int i; u32 control; netif_dbg(aup, hw, dev, "au1000_init\n"); /* bring the device out of reset */ au1000_enable_mac(dev, 1); spin_lock_irqsave(&aup->lock, flags); writel(0, &aup->mac->control); aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; aup->tx_tail = aup->tx_head; aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; writel(dev->dev_addr[5]<<8 | dev->dev_addr[4], &aup->mac->mac_addr_high); writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | dev->dev_addr[1]<<8 | dev->dev_addr[0], &aup->mac->mac_addr_low); for (i = 0; i < NUM_RX_DMA; i++) aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; wmb(); /* drain writebuffer */ control = MAC_RX_ENABLE | MAC_TX_ENABLE; #ifndef CONFIG_CPU_LITTLE_ENDIAN control |= MAC_BIG_ENDIAN; #endif if (dev->phydev) { if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex)) control |= MAC_FULL_DUPLEX; else control |= MAC_DISABLE_RX_OWN; } else { /* PHY-less op, assume full-duplex */ control |= MAC_FULL_DUPLEX; } writel(control, &aup->mac->control); writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */ wmb(); /* drain writebuffer */ spin_unlock_irqrestore(&aup->lock, flags); return 0; } static inline void au1000_update_rx_stats(struct net_device *dev, u32 status) { struct net_device_stats *ps = &dev->stats; ps->rx_packets++; if (status & RX_MCAST_FRAME) ps->multicast++; if (status & RX_ERROR) { ps->rx_errors++; if (status & RX_MISSED_FRAME) ps->rx_missed_errors++; if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR)) ps->rx_length_errors++; if (status & RX_CRC_ERROR) ps->rx_crc_errors++; if (status & RX_COLL) ps->collisions++; } else ps->rx_bytes += status & RX_FRAME_LEN_MASK; } /* * Au1000 receive routine. */ static int au1000_rx(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); struct sk_buff *skb; struct rx_dma *prxd; u32 buff_stat, status; struct db_dest *pDB; u32 frmlen; netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head); prxd = aup->rx_dma_ring[aup->rx_head]; buff_stat = prxd->buff_stat; while (buff_stat & RX_T_DONE) { status = prxd->status; pDB = aup->rx_db_inuse[aup->rx_head]; au1000_update_rx_stats(dev, status); if (!(status & RX_ERROR)) { /* good frame */ frmlen = (status & RX_FRAME_LEN_MASK); frmlen -= 4; /* Remove FCS */ skb = netdev_alloc_skb(dev, frmlen + 2); if (!skb) { dev->stats.rx_dropped++; continue; } skb_reserve(skb, 2); /* 16 byte IP header align */ skb_copy_to_linear_data(skb, (unsigned char *)pDB->vaddr, frmlen); skb_put(skb, frmlen); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); /* pass the packet to upper layers */ } else { if (au1000_debug > 4) { pr_err("rx_error(s):"); if (status & RX_MISSED_FRAME) pr_cont(" miss"); if (status & RX_WDOG_TIMER) pr_cont(" wdog"); if (status & RX_RUNT) pr_cont(" runt"); if (status & RX_OVERLEN) pr_cont(" overlen"); if (status & RX_COLL) pr_cont(" coll"); if (status & RX_MII_ERROR) pr_cont(" mii error"); if (status & RX_CRC_ERROR) pr_cont(" crc error"); if (status & RX_LEN_ERROR) pr_cont(" len error"); if (status & RX_U_CNTRL_FRAME) pr_cont(" u control frame"); pr_cont("\n"); } } prxd->buff_stat = lower_32_bits(pDB->dma_addr) | RX_DMA_ENABLE; aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); wmb(); /* drain writebuffer */ /* next descriptor */ prxd = aup->rx_dma_ring[aup->rx_head]; buff_stat = prxd->buff_stat; } return 0; } static void au1000_update_tx_stats(struct net_device *dev, u32 status) { struct net_device_stats *ps = &dev->stats; if (status & TX_FRAME_ABORTED) { if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) { if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { /* any other tx errors are only valid * in half duplex mode */ ps->tx_errors++; ps->tx_aborted_errors++; } } else { ps->tx_errors++; ps->tx_aborted_errors++; if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) ps->tx_carrier_errors++; } } } /* * Called from the interrupt service routine to acknowledge * the TX DONE bits. This is a must if the irq is setup as * edge triggered. */ static void au1000_tx_ack(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); struct tx_dma *ptxd; ptxd = aup->tx_dma_ring[aup->tx_tail]; while (ptxd->buff_stat & TX_T_DONE) { au1000_update_tx_stats(dev, ptxd->status); ptxd->buff_stat &= ~TX_T_DONE; ptxd->len = 0; wmb(); /* drain writebuffer */ aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); ptxd = aup->tx_dma_ring[aup->tx_tail]; if (aup->tx_full) { aup->tx_full = 0; netif_wake_queue(dev); } } } /* * Au1000 interrupt service routine. */ static irqreturn_t au1000_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; /* Handle RX interrupts first to minimize chance of overrun */ au1000_rx(dev); au1000_tx_ack(dev); return IRQ_RETVAL(1); } static int au1000_open(struct net_device *dev) { int retval; struct au1000_private *aup = netdev_priv(dev); netif_dbg(aup, drv, dev, "open: dev=%p\n", dev); retval = request_irq(dev->irq, au1000_interrupt, 0, dev->name, dev); if (retval) { netdev_err(dev, "unable to get IRQ %d\n", dev->irq); return retval; } retval = au1000_init(dev); if (retval) { netdev_err(dev, "error in au1000_init\n"); free_irq(dev->irq, dev); return retval; } if (dev->phydev) phy_start(dev->phydev); netif_start_queue(dev); netif_dbg(aup, drv, dev, "open: Initialization done.\n"); return 0; } static int au1000_close(struct net_device *dev) { unsigned long flags; struct au1000_private *const aup = netdev_priv(dev); netif_dbg(aup, drv, dev, "close: dev=%p\n", dev); if (dev->phydev) phy_stop(dev->phydev); spin_lock_irqsave(&aup->lock, flags); au1000_reset_mac_unlocked(dev); /* stop the device */ netif_stop_queue(dev); /* disable the interrupt */ free_irq(dev->irq, dev); spin_unlock_irqrestore(&aup->lock, flags); return 0; } /* * Au1000 transmit routine. */ static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); struct net_device_stats *ps = &dev->stats; struct tx_dma *ptxd; u32 buff_stat; struct db_dest *pDB; int i; netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n", (unsigned)aup, skb->len, skb->data, aup->tx_head); ptxd = aup->tx_dma_ring[aup->tx_head]; buff_stat = ptxd->buff_stat; if (buff_stat & TX_DMA_ENABLE) { /* We've wrapped around and the transmitter is still busy */ netif_stop_queue(dev); aup->tx_full = 1; return NETDEV_TX_BUSY; } else if (buff_stat & TX_T_DONE) { au1000_update_tx_stats(dev, ptxd->status); ptxd->len = 0; } if (aup->tx_full) { aup->tx_full = 0; netif_wake_queue(dev); } pDB = aup->tx_db_inuse[aup->tx_head]; skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); if (skb->len < ETH_ZLEN) { for (i = skb->len; i < ETH_ZLEN; i++) ((char *)pDB->vaddr)[i] = 0; ptxd->len = ETH_ZLEN; } else ptxd->len = skb->len; ps->tx_packets++; ps->tx_bytes += ptxd->len; ptxd->buff_stat = lower_32_bits(pDB->dma_addr) | TX_DMA_ENABLE; wmb(); /* drain writebuffer */ dev_kfree_skb(skb); aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); return NETDEV_TX_OK; } /* * The Tx ring has been full longer than the watchdog timeout * value. The transmitter must be hung? */ static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue) { netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev); au1000_reset_mac(dev); au1000_init(dev); netif_trans_update(dev); /* prevent tx timeout */ netif_wake_queue(dev); } static void au1000_multicast_list(struct net_device *dev) { struct au1000_private *aup = netdev_priv(dev); u32 reg; netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags); reg = readl(&aup->mac->control); if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ reg |= MAC_PROMISCUOUS; } else if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) { reg |= MAC_PASS_ALL_MULTI; reg &= ~MAC_PROMISCUOUS; netdev_info(dev, "Pass all multicast\n"); } else { struct netdev_hw_addr *ha; u32 mc_filter[2]; /* Multicast hash filter */ mc_filter[1] = mc_filter[0] = 0; netdev_for_each_mc_addr(ha, dev) set_bit(ether_crc(ETH_ALEN, ha->addr)>>26, (long *)mc_filter); writel(mc_filter[1], &aup->mac->multi_hash_high); writel(mc_filter[0], &aup->mac->multi_hash_low); reg &= ~MAC_PROMISCUOUS; reg |= MAC_HASH_MODE; } writel(reg, &aup->mac->control); } static const struct net_device_ops au1000_netdev_ops = { .ndo_open = au1000_open, .ndo_stop = au1000_close, .ndo_start_xmit = au1000_tx, .ndo_set_rx_mode = au1000_multicast_list, .ndo_eth_ioctl = phy_do_ioctl_running, .ndo_tx_timeout = au1000_tx_timeout, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static int au1000_probe(struct platform_device *pdev) { struct au1000_private *aup = NULL; struct au1000_eth_platform_data *pd; struct net_device *dev = NULL; struct db_dest *pDB, *pDBfree; int irq, i, err = 0; struct resource *base, *macen, *macdma; base = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!base) { dev_err(&pdev->dev, "failed to retrieve base register\n"); err = -ENODEV; goto out; } macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!macen) { dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n"); err = -ENODEV; goto out; } irq = platform_get_irq(pdev, 0); if (irq < 0) { err = -ENODEV; goto out; } macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2); if (!macdma) { dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n"); err = -ENODEV; goto out; } if (!request_mem_region(base->start, resource_size(base), pdev->name)) { dev_err(&pdev->dev, "failed to request memory region for base registers\n"); err = -ENXIO; goto out; } if (!request_mem_region(macen->start, resource_size(macen), pdev->name)) { dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n"); err = -ENXIO; goto err_request; } if (!request_mem_region(macdma->start, resource_size(macdma), pdev->name)) { dev_err(&pdev->dev, "failed to request MACDMA memory region\n"); err = -ENXIO; goto err_macdma; } dev = alloc_etherdev(sizeof(struct au1000_private)); if (!dev) { err = -ENOMEM; goto err_alloc; } SET_NETDEV_DEV(dev, &pdev->dev); platform_set_drvdata(pdev, dev); aup = netdev_priv(dev); spin_lock_init(&aup->lock); aup->msg_enable = (au1000_debug < 4 ? AU1000_DEF_MSG_ENABLE : au1000_debug); /* Allocate the data buffers * Snooping works fine with eth on all au1xxx */ aup->vaddr = dma_alloc_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), &aup->dma_addr, 0); if (!aup->vaddr) { dev_err(&pdev->dev, "failed to allocate data buffers\n"); err = -ENOMEM; goto err_vaddr; } /* aup->mac is the base address of the MAC's registers */ aup->mac = (struct mac_reg *) ioremap(base->start, resource_size(base)); if (!aup->mac) { dev_err(&pdev->dev, "failed to ioremap MAC registers\n"); err = -ENXIO; goto err_remap1; } /* Setup some variables for quick register address access */ aup->enable = (u32 *)ioremap(macen->start, resource_size(macen)); if (!aup->enable) { dev_err(&pdev->dev, "failed to ioremap MAC enable register\n"); err = -ENXIO; goto err_remap2; } aup->mac_id = pdev->id; aup->macdma = ioremap(macdma->start, resource_size(macdma)); if (!aup->macdma) { dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n"); err = -ENXIO; goto err_remap3; } au1000_setup_hw_rings(aup, aup->macdma); writel(0, aup->enable); aup->mac_enabled = 0; pd = dev_get_platdata(&pdev->dev); if (!pd) { dev_info(&pdev->dev, "no platform_data passed," " PHY search on MAC0\n"); aup->phy1_search_mac0 = 1; } else { if (is_valid_ether_addr(pd->mac)) { eth_hw_addr_set(dev, pd->mac); } else { /* Set a random MAC since no valid provided by platform_data. */ eth_hw_addr_random(dev); } aup->phy_static_config = pd->phy_static_config; aup->phy_search_highest_addr = pd->phy_search_highest_addr; aup->phy1_search_mac0 = pd->phy1_search_mac0; aup->phy_addr = pd->phy_addr; aup->phy_busid = pd->phy_busid; aup->phy_irq = pd->phy_irq; } if (aup->phy_busid > 0) { dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n"); err = -ENODEV; goto err_mdiobus_alloc; } aup->mii_bus = mdiobus_alloc(); if (!aup->mii_bus) { dev_err(&pdev->dev, "failed to allocate mdiobus structure\n"); err = -ENOMEM; goto err_mdiobus_alloc; } aup->mii_bus->priv = dev; aup->mii_bus->read = au1000_mdiobus_read; aup->mii_bus->write = au1000_mdiobus_write; aup->mii_bus->reset = au1000_mdiobus_reset; aup->mii_bus->name = "au1000_eth_mii"; snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", pdev->name, aup->mac_id); /* if known, set corresponding PHY IRQs */ if (aup->phy_static_config) if (aup->phy_irq && aup->phy_busid == aup->mac_id) aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq; err = mdiobus_register(aup->mii_bus); if (err) { dev_err(&pdev->dev, "failed to register MDIO bus\n"); goto err_mdiobus_reg; } err = au1000_mii_probe(dev); if (err != 0) goto err_out; pDBfree = NULL; /* setup the data buffer descriptors and attach a buffer to each one */ pDB = aup->db; for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { pDB->pnext = pDBfree; pDBfree = pDB; pDB->vaddr = aup->vaddr + MAX_BUF_SIZE * i; pDB->dma_addr = aup->dma_addr + MAX_BUF_SIZE * i; pDB++; } aup->pDBfree = pDBfree; err = -ENODEV; for (i = 0; i < NUM_RX_DMA; i++) { pDB = au1000_GetFreeDB(aup); if (!pDB) goto err_out; aup->rx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr); aup->rx_db_inuse[i] = pDB; } for (i = 0; i < NUM_TX_DMA; i++) { pDB = au1000_GetFreeDB(aup); if (!pDB) goto err_out; aup->tx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr); aup->tx_dma_ring[i]->len = 0; aup->tx_db_inuse[i] = pDB; } dev->base_addr = base->start; dev->irq = irq; dev->netdev_ops = &au1000_netdev_ops; dev->ethtool_ops = &au1000_ethtool_ops; dev->watchdog_timeo = ETH_TX_TIMEOUT; /* * The boot code uses the ethernet controller, so reset it to start * fresh. au1000_init() expects that the device is in reset state. */ au1000_reset_mac(dev); err = register_netdev(dev); if (err) { netdev_err(dev, "Cannot register net device, aborting.\n"); goto err_out; } netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n", (unsigned long)base->start, irq); return 0; err_out: if (aup->mii_bus) mdiobus_unregister(aup->mii_bus); /* here we should have a valid dev plus aup-> register addresses * so we can reset the mac properly. */ au1000_reset_mac(dev); for (i = 0; i < NUM_RX_DMA; i++) { if (aup->rx_db_inuse[i]) au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); } for (i = 0; i < NUM_TX_DMA; i++) { if (aup->tx_db_inuse[i]) au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); } err_mdiobus_reg: mdiobus_free(aup->mii_bus); err_mdiobus_alloc: iounmap(aup->macdma); err_remap3: iounmap(aup->enable); err_remap2: iounmap(aup->mac); err_remap1: dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), aup->vaddr, aup->dma_addr); err_vaddr: free_netdev(dev); err_alloc: release_mem_region(macdma->start, resource_size(macdma)); err_macdma: release_mem_region(macen->start, resource_size(macen)); err_request: release_mem_region(base->start, resource_size(base)); out: return err; } static int au1000_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct au1000_private *aup = netdev_priv(dev); int i; struct resource *base, *macen; unregister_netdev(dev); mdiobus_unregister(aup->mii_bus); mdiobus_free(aup->mii_bus); for (i = 0; i < NUM_RX_DMA; i++) if (aup->rx_db_inuse[i]) au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); for (i = 0; i < NUM_TX_DMA; i++) if (aup->tx_db_inuse[i]) au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), aup->vaddr, aup->dma_addr); iounmap(aup->macdma); iounmap(aup->mac); iounmap(aup->enable); base = platform_get_resource(pdev, IORESOURCE_MEM, 2); release_mem_region(base->start, resource_size(base)); base = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(base->start, resource_size(base)); macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); release_mem_region(macen->start, resource_size(macen)); free_netdev(dev); return 0; } static struct platform_driver au1000_eth_driver = { .probe = au1000_probe, .remove = au1000_remove, .driver = { .name = "au1000-eth", }, }; module_platform_driver(au1000_eth_driver); MODULE_ALIAS("platform:au1000-eth");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1