Contributors: 32
Author Tokens Token Proportion Commits Commit Proportion
Jian Shen 21322 32.52% 117 20.28%
Salil 15315 23.36% 23 3.99%
Li Peng 6680 10.19% 46 7.97%
Guangbin Huang 5149 7.85% 55 9.53%
Huazhong Tan 3194 4.87% 85 14.73%
Lin Yun Sheng 3005 4.58% 55 9.53%
Yufeng Mo 2209 3.37% 33 5.72%
Fuyun Liang 1802 2.75% 23 3.99%
Yonglong Liu 1590 2.43% 19 3.29%
Hao Lan 1261 1.92% 3 0.52%
Zhongzhu Liu 925 1.41% 17 2.95%
Jie Wang 816 1.24% 17 2.95%
Guojia Liao 614 0.94% 20 3.47%
Jiaran Zhang 381 0.58% 12 2.08%
Weihang Li 361 0.55% 7 1.21%
Hao Chen 281 0.43% 5 0.87%
Yue haibing 235 0.36% 2 0.35%
Shiju Jose 202 0.31% 12 2.08%
Xi Wang 111 0.17% 4 0.69%
qumingguang 59 0.09% 2 0.35%
Jijie Shao 14 0.02% 1 0.17%
Andrew Lunn 12 0.02% 3 0.52%
Colin Ian King 9 0.01% 5 0.87%
Baokun Li 5 0.01% 1 0.17%
Xiu Jianfeng 2 0.00% 1 0.17%
Jakub Kiciński 2 0.00% 2 0.35%
Wei Yongjun 2 0.00% 2 0.35%
LiuJian 2 0.00% 1 0.17%
caihuoqing 2 0.00% 1 0.17%
Pankaj Bharadiya 1 0.00% 1 0.17%
Anirudh Venkataramanan 1 0.00% 1 0.17%
Zheng Yongjun 1 0.00% 1 0.17%
Total 65565 577


// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.

#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/if_vlan.h>
#include <linux/crash_dump.h>
#include <net/ipv6.h>
#include <net/rtnetlink.h>
#include "hclge_cmd.h"
#include "hclge_dcb.h"
#include "hclge_main.h"
#include "hclge_mbx.h"
#include "hclge_mdio.h"
#include "hclge_tm.h"
#include "hclge_err.h"
#include "hnae3.h"
#include "hclge_devlink.h"
#include "hclge_comm_cmd.h"

#define HCLGE_NAME			"hclge"

#define HCLGE_BUF_SIZE_UNIT	256U
#define HCLGE_BUF_MUL_BY	2
#define HCLGE_BUF_DIV_BY	2
#define NEED_RESERVE_TC_NUM	2
#define BUF_MAX_PERCENT		100
#define BUF_RESERVE_PERCENT	90

#define HCLGE_RESET_MAX_FAIL_CNT	5
#define HCLGE_RESET_SYNC_TIME		100
#define HCLGE_PF_RESET_SYNC_TIME	20
#define HCLGE_PF_RESET_SYNC_CNT		1500

/* Get DFX BD number offset */
#define HCLGE_DFX_BIOS_BD_OFFSET        1
#define HCLGE_DFX_SSU_0_BD_OFFSET       2
#define HCLGE_DFX_SSU_1_BD_OFFSET       3
#define HCLGE_DFX_IGU_BD_OFFSET         4
#define HCLGE_DFX_RPU_0_BD_OFFSET       5
#define HCLGE_DFX_RPU_1_BD_OFFSET       6
#define HCLGE_DFX_NCSI_BD_OFFSET        7
#define HCLGE_DFX_RTC_BD_OFFSET         8
#define HCLGE_DFX_PPP_BD_OFFSET         9
#define HCLGE_DFX_RCB_BD_OFFSET         10
#define HCLGE_DFX_TQP_BD_OFFSET         11
#define HCLGE_DFX_SSU_2_BD_OFFSET       12

#define HCLGE_LINK_STATUS_MS	10

static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps);
static int hclge_init_vlan_config(struct hclge_dev *hdev);
static void hclge_sync_vlan_filter(struct hclge_dev *hdev);
static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev);
static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle);
static void hclge_rfs_filter_expire(struct hclge_dev *hdev);
static int hclge_clear_arfs_rules(struct hclge_dev *hdev);
static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
						   unsigned long *addr);
static int hclge_set_default_loopback(struct hclge_dev *hdev);

static void hclge_sync_mac_table(struct hclge_dev *hdev);
static void hclge_restore_hw_table(struct hclge_dev *hdev);
static void hclge_sync_promisc_mode(struct hclge_dev *hdev);
static void hclge_sync_fd_table(struct hclge_dev *hdev);
static void hclge_update_fec_stats(struct hclge_dev *hdev);
static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret,
				      int wait_cnt);

static struct hnae3_ae_algo ae_algo;

static struct workqueue_struct *hclge_wq;

static const struct pci_device_id ae_algo_pci_tbl[] = {
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0},
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl);

static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
					 HCLGE_COMM_CMDQ_INTR_STS_REG,
					 HCLGE_COMM_CMDQ_INTR_EN_REG,
					 HCLGE_COMM_CMDQ_INTR_GEN_REG};

static const u32 common_reg_addr_list[] = {HCLGE_MISC_VECTOR_REG_BASE,
					   HCLGE_PF_OTHER_INT_REG,
					   HCLGE_MISC_RESET_STS_REG,
					   HCLGE_MISC_VECTOR_INT_STS,
					   HCLGE_GLOBAL_RESET_REG,
					   HCLGE_FUN_RST_ING,
					   HCLGE_GRO_EN_REG};

static const u32 ring_reg_addr_list[] = {HCLGE_RING_RX_ADDR_L_REG,
					 HCLGE_RING_RX_ADDR_H_REG,
					 HCLGE_RING_RX_BD_NUM_REG,
					 HCLGE_RING_RX_BD_LENGTH_REG,
					 HCLGE_RING_RX_MERGE_EN_REG,
					 HCLGE_RING_RX_TAIL_REG,
					 HCLGE_RING_RX_HEAD_REG,
					 HCLGE_RING_RX_FBD_NUM_REG,
					 HCLGE_RING_RX_OFFSET_REG,
					 HCLGE_RING_RX_FBD_OFFSET_REG,
					 HCLGE_RING_RX_STASH_REG,
					 HCLGE_RING_RX_BD_ERR_REG,
					 HCLGE_RING_TX_ADDR_L_REG,
					 HCLGE_RING_TX_ADDR_H_REG,
					 HCLGE_RING_TX_BD_NUM_REG,
					 HCLGE_RING_TX_PRIORITY_REG,
					 HCLGE_RING_TX_TC_REG,
					 HCLGE_RING_TX_MERGE_EN_REG,
					 HCLGE_RING_TX_TAIL_REG,
					 HCLGE_RING_TX_HEAD_REG,
					 HCLGE_RING_TX_FBD_NUM_REG,
					 HCLGE_RING_TX_OFFSET_REG,
					 HCLGE_RING_TX_EBD_NUM_REG,
					 HCLGE_RING_TX_EBD_OFFSET_REG,
					 HCLGE_RING_TX_BD_ERR_REG,
					 HCLGE_RING_EN_REG};

static const u32 tqp_intr_reg_addr_list[] = {HCLGE_TQP_INTR_CTRL_REG,
					     HCLGE_TQP_INTR_GL0_REG,
					     HCLGE_TQP_INTR_GL1_REG,
					     HCLGE_TQP_INTR_GL2_REG,
					     HCLGE_TQP_INTR_RL_REG};

static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = {
	"External Loopback test",
	"App      Loopback test",
	"Serdes   serial Loopback test",
	"Serdes   parallel Loopback test",
	"Phy      Loopback test"
};

static const struct hclge_comm_stats_str g_mac_stats_string[] = {
	{"mac_tx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)},
	{"mac_rx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)},
	{"mac_tx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pause_xoff_time)},
	{"mac_rx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pause_xoff_time)},
	{"mac_tx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)},
	{"mac_rx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)},
	{"mac_tx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)},
	{"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)},
	{"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)},
	{"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)},
	{"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)},
	{"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)},
	{"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)},
	{"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)},
	{"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)},
	{"mac_tx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_xoff_time)},
	{"mac_tx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_xoff_time)},
	{"mac_tx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_xoff_time)},
	{"mac_tx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_xoff_time)},
	{"mac_tx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_xoff_time)},
	{"mac_tx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_xoff_time)},
	{"mac_tx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_xoff_time)},
	{"mac_tx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_xoff_time)},
	{"mac_rx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)},
	{"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)},
	{"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)},
	{"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)},
	{"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)},
	{"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)},
	{"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)},
	{"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)},
	{"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)},
	{"mac_rx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_xoff_time)},
	{"mac_rx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_xoff_time)},
	{"mac_rx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_xoff_time)},
	{"mac_rx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_xoff_time)},
	{"mac_rx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_xoff_time)},
	{"mac_rx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_xoff_time)},
	{"mac_rx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_xoff_time)},
	{"mac_rx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_xoff_time)},
	{"mac_tx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)},
	{"mac_tx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)},
	{"mac_tx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)},
	{"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)},
	{"mac_tx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)},
	{"mac_tx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)},
	{"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)},
	{"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)},
	{"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)},
	{"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)},
	{"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)},
	{"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)},
	{"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)},
	{"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)},
	{"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)},
	{"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)},
	{"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)},
	{"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)},
	{"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)},
	{"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)},
	{"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)},
	{"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)},
	{"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)},
	{"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)},
	{"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)},
	{"mac_rx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)},
	{"mac_rx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)},
	{"mac_rx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)},
	{"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)},
	{"mac_rx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)},
	{"mac_rx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)},
	{"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)},
	{"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)},
	{"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)},
	{"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)},
	{"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)},
	{"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)},
	{"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)},
	{"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)},
	{"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)},
	{"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)},
	{"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)},
	{"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)},
	{"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)},
	{"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)},
	{"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)},
	{"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)},
	{"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)},
	{"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)},
	{"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)},

	{"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)},
	{"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)},
	{"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)},
	{"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)},
	{"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)},
	{"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)},
	{"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)},
	{"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)},
	{"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)},
	{"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)},
	{"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)},
	{"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)}
};

static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = {
	{
		.flags = HCLGE_MAC_MGR_MASK_VLAN_B,
		.ethter_type = cpu_to_le16(ETH_P_LLDP),
		.mac_addr = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x0e},
		.i_port_bitmap = 0x1,
	},
};

static const u32 hclge_dfx_bd_offset_list[] = {
	HCLGE_DFX_BIOS_BD_OFFSET,
	HCLGE_DFX_SSU_0_BD_OFFSET,
	HCLGE_DFX_SSU_1_BD_OFFSET,
	HCLGE_DFX_IGU_BD_OFFSET,
	HCLGE_DFX_RPU_0_BD_OFFSET,
	HCLGE_DFX_RPU_1_BD_OFFSET,
	HCLGE_DFX_NCSI_BD_OFFSET,
	HCLGE_DFX_RTC_BD_OFFSET,
	HCLGE_DFX_PPP_BD_OFFSET,
	HCLGE_DFX_RCB_BD_OFFSET,
	HCLGE_DFX_TQP_BD_OFFSET,
	HCLGE_DFX_SSU_2_BD_OFFSET
};

static const enum hclge_opcode_type hclge_dfx_reg_opcode_list[] = {
	HCLGE_OPC_DFX_BIOS_COMMON_REG,
	HCLGE_OPC_DFX_SSU_REG_0,
	HCLGE_OPC_DFX_SSU_REG_1,
	HCLGE_OPC_DFX_IGU_EGU_REG,
	HCLGE_OPC_DFX_RPU_REG_0,
	HCLGE_OPC_DFX_RPU_REG_1,
	HCLGE_OPC_DFX_NCSI_REG,
	HCLGE_OPC_DFX_RTC_REG,
	HCLGE_OPC_DFX_PPP_REG,
	HCLGE_OPC_DFX_RCB_REG,
	HCLGE_OPC_DFX_TQP_REG,
	HCLGE_OPC_DFX_SSU_REG_2
};

static const struct key_info meta_data_key_info[] = {
	{ PACKET_TYPE_ID, 6 },
	{ IP_FRAGEMENT, 1 },
	{ ROCE_TYPE, 1 },
	{ NEXT_KEY, 5 },
	{ VLAN_NUMBER, 2 },
	{ SRC_VPORT, 12 },
	{ DST_VPORT, 12 },
	{ TUNNEL_PACKET, 1 },
};

static const struct key_info tuple_key_info[] = {
	{ OUTER_DST_MAC, 48, KEY_OPT_MAC, -1, -1 },
	{ OUTER_SRC_MAC, 48, KEY_OPT_MAC, -1, -1 },
	{ OUTER_VLAN_TAG_FST, 16, KEY_OPT_LE16, -1, -1 },
	{ OUTER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
	{ OUTER_ETH_TYPE, 16, KEY_OPT_LE16, -1, -1 },
	{ OUTER_L2_RSV, 16, KEY_OPT_LE16, -1, -1 },
	{ OUTER_IP_TOS, 8, KEY_OPT_U8, -1, -1 },
	{ OUTER_IP_PROTO, 8, KEY_OPT_U8, -1, -1 },
	{ OUTER_SRC_IP, 32, KEY_OPT_IP, -1, -1 },
	{ OUTER_DST_IP, 32, KEY_OPT_IP, -1, -1 },
	{ OUTER_L3_RSV, 16, KEY_OPT_LE16, -1, -1 },
	{ OUTER_SRC_PORT, 16, KEY_OPT_LE16, -1, -1 },
	{ OUTER_DST_PORT, 16, KEY_OPT_LE16, -1, -1 },
	{ OUTER_L4_RSV, 32, KEY_OPT_LE32, -1, -1 },
	{ OUTER_TUN_VNI, 24, KEY_OPT_VNI, -1, -1 },
	{ OUTER_TUN_FLOW_ID, 8, KEY_OPT_U8, -1, -1 },
	{ INNER_DST_MAC, 48, KEY_OPT_MAC,
	  offsetof(struct hclge_fd_rule, tuples.dst_mac),
	  offsetof(struct hclge_fd_rule, tuples_mask.dst_mac) },
	{ INNER_SRC_MAC, 48, KEY_OPT_MAC,
	  offsetof(struct hclge_fd_rule, tuples.src_mac),
	  offsetof(struct hclge_fd_rule, tuples_mask.src_mac) },
	{ INNER_VLAN_TAG_FST, 16, KEY_OPT_LE16,
	  offsetof(struct hclge_fd_rule, tuples.vlan_tag1),
	  offsetof(struct hclge_fd_rule, tuples_mask.vlan_tag1) },
	{ INNER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
	{ INNER_ETH_TYPE, 16, KEY_OPT_LE16,
	  offsetof(struct hclge_fd_rule, tuples.ether_proto),
	  offsetof(struct hclge_fd_rule, tuples_mask.ether_proto) },
	{ INNER_L2_RSV, 16, KEY_OPT_LE16,
	  offsetof(struct hclge_fd_rule, tuples.l2_user_def),
	  offsetof(struct hclge_fd_rule, tuples_mask.l2_user_def) },
	{ INNER_IP_TOS, 8, KEY_OPT_U8,
	  offsetof(struct hclge_fd_rule, tuples.ip_tos),
	  offsetof(struct hclge_fd_rule, tuples_mask.ip_tos) },
	{ INNER_IP_PROTO, 8, KEY_OPT_U8,
	  offsetof(struct hclge_fd_rule, tuples.ip_proto),
	  offsetof(struct hclge_fd_rule, tuples_mask.ip_proto) },
	{ INNER_SRC_IP, 32, KEY_OPT_IP,
	  offsetof(struct hclge_fd_rule, tuples.src_ip),
	  offsetof(struct hclge_fd_rule, tuples_mask.src_ip) },
	{ INNER_DST_IP, 32, KEY_OPT_IP,
	  offsetof(struct hclge_fd_rule, tuples.dst_ip),
	  offsetof(struct hclge_fd_rule, tuples_mask.dst_ip) },
	{ INNER_L3_RSV, 16, KEY_OPT_LE16,
	  offsetof(struct hclge_fd_rule, tuples.l3_user_def),
	  offsetof(struct hclge_fd_rule, tuples_mask.l3_user_def) },
	{ INNER_SRC_PORT, 16, KEY_OPT_LE16,
	  offsetof(struct hclge_fd_rule, tuples.src_port),
	  offsetof(struct hclge_fd_rule, tuples_mask.src_port) },
	{ INNER_DST_PORT, 16, KEY_OPT_LE16,
	  offsetof(struct hclge_fd_rule, tuples.dst_port),
	  offsetof(struct hclge_fd_rule, tuples_mask.dst_port) },
	{ INNER_L4_RSV, 32, KEY_OPT_LE32,
	  offsetof(struct hclge_fd_rule, tuples.l4_user_def),
	  offsetof(struct hclge_fd_rule, tuples_mask.l4_user_def) },
};

/**
 * hclge_cmd_send - send command to command queue
 * @hw: pointer to the hw struct
 * @desc: prefilled descriptor for describing the command
 * @num : the number of descriptors to be sent
 *
 * This is the main send command for command queue, it
 * sends the queue, cleans the queue, etc
 **/
int hclge_cmd_send(struct hclge_hw *hw, struct hclge_desc *desc, int num)
{
	return hclge_comm_cmd_send(&hw->hw, desc, num);
}

static int hclge_mac_update_stats_defective(struct hclge_dev *hdev)
{
#define HCLGE_MAC_CMD_NUM 21

	u64 *data = (u64 *)(&hdev->mac_stats);
	struct hclge_desc desc[HCLGE_MAC_CMD_NUM];
	__le64 *desc_data;
	u32 data_size;
	int ret;
	u32 i;

	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true);
	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get MAC pkt stats fail, status = %d.\n", ret);

		return ret;
	}

	/* The first desc has a 64-bit header, so data size need to minus 1 */
	data_size = sizeof(desc) / (sizeof(u64)) - 1;

	desc_data = (__le64 *)(&desc[0].data[0]);
	for (i = 0; i < data_size; i++) {
		/* data memory is continuous becase only the first desc has a
		 * header in this command
		 */
		*data += le64_to_cpu(*desc_data);
		data++;
		desc_data++;
	}

	return 0;
}

static int hclge_mac_update_stats_complete(struct hclge_dev *hdev)
{
#define HCLGE_REG_NUM_PER_DESC		4

	u32 reg_num = hdev->ae_dev->dev_specs.mac_stats_num;
	u64 *data = (u64 *)(&hdev->mac_stats);
	struct hclge_desc *desc;
	__le64 *desc_data;
	u32 data_size;
	u32 desc_num;
	int ret;
	u32 i;

	/* The first desc has a 64-bit header, so need to consider it */
	desc_num = reg_num / HCLGE_REG_NUM_PER_DESC + 1;

	/* This may be called inside atomic sections,
	 * so GFP_ATOMIC is more suitalbe here
	 */
	desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true);
	ret = hclge_cmd_send(&hdev->hw, desc, desc_num);
	if (ret) {
		kfree(desc);
		return ret;
	}

	data_size = min_t(u32, sizeof(hdev->mac_stats) / sizeof(u64), reg_num);

	desc_data = (__le64 *)(&desc[0].data[0]);
	for (i = 0; i < data_size; i++) {
		/* data memory is continuous becase only the first desc has a
		 * header in this command
		 */
		*data += le64_to_cpu(*desc_data);
		data++;
		desc_data++;
	}

	kfree(desc);

	return 0;
}

static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *reg_num)
{
	struct hclge_desc desc;
	int ret;

	/* Driver needs total register number of both valid registers and
	 * reserved registers, but the old firmware only returns number
	 * of valid registers in device V2. To be compatible with these
	 * devices, driver uses a fixed value.
	 */
	if (hdev->ae_dev->dev_version == HNAE3_DEVICE_VERSION_V2) {
		*reg_num = HCLGE_MAC_STATS_MAX_NUM_V1;
		return 0;
	}

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to query mac statistic reg number, ret = %d\n",
			ret);
		return ret;
	}

	*reg_num = le32_to_cpu(desc.data[0]);
	if (*reg_num == 0) {
		dev_err(&hdev->pdev->dev,
			"mac statistic reg number is invalid!\n");
		return -ENODATA;
	}

	return 0;
}

int hclge_mac_update_stats(struct hclge_dev *hdev)
{
	/* The firmware supports the new statistics acquisition method */
	if (hdev->ae_dev->dev_specs.mac_stats_num)
		return hclge_mac_update_stats_complete(hdev);
	else
		return hclge_mac_update_stats_defective(hdev);
}

static int hclge_comm_get_count(struct hclge_dev *hdev,
				const struct hclge_comm_stats_str strs[],
				u32 size)
{
	int count = 0;
	u32 i;

	for (i = 0; i < size; i++)
		if (strs[i].stats_num <= hdev->ae_dev->dev_specs.mac_stats_num)
			count++;

	return count;
}

static u64 *hclge_comm_get_stats(struct hclge_dev *hdev,
				 const struct hclge_comm_stats_str strs[],
				 int size, u64 *data)
{
	u64 *buf = data;
	u32 i;

	for (i = 0; i < size; i++) {
		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
			continue;

		*buf = HCLGE_STATS_READ(&hdev->mac_stats, strs[i].offset);
		buf++;
	}

	return buf;
}

static u8 *hclge_comm_get_strings(struct hclge_dev *hdev, u32 stringset,
				  const struct hclge_comm_stats_str strs[],
				  int size, u8 *data)
{
	char *buff = (char *)data;
	u32 i;

	if (stringset != ETH_SS_STATS)
		return buff;

	for (i = 0; i < size; i++) {
		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
			continue;

		snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc);
		buff = buff + ETH_GSTRING_LEN;
	}

	return (u8 *)buff;
}

static void hclge_update_stats_for_all(struct hclge_dev *hdev)
{
	struct hnae3_handle *handle;
	int status;

	handle = &hdev->vport[0].nic;
	if (handle->client) {
		status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Update TQPS stats fail, status = %d.\n",
				status);
		}
	}

	hclge_update_fec_stats(hdev);

	status = hclge_mac_update_stats(hdev);
	if (status)
		dev_err(&hdev->pdev->dev,
			"Update MAC stats fail, status = %d.\n", status);
}

static void hclge_update_stats(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int status;

	if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state))
		return;

	status = hclge_mac_update_stats(hdev);
	if (status)
		dev_err(&hdev->pdev->dev,
			"Update MAC stats fail, status = %d.\n",
			status);

	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
	if (status)
		dev_err(&hdev->pdev->dev,
			"Update TQPS stats fail, status = %d.\n",
			status);

	clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state);
}

static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset)
{
#define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK | \
		HNAE3_SUPPORT_PHY_LOOPBACK | \
		HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK | \
		HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK | \
		HNAE3_SUPPORT_EXTERNAL_LOOPBACK)

	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int count = 0;

	/* Loopback test support rules:
	 * mac: only GE mode support
	 * serdes: all mac mode will support include GE/XGE/LGE/CGE
	 * phy: only support when phy device exist on board
	 */
	if (stringset == ETH_SS_TEST) {
		/* clear loopback bit flags at first */
		handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS));
		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 ||
		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M ||
		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M ||
		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) {
			count += 1;
			handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK;
		}

		count += 1;
		handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK;
		count += 1;
		handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK;
		count += 1;
		handle->flags |= HNAE3_SUPPORT_EXTERNAL_LOOPBACK;

		if ((hdev->hw.mac.phydev && hdev->hw.mac.phydev->drv &&
		     hdev->hw.mac.phydev->drv->set_loopback) ||
		    hnae3_dev_phy_imp_supported(hdev)) {
			count += 1;
			handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK;
		}
	} else if (stringset == ETH_SS_STATS) {
		count = hclge_comm_get_count(hdev, g_mac_stats_string,
					     ARRAY_SIZE(g_mac_stats_string)) +
			hclge_comm_tqps_get_sset_count(handle);
	}

	return count;
}

static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset,
			      u8 *data)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u8 *p = (char *)data;
	int size;

	if (stringset == ETH_SS_STATS) {
		size = ARRAY_SIZE(g_mac_stats_string);
		p = hclge_comm_get_strings(hdev, stringset, g_mac_stats_string,
					   size, p);
		p = hclge_comm_tqps_get_strings(handle, p);
	} else if (stringset == ETH_SS_TEST) {
		if (handle->flags & HNAE3_SUPPORT_EXTERNAL_LOOPBACK) {
			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_EXTERNAL],
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) {
			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP],
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) {
			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES],
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) {
			memcpy(p,
			       hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES],
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) {
			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY],
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
	}
}

static void hclge_get_stats(struct hnae3_handle *handle, u64 *data)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u64 *p;

	p = hclge_comm_get_stats(hdev, g_mac_stats_string,
				 ARRAY_SIZE(g_mac_stats_string), data);
	p = hclge_comm_tqps_get_stats(handle, p);
}

static void hclge_get_mac_stat(struct hnae3_handle *handle,
			       struct hns3_mac_stats *mac_stats)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	hclge_update_stats(handle);

	mac_stats->tx_pause_cnt = hdev->mac_stats.mac_tx_mac_pause_num;
	mac_stats->rx_pause_cnt = hdev->mac_stats.mac_rx_mac_pause_num;
}

static int hclge_parse_func_status(struct hclge_dev *hdev,
				   struct hclge_func_status_cmd *status)
{
#define HCLGE_MAC_ID_MASK	0xF

	if (!(status->pf_state & HCLGE_PF_STATE_DONE))
		return -EINVAL;

	/* Set the pf to main pf */
	if (status->pf_state & HCLGE_PF_STATE_MAIN)
		hdev->flag |= HCLGE_FLAG_MAIN;
	else
		hdev->flag &= ~HCLGE_FLAG_MAIN;

	hdev->hw.mac.mac_id = status->mac_id & HCLGE_MAC_ID_MASK;
	return 0;
}

static int hclge_query_function_status(struct hclge_dev *hdev)
{
#define HCLGE_QUERY_MAX_CNT	5

	struct hclge_func_status_cmd *req;
	struct hclge_desc desc;
	int timeout = 0;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true);
	req = (struct hclge_func_status_cmd *)desc.data;

	do {
		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"query function status failed %d.\n", ret);
			return ret;
		}

		/* Check pf reset is done */
		if (req->pf_state)
			break;
		usleep_range(1000, 2000);
	} while (timeout++ < HCLGE_QUERY_MAX_CNT);

	return hclge_parse_func_status(hdev, req);
}

static int hclge_query_pf_resource(struct hclge_dev *hdev)
{
	struct hclge_pf_res_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query pf resource failed %d.\n", ret);
		return ret;
	}

	req = (struct hclge_pf_res_cmd *)desc.data;
	hdev->num_tqps = le16_to_cpu(req->tqp_num) +
			 le16_to_cpu(req->ext_tqp_num);
	hdev->pkt_buf_size = le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S;

	if (req->tx_buf_size)
		hdev->tx_buf_size =
			le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S;
	else
		hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF;

	hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT);

	if (req->dv_buf_size)
		hdev->dv_buf_size =
			le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S;
	else
		hdev->dv_buf_size = HCLGE_DEFAULT_DV;

	hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT);

	hdev->num_nic_msi = le16_to_cpu(req->msixcap_localid_number_nic);
	if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) {
		dev_err(&hdev->pdev->dev,
			"only %u msi resources available, not enough for pf(min:2).\n",
			hdev->num_nic_msi);
		return -EINVAL;
	}

	if (hnae3_dev_roce_supported(hdev)) {
		hdev->num_roce_msi =
			le16_to_cpu(req->pf_intr_vector_number_roce);

		/* PF should have NIC vectors and Roce vectors,
		 * NIC vectors are queued before Roce vectors.
		 */
		hdev->num_msi = hdev->num_nic_msi + hdev->num_roce_msi;
	} else {
		hdev->num_msi = hdev->num_nic_msi;
	}

	return 0;
}

static int hclge_parse_speed(u8 speed_cmd, u32 *speed)
{
	switch (speed_cmd) {
	case HCLGE_FW_MAC_SPEED_10M:
		*speed = HCLGE_MAC_SPEED_10M;
		break;
	case HCLGE_FW_MAC_SPEED_100M:
		*speed = HCLGE_MAC_SPEED_100M;
		break;
	case HCLGE_FW_MAC_SPEED_1G:
		*speed = HCLGE_MAC_SPEED_1G;
		break;
	case HCLGE_FW_MAC_SPEED_10G:
		*speed = HCLGE_MAC_SPEED_10G;
		break;
	case HCLGE_FW_MAC_SPEED_25G:
		*speed = HCLGE_MAC_SPEED_25G;
		break;
	case HCLGE_FW_MAC_SPEED_40G:
		*speed = HCLGE_MAC_SPEED_40G;
		break;
	case HCLGE_FW_MAC_SPEED_50G:
		*speed = HCLGE_MAC_SPEED_50G;
		break;
	case HCLGE_FW_MAC_SPEED_100G:
		*speed = HCLGE_MAC_SPEED_100G;
		break;
	case HCLGE_FW_MAC_SPEED_200G:
		*speed = HCLGE_MAC_SPEED_200G;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static const struct hclge_speed_bit_map speed_bit_map[] = {
	{HCLGE_MAC_SPEED_10M, HCLGE_SUPPORT_10M_BIT},
	{HCLGE_MAC_SPEED_100M, HCLGE_SUPPORT_100M_BIT},
	{HCLGE_MAC_SPEED_1G, HCLGE_SUPPORT_1G_BIT},
	{HCLGE_MAC_SPEED_10G, HCLGE_SUPPORT_10G_BIT},
	{HCLGE_MAC_SPEED_25G, HCLGE_SUPPORT_25G_BIT},
	{HCLGE_MAC_SPEED_40G, HCLGE_SUPPORT_40G_BIT},
	{HCLGE_MAC_SPEED_50G, HCLGE_SUPPORT_50G_BIT},
	{HCLGE_MAC_SPEED_100G, HCLGE_SUPPORT_100G_BIT},
	{HCLGE_MAC_SPEED_200G, HCLGE_SUPPORT_200G_BIT},
};

static int hclge_get_speed_bit(u32 speed, u32 *speed_bit)
{
	u16 i;

	for (i = 0; i < ARRAY_SIZE(speed_bit_map); i++) {
		if (speed == speed_bit_map[i].speed) {
			*speed_bit = speed_bit_map[i].speed_bit;
			return 0;
		}
	}

	return -EINVAL;
}

static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u32 speed_ability = hdev->hw.mac.speed_ability;
	u32 speed_bit = 0;
	int ret;

	ret = hclge_get_speed_bit(speed, &speed_bit);
	if (ret)
		return ret;

	if (speed_bit & speed_ability)
		return 0;

	return -EINVAL;
}

static void hclge_update_fec_support(struct hclge_mac *mac)
{
	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported);
	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported);
	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, mac->supported);
	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);

	if (mac->fec_ability & BIT(HNAE3_FEC_BASER))
		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
				 mac->supported);
	if (mac->fec_ability & BIT(HNAE3_FEC_RS))
		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
				 mac->supported);
	if (mac->fec_ability & BIT(HNAE3_FEC_LLRS))
		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT,
				 mac->supported);
	if (mac->fec_ability & BIT(HNAE3_FEC_NONE))
		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
				 mac->supported);
}

static void hclge_convert_setting_sr(u16 speed_ability,
				     unsigned long *link_mode)
{
	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
				 link_mode);
}

static void hclge_convert_setting_lr(u16 speed_ability,
				     unsigned long *link_mode)
{
	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
		linkmode_set_bit(
			ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
			link_mode);
}

static void hclge_convert_setting_cr(u16 speed_ability,
				     unsigned long *link_mode)
{
	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
				 link_mode);
}

static void hclge_convert_setting_kr(u16 speed_ability,
				     unsigned long *link_mode)
{
	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
				 link_mode);
	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
				 link_mode);
}

static void hclge_convert_setting_fec(struct hclge_mac *mac)
{
	/* If firmware has reported fec_ability, don't need to convert by speed */
	if (mac->fec_ability)
		goto out;

	switch (mac->speed) {
	case HCLGE_MAC_SPEED_10G:
	case HCLGE_MAC_SPEED_40G:
		mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO) |
				   BIT(HNAE3_FEC_NONE);
		break;
	case HCLGE_MAC_SPEED_25G:
	case HCLGE_MAC_SPEED_50G:
		mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) |
				   BIT(HNAE3_FEC_AUTO) | BIT(HNAE3_FEC_NONE);
		break;
	case HCLGE_MAC_SPEED_100G:
		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) |
				   BIT(HNAE3_FEC_NONE);
		break;
	case HCLGE_MAC_SPEED_200G:
		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) |
				   BIT(HNAE3_FEC_LLRS);
		break;
	default:
		mac->fec_ability = 0;
		break;
	}

out:
	hclge_update_fec_support(mac);
}

static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev,
					u16 speed_ability)
{
	struct hclge_mac *mac = &hdev->hw.mac;

	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
				 mac->supported);

	hclge_convert_setting_sr(speed_ability, mac->supported);
	hclge_convert_setting_lr(speed_ability, mac->supported);
	hclge_convert_setting_cr(speed_ability, mac->supported);
	if (hnae3_dev_fec_supported(hdev))
		hclge_convert_setting_fec(mac);

	if (hnae3_dev_pause_supported(hdev))
		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);

	linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported);
	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
}

static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev,
					    u16 speed_ability)
{
	struct hclge_mac *mac = &hdev->hw.mac;

	hclge_convert_setting_kr(speed_ability, mac->supported);
	if (hnae3_dev_fec_supported(hdev))
		hclge_convert_setting_fec(mac);

	if (hnae3_dev_pause_supported(hdev))
		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);

	linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported);
	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
}

static void hclge_parse_copper_link_mode(struct hclge_dev *hdev,
					 u16 speed_ability)
{
	unsigned long *supported = hdev->hw.mac.supported;

	/* default to support all speed for GE port */
	if (!speed_ability)
		speed_ability = HCLGE_SUPPORT_GE;

	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
				 supported);

	if (speed_ability & HCLGE_SUPPORT_100M_BIT) {
		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
				 supported);
		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
				 supported);
	}

	if (speed_ability & HCLGE_SUPPORT_10M_BIT) {
		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported);
		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported);
	}

	if (hnae3_dev_pause_supported(hdev)) {
		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported);
		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported);
	}

	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported);
	linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported);
}

static void hclge_parse_link_mode(struct hclge_dev *hdev, u16 speed_ability)
{
	u8 media_type = hdev->hw.mac.media_type;

	if (media_type == HNAE3_MEDIA_TYPE_FIBER)
		hclge_parse_fiber_link_mode(hdev, speed_ability);
	else if (media_type == HNAE3_MEDIA_TYPE_COPPER)
		hclge_parse_copper_link_mode(hdev, speed_ability);
	else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE)
		hclge_parse_backplane_link_mode(hdev, speed_ability);
}

static u32 hclge_get_max_speed(u16 speed_ability)
{
	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
		return HCLGE_MAC_SPEED_200G;

	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
		return HCLGE_MAC_SPEED_100G;

	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
		return HCLGE_MAC_SPEED_50G;

	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
		return HCLGE_MAC_SPEED_40G;

	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
		return HCLGE_MAC_SPEED_25G;

	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
		return HCLGE_MAC_SPEED_10G;

	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
		return HCLGE_MAC_SPEED_1G;

	if (speed_ability & HCLGE_SUPPORT_100M_BIT)
		return HCLGE_MAC_SPEED_100M;

	if (speed_ability & HCLGE_SUPPORT_10M_BIT)
		return HCLGE_MAC_SPEED_10M;

	return HCLGE_MAC_SPEED_1G;
}

static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc)
{
#define HCLGE_TX_SPARE_SIZE_UNIT		4096
#define SPEED_ABILITY_EXT_SHIFT			8

	struct hclge_cfg_param_cmd *req;
	u64 mac_addr_tmp_high;
	u16 speed_ability_ext;
	u64 mac_addr_tmp;
	unsigned int i;

	req = (struct hclge_cfg_param_cmd *)desc[0].data;

	/* get the configuration */
	cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
				      HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S);
	cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
					    HCLGE_CFG_TQP_DESC_N_M,
					    HCLGE_CFG_TQP_DESC_N_S);

	cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]),
					HCLGE_CFG_PHY_ADDR_M,
					HCLGE_CFG_PHY_ADDR_S);
	cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]),
					  HCLGE_CFG_MEDIA_TP_M,
					  HCLGE_CFG_MEDIA_TP_S);
	cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]),
					  HCLGE_CFG_RX_BUF_LEN_M,
					  HCLGE_CFG_RX_BUF_LEN_S);
	/* get mac_address */
	mac_addr_tmp = __le32_to_cpu(req->param[2]);
	mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]),
					    HCLGE_CFG_MAC_ADDR_H_M,
					    HCLGE_CFG_MAC_ADDR_H_S);

	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;

	cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]),
					     HCLGE_CFG_DEFAULT_SPEED_M,
					     HCLGE_CFG_DEFAULT_SPEED_S);
	cfg->vf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]),
					       HCLGE_CFG_RSS_SIZE_M,
					       HCLGE_CFG_RSS_SIZE_S);

	for (i = 0; i < ETH_ALEN; i++)
		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;

	req = (struct hclge_cfg_param_cmd *)desc[1].data;
	cfg->numa_node_map = __le32_to_cpu(req->param[0]);

	cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]),
					     HCLGE_CFG_SPEED_ABILITY_M,
					     HCLGE_CFG_SPEED_ABILITY_S);
	speed_ability_ext = hnae3_get_field(__le32_to_cpu(req->param[1]),
					    HCLGE_CFG_SPEED_ABILITY_EXT_M,
					    HCLGE_CFG_SPEED_ABILITY_EXT_S);
	cfg->speed_ability |= speed_ability_ext << SPEED_ABILITY_EXT_SHIFT;

	cfg->vlan_fliter_cap = hnae3_get_field(__le32_to_cpu(req->param[1]),
					       HCLGE_CFG_VLAN_FLTR_CAP_M,
					       HCLGE_CFG_VLAN_FLTR_CAP_S);

	cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]),
					 HCLGE_CFG_UMV_TBL_SPACE_M,
					 HCLGE_CFG_UMV_TBL_SPACE_S);

	cfg->pf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[2]),
					       HCLGE_CFG_PF_RSS_SIZE_M,
					       HCLGE_CFG_PF_RSS_SIZE_S);

	/* HCLGE_CFG_PF_RSS_SIZE_M is the PF max rss size, which is a
	 * power of 2, instead of reading out directly. This would
	 * be more flexible for future changes and expansions.
	 * When VF max  rss size field is HCLGE_CFG_RSS_SIZE_S,
	 * it does not make sense if PF's field is 0. In this case, PF and VF
	 * has the same max rss size filed: HCLGE_CFG_RSS_SIZE_S.
	 */
	cfg->pf_rss_size_max = cfg->pf_rss_size_max ?
			       1U << cfg->pf_rss_size_max :
			       cfg->vf_rss_size_max;

	/* The unit of the tx spare buffer size queried from configuration
	 * file is HCLGE_TX_SPARE_SIZE_UNIT(4096) bytes, so a conversion is
	 * needed here.
	 */
	cfg->tx_spare_buf_size = hnae3_get_field(__le32_to_cpu(req->param[2]),
						 HCLGE_CFG_TX_SPARE_BUF_SIZE_M,
						 HCLGE_CFG_TX_SPARE_BUF_SIZE_S);
	cfg->tx_spare_buf_size *= HCLGE_TX_SPARE_SIZE_UNIT;
}

/* hclge_get_cfg: query the static parameter from flash
 * @hdev: pointer to struct hclge_dev
 * @hcfg: the config structure to be getted
 */
static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg)
{
	struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM];
	struct hclge_cfg_param_cmd *req;
	unsigned int i;
	int ret;

	for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) {
		u32 offset = 0;

		req = (struct hclge_cfg_param_cmd *)desc[i].data;
		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM,
					   true);
		hnae3_set_field(offset, HCLGE_CFG_OFFSET_M,
				HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES);
		/* Len should be united by 4 bytes when send to hardware */
		hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S,
				HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT);
		req->offset = cpu_to_le32(offset);
	}

	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM);
	if (ret) {
		dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret);
		return ret;
	}

	hclge_parse_cfg(hcfg, desc);

	return 0;
}

static void hclge_set_default_dev_specs(struct hclge_dev *hdev)
{
#define HCLGE_MAX_NON_TSO_BD_NUM			8U

	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);

	ae_dev->dev_specs.max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
	ae_dev->dev_specs.rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
	ae_dev->dev_specs.max_tm_rate = HCLGE_ETHER_MAX_RATE;
	ae_dev->dev_specs.max_int_gl = HCLGE_DEF_MAX_INT_GL;
	ae_dev->dev_specs.max_frm_size = HCLGE_MAC_MAX_FRAME;
	ae_dev->dev_specs.max_qset_num = HCLGE_MAX_QSET_NUM;
	ae_dev->dev_specs.umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
}

static void hclge_parse_dev_specs(struct hclge_dev *hdev,
				  struct hclge_desc *desc)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclge_dev_specs_0_cmd *req0;
	struct hclge_dev_specs_1_cmd *req1;

	req0 = (struct hclge_dev_specs_0_cmd *)desc[0].data;
	req1 = (struct hclge_dev_specs_1_cmd *)desc[1].data;

	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
	ae_dev->dev_specs.rss_ind_tbl_size =
		le16_to_cpu(req0->rss_ind_tbl_size);
	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
	ae_dev->dev_specs.max_tm_rate = le32_to_cpu(req0->max_tm_rate);
	ae_dev->dev_specs.max_qset_num = le16_to_cpu(req1->max_qset_num);
	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
	ae_dev->dev_specs.umv_size = le16_to_cpu(req1->umv_size);
	ae_dev->dev_specs.mc_mac_size = le16_to_cpu(req1->mc_mac_size);
}

static void hclge_check_dev_specs(struct hclge_dev *hdev)
{
	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;

	if (!dev_specs->max_non_tso_bd_num)
		dev_specs->max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
	if (!dev_specs->rss_ind_tbl_size)
		dev_specs->rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
	if (!dev_specs->rss_key_size)
		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
	if (!dev_specs->max_tm_rate)
		dev_specs->max_tm_rate = HCLGE_ETHER_MAX_RATE;
	if (!dev_specs->max_qset_num)
		dev_specs->max_qset_num = HCLGE_MAX_QSET_NUM;
	if (!dev_specs->max_int_gl)
		dev_specs->max_int_gl = HCLGE_DEF_MAX_INT_GL;
	if (!dev_specs->max_frm_size)
		dev_specs->max_frm_size = HCLGE_MAC_MAX_FRAME;
	if (!dev_specs->umv_size)
		dev_specs->umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
}

static int hclge_query_mac_stats_num(struct hclge_dev *hdev)
{
	u32 reg_num = 0;
	int ret;

	ret = hclge_mac_query_reg_num(hdev, &reg_num);
	if (ret && ret != -EOPNOTSUPP)
		return ret;

	hdev->ae_dev->dev_specs.mac_stats_num = reg_num;
	return 0;
}

static int hclge_query_dev_specs(struct hclge_dev *hdev)
{
	struct hclge_desc desc[HCLGE_QUERY_DEV_SPECS_BD_NUM];
	int ret;
	int i;

	ret = hclge_query_mac_stats_num(hdev);
	if (ret)
		return ret;

	/* set default specifications as devices lower than version V3 do not
	 * support querying specifications from firmware.
	 */
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
		hclge_set_default_dev_specs(hdev);
		return 0;
	}

	for (i = 0; i < HCLGE_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS,
					   true);
		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
	}
	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);

	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_QUERY_DEV_SPECS_BD_NUM);
	if (ret)
		return ret;

	hclge_parse_dev_specs(hdev, desc);
	hclge_check_dev_specs(hdev);

	return 0;
}

static int hclge_get_cap(struct hclge_dev *hdev)
{
	int ret;

	ret = hclge_query_function_status(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query function status error %d.\n", ret);
		return ret;
	}

	/* get pf resource */
	return hclge_query_pf_resource(hdev);
}

static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev)
{
#define HCLGE_MIN_TX_DESC	64
#define HCLGE_MIN_RX_DESC	64

	if (!is_kdump_kernel())
		return;

	dev_info(&hdev->pdev->dev,
		 "Running kdump kernel. Using minimal resources\n");

	/* minimal queue pairs equals to the number of vports */
	hdev->num_tqps = hdev->num_req_vfs + 1;
	hdev->num_tx_desc = HCLGE_MIN_TX_DESC;
	hdev->num_rx_desc = HCLGE_MIN_RX_DESC;
}

static void hclge_init_tc_config(struct hclge_dev *hdev)
{
	unsigned int i;

	if (hdev->tc_max > HNAE3_MAX_TC ||
	    hdev->tc_max < 1) {
		dev_warn(&hdev->pdev->dev, "TC num = %u.\n",
			 hdev->tc_max);
		hdev->tc_max = 1;
	}

	/* Dev does not support DCB */
	if (!hnae3_dev_dcb_supported(hdev)) {
		hdev->tc_max = 1;
		hdev->pfc_max = 0;
	} else {
		hdev->pfc_max = hdev->tc_max;
	}

	hdev->tm_info.num_tc = 1;

	/* Currently not support uncontiuous tc */
	for (i = 0; i < hdev->tm_info.num_tc; i++)
		hnae3_set_bit(hdev->hw_tc_map, i, 1);

	hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE;
}

static int hclge_configure(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclge_cfg cfg;
	int ret;

	ret = hclge_get_cfg(hdev, &cfg);
	if (ret)
		return ret;

	hdev->base_tqp_pid = 0;
	hdev->vf_rss_size_max = cfg.vf_rss_size_max;
	hdev->pf_rss_size_max = cfg.pf_rss_size_max;
	hdev->rx_buf_len = cfg.rx_buf_len;
	ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr);
	hdev->hw.mac.media_type = cfg.media_type;
	hdev->hw.mac.phy_addr = cfg.phy_addr;
	hdev->num_tx_desc = cfg.tqp_desc_num;
	hdev->num_rx_desc = cfg.tqp_desc_num;
	hdev->tm_info.num_pg = 1;
	hdev->tc_max = cfg.tc_num;
	hdev->tm_info.hw_pfc_map = 0;
	if (cfg.umv_space)
		hdev->wanted_umv_size = cfg.umv_space;
	else
		hdev->wanted_umv_size = hdev->ae_dev->dev_specs.umv_size;
	hdev->tx_spare_buf_size = cfg.tx_spare_buf_size;
	hdev->gro_en = true;
	if (cfg.vlan_fliter_cap == HCLGE_VLAN_FLTR_CAN_MDF)
		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);

	if (hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
		hdev->fd_en = true;
		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
	}

	ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed);
	if (ret) {
		dev_err(&hdev->pdev->dev, "failed to parse speed %u, ret = %d\n",
			cfg.default_speed, ret);
		return ret;
	}

	hclge_parse_link_mode(hdev, cfg.speed_ability);

	hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability);

	hclge_init_tc_config(hdev);
	hclge_init_kdump_kernel_config(hdev);

	return ret;
}

static int hclge_config_tso(struct hclge_dev *hdev, u16 tso_mss_min,
			    u16 tso_mss_max)
{
	struct hclge_cfg_tso_status_cmd *req;
	struct hclge_desc desc;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false);

	req = (struct hclge_cfg_tso_status_cmd *)desc.data;
	req->tso_mss_min = cpu_to_le16(tso_mss_min);
	req->tso_mss_max = cpu_to_le16(tso_mss_max);

	return hclge_cmd_send(&hdev->hw, &desc, 1);
}

static int hclge_config_gro(struct hclge_dev *hdev)
{
	struct hclge_cfg_gro_status_cmd *req;
	struct hclge_desc desc;
	int ret;

	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
		return 0;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false);
	req = (struct hclge_cfg_gro_status_cmd *)desc.data;

	req->gro_en = hdev->gro_en ? 1 : 0;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"GRO hardware config cmd failed, ret = %d\n", ret);

	return ret;
}

static int hclge_alloc_tqps(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclge_comm_tqp *tqp;
	int i;

	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
	if (!hdev->htqp)
		return -ENOMEM;

	tqp = hdev->htqp;

	for (i = 0; i < hdev->num_tqps; i++) {
		tqp->dev = &hdev->pdev->dev;
		tqp->index = i;

		tqp->q.ae_algo = &ae_algo;
		tqp->q.buf_size = hdev->rx_buf_len;
		tqp->q.tx_desc_num = hdev->num_tx_desc;
		tqp->q.rx_desc_num = hdev->num_rx_desc;

		/* need an extended offset to configure queues >=
		 * HCLGE_TQP_MAX_SIZE_DEV_V2
		 */
		if (i < HCLGE_TQP_MAX_SIZE_DEV_V2)
			tqp->q.io_base = hdev->hw.hw.io_base +
					 HCLGE_TQP_REG_OFFSET +
					 i * HCLGE_TQP_REG_SIZE;
		else
			tqp->q.io_base = hdev->hw.hw.io_base +
					 HCLGE_TQP_REG_OFFSET +
					 HCLGE_TQP_EXT_REG_OFFSET +
					 (i - HCLGE_TQP_MAX_SIZE_DEV_V2) *
					 HCLGE_TQP_REG_SIZE;

		/* when device supports tx push and has device memory,
		 * the queue can execute push mode or doorbell mode on
		 * device memory.
		 */
		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
			tqp->q.mem_base = hdev->hw.hw.mem_base +
					  HCLGE_TQP_MEM_OFFSET(hdev, i);

		tqp++;
	}

	return 0;
}

static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id,
				  u16 tqp_pid, u16 tqp_vid, bool is_pf)
{
	struct hclge_tqp_map_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false);

	req = (struct hclge_tqp_map_cmd *)desc.data;
	req->tqp_id = cpu_to_le16(tqp_pid);
	req->tqp_vf = func_id;
	req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B;
	if (!is_pf)
		req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B;
	req->tqp_vid = cpu_to_le16(tqp_vid);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret);

	return ret;
}

static int  hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps)
{
	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
	struct hclge_dev *hdev = vport->back;
	int i, alloced;

	for (i = 0, alloced = 0; i < hdev->num_tqps &&
	     alloced < num_tqps; i++) {
		if (!hdev->htqp[i].alloced) {
			hdev->htqp[i].q.handle = &vport->nic;
			hdev->htqp[i].q.tqp_index = alloced;
			hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc;
			hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc;
			kinfo->tqp[alloced] = &hdev->htqp[i].q;
			hdev->htqp[i].alloced = true;
			alloced++;
		}
	}
	vport->alloc_tqps = alloced;
	kinfo->rss_size = min_t(u16, hdev->pf_rss_size_max,
				vport->alloc_tqps / hdev->tm_info.num_tc);

	/* ensure one to one mapping between irq and queue at default */
	kinfo->rss_size = min_t(u16, kinfo->rss_size,
				(hdev->num_nic_msi - 1) / hdev->tm_info.num_tc);

	return 0;
}

static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps,
			    u16 num_tx_desc, u16 num_rx_desc)

{
	struct hnae3_handle *nic = &vport->nic;
	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
	struct hclge_dev *hdev = vport->back;
	int ret;

	kinfo->num_tx_desc = num_tx_desc;
	kinfo->num_rx_desc = num_rx_desc;

	kinfo->rx_buf_len = hdev->rx_buf_len;
	kinfo->tx_spare_buf_size = hdev->tx_spare_buf_size;

	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps,
				  sizeof(struct hnae3_queue *), GFP_KERNEL);
	if (!kinfo->tqp)
		return -ENOMEM;

	ret = hclge_assign_tqp(vport, num_tqps);
	if (ret)
		dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret);

	return ret;
}

static int hclge_map_tqp_to_vport(struct hclge_dev *hdev,
				  struct hclge_vport *vport)
{
	struct hnae3_handle *nic = &vport->nic;
	struct hnae3_knic_private_info *kinfo;
	u16 i;

	kinfo = &nic->kinfo;
	for (i = 0; i < vport->alloc_tqps; i++) {
		struct hclge_comm_tqp *q =
			container_of(kinfo->tqp[i], struct hclge_comm_tqp, q);
		bool is_pf;
		int ret;

		is_pf = !(vport->vport_id);
		ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index,
					     i, is_pf);
		if (ret)
			return ret;
	}

	return 0;
}

static int hclge_map_tqp(struct hclge_dev *hdev)
{
	struct hclge_vport *vport = hdev->vport;
	u16 i, num_vport;

	num_vport = hdev->num_req_vfs + 1;
	for (i = 0; i < num_vport; i++) {
		int ret;

		ret = hclge_map_tqp_to_vport(hdev, vport);
		if (ret)
			return ret;

		vport++;
	}

	return 0;
}

static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps)
{
	struct hnae3_handle *nic = &vport->nic;
	struct hclge_dev *hdev = vport->back;
	int ret;

	nic->pdev = hdev->pdev;
	nic->ae_algo = &ae_algo;
	nic->numa_node_mask = hdev->numa_node_mask;
	nic->kinfo.io_base = hdev->hw.hw.io_base;

	ret = hclge_knic_setup(vport, num_tqps,
			       hdev->num_tx_desc, hdev->num_rx_desc);
	if (ret)
		dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret);

	return ret;
}

static int hclge_alloc_vport(struct hclge_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclge_vport *vport;
	u32 tqp_main_vport;
	u32 tqp_per_vport;
	int num_vport, i;
	int ret;

	/* We need to alloc a vport for main NIC of PF */
	num_vport = hdev->num_req_vfs + 1;

	if (hdev->num_tqps < num_vport) {
		dev_err(&hdev->pdev->dev, "tqps(%u) is less than vports(%d)",
			hdev->num_tqps, num_vport);
		return -EINVAL;
	}

	/* Alloc the same number of TQPs for every vport */
	tqp_per_vport = hdev->num_tqps / num_vport;
	tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport;

	vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport),
			     GFP_KERNEL);
	if (!vport)
		return -ENOMEM;

	hdev->vport = vport;
	hdev->num_alloc_vport = num_vport;

	if (IS_ENABLED(CONFIG_PCI_IOV))
		hdev->num_alloc_vfs = hdev->num_req_vfs;

	for (i = 0; i < num_vport; i++) {
		vport->back = hdev;
		vport->vport_id = i;
		vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO;
		vport->mps = HCLGE_MAC_DEFAULT_FRAME;
		vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE;
		vport->port_base_vlan_cfg.tbl_sta = true;
		vport->rxvlan_cfg.rx_vlan_offload_en = true;
		vport->req_vlan_fltr_en = true;
		INIT_LIST_HEAD(&vport->vlan_list);
		INIT_LIST_HEAD(&vport->uc_mac_list);
		INIT_LIST_HEAD(&vport->mc_mac_list);
		spin_lock_init(&vport->mac_list_lock);

		if (i == 0)
			ret = hclge_vport_setup(vport, tqp_main_vport);
		else
			ret = hclge_vport_setup(vport, tqp_per_vport);
		if (ret) {
			dev_err(&pdev->dev,
				"vport setup failed for vport %d, %d\n",
				i, ret);
			return ret;
		}

		vport++;
	}

	return 0;
}

static int  hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev,
				    struct hclge_pkt_buf_alloc *buf_alloc)
{
/* TX buffer size is unit by 128 byte */
#define HCLGE_BUF_SIZE_UNIT_SHIFT	7
#define HCLGE_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
	struct hclge_tx_buff_alloc_cmd *req;
	struct hclge_desc desc;
	int ret;
	u8 i;

	req = (struct hclge_tx_buff_alloc_cmd *)desc.data;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0);
	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size;

		req->tx_pkt_buff[i] =
			cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) |
				     HCLGE_BUF_SIZE_UPDATE_EN_MSK);
	}

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n",
			ret);

	return ret;
}

static int hclge_tx_buffer_alloc(struct hclge_dev *hdev,
				 struct hclge_pkt_buf_alloc *buf_alloc)
{
	int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc);

	if (ret)
		dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret);

	return ret;
}

static u32 hclge_get_tc_num(struct hclge_dev *hdev)
{
	unsigned int i;
	u32 cnt = 0;

	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
		if (hdev->hw_tc_map & BIT(i))
			cnt++;
	return cnt;
}

/* Get the number of pfc enabled TCs, which have private buffer */
static int hclge_get_pfc_priv_num(struct hclge_dev *hdev,
				  struct hclge_pkt_buf_alloc *buf_alloc)
{
	struct hclge_priv_buf *priv;
	unsigned int i;
	int cnt = 0;

	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		priv = &buf_alloc->priv_buf[i];
		if ((hdev->tm_info.hw_pfc_map & BIT(i)) &&
		    priv->enable)
			cnt++;
	}

	return cnt;
}

/* Get the number of pfc disabled TCs, which have private buffer */
static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev,
				     struct hclge_pkt_buf_alloc *buf_alloc)
{
	struct hclge_priv_buf *priv;
	unsigned int i;
	int cnt = 0;

	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		priv = &buf_alloc->priv_buf[i];
		if (hdev->hw_tc_map & BIT(i) &&
		    !(hdev->tm_info.hw_pfc_map & BIT(i)) &&
		    priv->enable)
			cnt++;
	}

	return cnt;
}

static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
{
	struct hclge_priv_buf *priv;
	u32 rx_priv = 0;
	int i;

	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		priv = &buf_alloc->priv_buf[i];
		if (priv->enable)
			rx_priv += priv->buf_size;
	}
	return rx_priv;
}

static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
{
	u32 i, total_tx_size = 0;

	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;

	return total_tx_size;
}

static bool  hclge_is_rx_buf_ok(struct hclge_dev *hdev,
				struct hclge_pkt_buf_alloc *buf_alloc,
				u32 rx_all)
{
	u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
	u32 tc_num = hclge_get_tc_num(hdev);
	u32 shared_buf, aligned_mps;
	u32 rx_priv;
	int i;

	aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT);

	if (hnae3_dev_dcb_supported(hdev))
		shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps +
					hdev->dv_buf_size;
	else
		shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF
					+ hdev->dv_buf_size;

	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
	shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc),
			     HCLGE_BUF_SIZE_UNIT);

	rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc);
	if (rx_all < rx_priv + shared_std)
		return false;

	shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT);
	buf_alloc->s_buf.buf_size = shared_buf;
	if (hnae3_dev_dcb_supported(hdev)) {
		buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size;
		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
			- roundup(aligned_mps / HCLGE_BUF_DIV_BY,
				  HCLGE_BUF_SIZE_UNIT);
	} else {
		buf_alloc->s_buf.self.high = aligned_mps +
						HCLGE_NON_DCB_ADDITIONAL_BUF;
		buf_alloc->s_buf.self.low = aligned_mps;
	}

	if (hnae3_dev_dcb_supported(hdev)) {
		hi_thrd = shared_buf - hdev->dv_buf_size;

		if (tc_num <= NEED_RESERVE_TC_NUM)
			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
					/ BUF_MAX_PERCENT;

		if (tc_num)
			hi_thrd = hi_thrd / tc_num;

		hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps);
		hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT);
		lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY;
	} else {
		hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF;
		lo_thrd = aligned_mps;
	}

	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
	}

	return true;
}

static int hclge_tx_buffer_calc(struct hclge_dev *hdev,
				struct hclge_pkt_buf_alloc *buf_alloc)
{
	u32 i, total_size;

	total_size = hdev->pkt_buf_size;

	/* alloc tx buffer for all enabled tc */
	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];

		if (hdev->hw_tc_map & BIT(i)) {
			if (total_size < hdev->tx_buf_size)
				return -ENOMEM;

			priv->tx_buf_size = hdev->tx_buf_size;
		} else {
			priv->tx_buf_size = 0;
		}

		total_size -= priv->tx_buf_size;
	}

	return 0;
}

static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max,
				  struct hclge_pkt_buf_alloc *buf_alloc)
{
	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
	u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT);
	unsigned int i;

	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];

		priv->enable = 0;
		priv->wl.low = 0;
		priv->wl.high = 0;
		priv->buf_size = 0;

		if (!(hdev->hw_tc_map & BIT(i)))
			continue;

		priv->enable = 1;

		if (hdev->tm_info.hw_pfc_map & BIT(i)) {
			priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT;
			priv->wl.high = roundup(priv->wl.low + aligned_mps,
						HCLGE_BUF_SIZE_UNIT);
		} else {
			priv->wl.low = 0;
			priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) :
					aligned_mps;
		}

		priv->buf_size = priv->wl.high + hdev->dv_buf_size;
	}

	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
}

static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev,
					  struct hclge_pkt_buf_alloc *buf_alloc)
{
	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
	int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc);
	int i;

	/* let the last to be cleared first */
	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
		unsigned int mask = BIT((unsigned int)i);

		if (hdev->hw_tc_map & mask &&
		    !(hdev->tm_info.hw_pfc_map & mask)) {
			/* Clear the no pfc TC private buffer */
			priv->wl.low = 0;
			priv->wl.high = 0;
			priv->buf_size = 0;
			priv->enable = 0;
			no_pfc_priv_num--;
		}

		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
		    no_pfc_priv_num == 0)
			break;
	}

	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
}

static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev,
					struct hclge_pkt_buf_alloc *buf_alloc)
{
	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
	int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc);
	int i;

	/* let the last to be cleared first */
	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
		unsigned int mask = BIT((unsigned int)i);

		if (hdev->hw_tc_map & mask &&
		    hdev->tm_info.hw_pfc_map & mask) {
			/* Reduce the number of pfc TC with private buffer */
			priv->wl.low = 0;
			priv->enable = 0;
			priv->wl.high = 0;
			priv->buf_size = 0;
			pfc_priv_num--;
		}

		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
		    pfc_priv_num == 0)
			break;
	}

	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
}

static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev,
				      struct hclge_pkt_buf_alloc *buf_alloc)
{
#define COMPENSATE_BUFFER	0x3C00
#define COMPENSATE_HALF_MPS_NUM	5
#define PRIV_WL_GAP		0x1800

	u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
	u32 tc_num = hclge_get_tc_num(hdev);
	u32 half_mps = hdev->mps >> 1;
	u32 min_rx_priv;
	unsigned int i;

	if (tc_num)
		rx_priv = rx_priv / tc_num;

	if (tc_num <= NEED_RESERVE_TC_NUM)
		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;

	min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER +
			COMPENSATE_HALF_MPS_NUM * half_mps;
	min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT);
	rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT);
	if (rx_priv < min_rx_priv)
		return false;

	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];

		priv->enable = 0;
		priv->wl.low = 0;
		priv->wl.high = 0;
		priv->buf_size = 0;

		if (!(hdev->hw_tc_map & BIT(i)))
			continue;

		priv->enable = 1;
		priv->buf_size = rx_priv;
		priv->wl.high = rx_priv - hdev->dv_buf_size;
		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
	}

	buf_alloc->s_buf.buf_size = 0;

	return true;
}

/* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs
 * @hdev: pointer to struct hclge_dev
 * @buf_alloc: pointer to buffer calculation data
 * @return: 0: calculate successful, negative: fail
 */
static int hclge_rx_buffer_calc(struct hclge_dev *hdev,
				struct hclge_pkt_buf_alloc *buf_alloc)
{
	/* When DCB is not supported, rx private buffer is not allocated. */
	if (!hnae3_dev_dcb_supported(hdev)) {
		u32 rx_all = hdev->pkt_buf_size;

		rx_all -= hclge_get_tx_buff_alloced(buf_alloc);
		if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all))
			return -ENOMEM;

		return 0;
	}

	if (hclge_only_alloc_priv_buff(hdev, buf_alloc))
		return 0;

	if (hclge_rx_buf_calc_all(hdev, true, buf_alloc))
		return 0;

	/* try to decrease the buffer size */
	if (hclge_rx_buf_calc_all(hdev, false, buf_alloc))
		return 0;

	if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc))
		return 0;

	if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc))
		return 0;

	return -ENOMEM;
}

static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev,
				   struct hclge_pkt_buf_alloc *buf_alloc)
{
	struct hclge_rx_priv_buff_cmd *req;
	struct hclge_desc desc;
	int ret;
	int i;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false);
	req = (struct hclge_rx_priv_buff_cmd *)desc.data;

	/* Alloc private buffer TCs */
	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];

		req->buf_num[i] =
			cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S);
		req->buf_num[i] |=
			cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B);
	}

	req->shared_buf =
		cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) |
			    (1 << HCLGE_TC0_PRI_BUF_EN_B));

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"rx private buffer alloc cmd failed %d\n", ret);

	return ret;
}

static int hclge_rx_priv_wl_config(struct hclge_dev *hdev,
				   struct hclge_pkt_buf_alloc *buf_alloc)
{
	struct hclge_rx_priv_wl_buf *req;
	struct hclge_priv_buf *priv;
	struct hclge_desc desc[2];
	int i, j;
	int ret;

	for (i = 0; i < 2; i++) {
		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC,
					   false);
		req = (struct hclge_rx_priv_wl_buf *)desc[i].data;

		/* The first descriptor set the NEXT bit to 1 */
		if (i == 0)
			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
		else
			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);

		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
			u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j;

			priv = &buf_alloc->priv_buf[idx];
			req->tc_wl[j].high =
				cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S);
			req->tc_wl[j].high |=
				cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
			req->tc_wl[j].low =
				cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S);
			req->tc_wl[j].low |=
				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
		}
	}

	/* Send 2 descriptor at one time */
	ret = hclge_cmd_send(&hdev->hw, desc, 2);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"rx private waterline config cmd failed %d\n",
			ret);
	return ret;
}

static int hclge_common_thrd_config(struct hclge_dev *hdev,
				    struct hclge_pkt_buf_alloc *buf_alloc)
{
	struct hclge_shared_buf *s_buf = &buf_alloc->s_buf;
	struct hclge_rx_com_thrd *req;
	struct hclge_desc desc[2];
	struct hclge_tc_thrd *tc;
	int i, j;
	int ret;

	for (i = 0; i < 2; i++) {
		hclge_cmd_setup_basic_desc(&desc[i],
					   HCLGE_OPC_RX_COM_THRD_ALLOC, false);
		req = (struct hclge_rx_com_thrd *)&desc[i].data;

		/* The first descriptor set the NEXT bit to 1 */
		if (i == 0)
			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
		else
			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);

		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
			tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j];

			req->com_thrd[j].high =
				cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S);
			req->com_thrd[j].high |=
				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
			req->com_thrd[j].low =
				cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S);
			req->com_thrd[j].low |=
				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
		}
	}

	/* Send 2 descriptors at one time */
	ret = hclge_cmd_send(&hdev->hw, desc, 2);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"common threshold config cmd failed %d\n", ret);
	return ret;
}

static int hclge_common_wl_config(struct hclge_dev *hdev,
				  struct hclge_pkt_buf_alloc *buf_alloc)
{
	struct hclge_shared_buf *buf = &buf_alloc->s_buf;
	struct hclge_rx_com_wl *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false);

	req = (struct hclge_rx_com_wl *)desc.data;
	req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S);
	req->com_wl.high |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));

	req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S);
	req->com_wl.low |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"common waterline config cmd failed %d\n", ret);

	return ret;
}

int hclge_buffer_alloc(struct hclge_dev *hdev)
{
	struct hclge_pkt_buf_alloc *pkt_buf;
	int ret;

	pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL);
	if (!pkt_buf)
		return -ENOMEM;

	ret = hclge_tx_buffer_calc(hdev, pkt_buf);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"could not calc tx buffer size for all TCs %d\n", ret);
		goto out;
	}

	ret = hclge_tx_buffer_alloc(hdev, pkt_buf);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"could not alloc tx buffers %d\n", ret);
		goto out;
	}

	ret = hclge_rx_buffer_calc(hdev, pkt_buf);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"could not calc rx priv buffer size for all TCs %d\n",
			ret);
		goto out;
	}

	ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf);
	if (ret) {
		dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n",
			ret);
		goto out;
	}

	if (hnae3_dev_dcb_supported(hdev)) {
		ret = hclge_rx_priv_wl_config(hdev, pkt_buf);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"could not configure rx private waterline %d\n",
				ret);
			goto out;
		}

		ret = hclge_common_thrd_config(hdev, pkt_buf);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"could not configure common threshold %d\n",
				ret);
			goto out;
		}
	}

	ret = hclge_common_wl_config(hdev, pkt_buf);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"could not configure common waterline %d\n", ret);

out:
	kfree(pkt_buf);
	return ret;
}

static int hclge_init_roce_base_info(struct hclge_vport *vport)
{
	struct hnae3_handle *roce = &vport->roce;
	struct hnae3_handle *nic = &vport->nic;
	struct hclge_dev *hdev = vport->back;

	roce->rinfo.num_vectors = vport->back->num_roce_msi;

	if (hdev->num_msi < hdev->num_nic_msi + hdev->num_roce_msi)
		return -EINVAL;

	roce->rinfo.base_vector = hdev->num_nic_msi;

	roce->rinfo.netdev = nic->kinfo.netdev;
	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;

	roce->pdev = nic->pdev;
	roce->ae_algo = nic->ae_algo;
	roce->numa_node_mask = nic->numa_node_mask;

	return 0;
}

static int hclge_init_msi(struct hclge_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int vectors;
	int i;

	vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
					hdev->num_msi,
					PCI_IRQ_MSI | PCI_IRQ_MSIX);
	if (vectors < 0) {
		dev_err(&pdev->dev,
			"failed(%d) to allocate MSI/MSI-X vectors\n",
			vectors);
		return vectors;
	}
	if (vectors < hdev->num_msi)
		dev_warn(&hdev->pdev->dev,
			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
			 hdev->num_msi, vectors);

	hdev->num_msi = vectors;
	hdev->num_msi_left = vectors;

	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
					   sizeof(u16), GFP_KERNEL);
	if (!hdev->vector_status) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	for (i = 0; i < hdev->num_msi; i++)
		hdev->vector_status[i] = HCLGE_INVALID_VPORT;

	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
					sizeof(int), GFP_KERNEL);
	if (!hdev->vector_irq) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	return 0;
}

static u8 hclge_check_speed_dup(u8 duplex, int speed)
{
	if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M))
		duplex = HCLGE_MAC_FULL;

	return duplex;
}

static struct hclge_mac_speed_map hclge_mac_speed_map_to_fw[] = {
	{HCLGE_MAC_SPEED_10M, HCLGE_FW_MAC_SPEED_10M},
	{HCLGE_MAC_SPEED_100M, HCLGE_FW_MAC_SPEED_100M},
	{HCLGE_MAC_SPEED_1G, HCLGE_FW_MAC_SPEED_1G},
	{HCLGE_MAC_SPEED_10G, HCLGE_FW_MAC_SPEED_10G},
	{HCLGE_MAC_SPEED_25G, HCLGE_FW_MAC_SPEED_25G},
	{HCLGE_MAC_SPEED_40G, HCLGE_FW_MAC_SPEED_40G},
	{HCLGE_MAC_SPEED_50G, HCLGE_FW_MAC_SPEED_50G},
	{HCLGE_MAC_SPEED_100G, HCLGE_FW_MAC_SPEED_100G},
	{HCLGE_MAC_SPEED_200G, HCLGE_FW_MAC_SPEED_200G},
};

static int hclge_convert_to_fw_speed(u32 speed_drv, u32 *speed_fw)
{
	u16 i;

	for (i = 0; i < ARRAY_SIZE(hclge_mac_speed_map_to_fw); i++) {
		if (hclge_mac_speed_map_to_fw[i].speed_drv == speed_drv) {
			*speed_fw = hclge_mac_speed_map_to_fw[i].speed_fw;
			return 0;
		}
	}

	return -EINVAL;
}

static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed,
				      u8 duplex, u8 lane_num)
{
	struct hclge_config_mac_speed_dup_cmd *req;
	struct hclge_desc desc;
	u32 speed_fw;
	int ret;

	req = (struct hclge_config_mac_speed_dup_cmd *)desc.data;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false);

	if (duplex)
		hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1);

	ret = hclge_convert_to_fw_speed(speed, &speed_fw);
	if (ret) {
		dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed);
		return ret;
	}

	hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S,
			speed_fw);
	hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B,
		      1);
	req->lane_num = lane_num;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"mac speed/duplex config cmd failed %d.\n", ret);
		return ret;
	}

	return 0;
}

int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex, u8 lane_num)
{
	struct hclge_mac *mac = &hdev->hw.mac;
	int ret;

	duplex = hclge_check_speed_dup(duplex, speed);
	if (!mac->support_autoneg && mac->speed == speed &&
	    mac->duplex == duplex && (mac->lane_num == lane_num || lane_num == 0))
		return 0;

	ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex, lane_num);
	if (ret)
		return ret;

	hdev->hw.mac.speed = speed;
	hdev->hw.mac.duplex = duplex;
	if (!lane_num)
		hdev->hw.mac.lane_num = lane_num;

	return 0;
}

static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed,
				     u8 duplex, u8 lane_num)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return hclge_cfg_mac_speed_dup(hdev, speed, duplex, lane_num);
}

static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable)
{
	struct hclge_config_auto_neg_cmd *req;
	struct hclge_desc desc;
	u32 flag = 0;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false);

	req = (struct hclge_config_auto_neg_cmd *)desc.data;
	if (enable)
		hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U);
	req->cfg_an_cmd_flag = cpu_to_le32(flag);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n",
			ret);

	return ret;
}

static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	if (!hdev->hw.mac.support_autoneg) {
		if (enable) {
			dev_err(&hdev->pdev->dev,
				"autoneg is not supported by current port\n");
			return -EOPNOTSUPP;
		} else {
			return 0;
		}
	}

	return hclge_set_autoneg_en(hdev, enable);
}

static int hclge_get_autoneg(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct phy_device *phydev = hdev->hw.mac.phydev;

	if (phydev)
		return phydev->autoneg;

	return hdev->hw.mac.autoneg;
}

static int hclge_restart_autoneg(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int ret;

	dev_dbg(&hdev->pdev->dev, "restart autoneg\n");

	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;
	return hclge_notify_client(hdev, HNAE3_UP_CLIENT);
}

static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg)
		return hclge_set_autoneg_en(hdev, !halt);

	return 0;
}

static void hclge_parse_fec_stats_lanes(struct hclge_dev *hdev,
					struct hclge_desc *desc, u32 desc_len)
{
	u32 lane_size = HCLGE_FEC_STATS_MAX_LANES * 2;
	u32 desc_index = 0;
	u32 data_index = 0;
	u32 i;

	for (i = 0; i < lane_size; i++) {
		if (data_index >= HCLGE_DESC_DATA_LEN) {
			desc_index++;
			data_index = 0;
		}

		if (desc_index >= desc_len)
			return;

		hdev->fec_stats.per_lanes[i] +=
			le32_to_cpu(desc[desc_index].data[data_index]);
		data_index++;
	}
}

static void hclge_parse_fec_stats(struct hclge_dev *hdev,
				  struct hclge_desc *desc, u32 desc_len)
{
	struct hclge_query_fec_stats_cmd *req;

	req = (struct hclge_query_fec_stats_cmd *)desc[0].data;

	hdev->fec_stats.base_r_lane_num = req->base_r_lane_num;
	hdev->fec_stats.rs_corr_blocks +=
		le32_to_cpu(req->rs_fec_corr_blocks);
	hdev->fec_stats.rs_uncorr_blocks +=
		le32_to_cpu(req->rs_fec_uncorr_blocks);
	hdev->fec_stats.rs_error_blocks +=
		le32_to_cpu(req->rs_fec_error_blocks);
	hdev->fec_stats.base_r_corr_blocks +=
		le32_to_cpu(req->base_r_fec_corr_blocks);
	hdev->fec_stats.base_r_uncorr_blocks +=
		le32_to_cpu(req->base_r_fec_uncorr_blocks);

	hclge_parse_fec_stats_lanes(hdev, &desc[1], desc_len - 1);
}

static int hclge_update_fec_stats_hw(struct hclge_dev *hdev)
{
	struct hclge_desc desc[HCLGE_FEC_STATS_CMD_NUM];
	int ret;
	u32 i;

	for (i = 0; i < HCLGE_FEC_STATS_CMD_NUM; i++) {
		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_FEC_STATS,
					   true);
		if (i != (HCLGE_FEC_STATS_CMD_NUM - 1))
			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
	}

	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_FEC_STATS_CMD_NUM);
	if (ret)
		return ret;

	hclge_parse_fec_stats(hdev, desc, HCLGE_FEC_STATS_CMD_NUM);

	return 0;
}

static void hclge_update_fec_stats(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	int ret;

	if (!hnae3_ae_dev_fec_stats_supported(ae_dev) ||
	    test_and_set_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state))
		return;

	ret = hclge_update_fec_stats_hw(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to update fec stats, ret = %d\n", ret);

	clear_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state);
}

static void hclge_get_fec_stats_total(struct hclge_dev *hdev,
				      struct ethtool_fec_stats *fec_stats)
{
	fec_stats->corrected_blocks.total = hdev->fec_stats.rs_corr_blocks;
	fec_stats->uncorrectable_blocks.total =
		hdev->fec_stats.rs_uncorr_blocks;
}

static void hclge_get_fec_stats_lanes(struct hclge_dev *hdev,
				      struct ethtool_fec_stats *fec_stats)
{
	u32 i;

	if (hdev->fec_stats.base_r_lane_num == 0 ||
	    hdev->fec_stats.base_r_lane_num > HCLGE_FEC_STATS_MAX_LANES) {
		dev_err(&hdev->pdev->dev,
			"fec stats lane number(%llu) is invalid\n",
			hdev->fec_stats.base_r_lane_num);
		return;
	}

	for (i = 0; i < hdev->fec_stats.base_r_lane_num; i++) {
		fec_stats->corrected_blocks.lanes[i] =
			hdev->fec_stats.base_r_corr_per_lanes[i];
		fec_stats->uncorrectable_blocks.lanes[i] =
			hdev->fec_stats.base_r_uncorr_per_lanes[i];
	}
}

static void hclge_comm_get_fec_stats(struct hclge_dev *hdev,
				     struct ethtool_fec_stats *fec_stats)
{
	u32 fec_mode = hdev->hw.mac.fec_mode;

	switch (fec_mode) {
	case BIT(HNAE3_FEC_RS):
	case BIT(HNAE3_FEC_LLRS):
		hclge_get_fec_stats_total(hdev, fec_stats);
		break;
	case BIT(HNAE3_FEC_BASER):
		hclge_get_fec_stats_lanes(hdev, fec_stats);
		break;
	default:
		dev_err(&hdev->pdev->dev,
			"fec stats is not supported by current fec mode(0x%x)\n",
			fec_mode);
		break;
	}
}

static void hclge_get_fec_stats(struct hnae3_handle *handle,
				struct ethtool_fec_stats *fec_stats)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u32 fec_mode = hdev->hw.mac.fec_mode;

	if (fec_mode == BIT(HNAE3_FEC_NONE) ||
	    fec_mode == BIT(HNAE3_FEC_AUTO) ||
	    fec_mode == BIT(HNAE3_FEC_USER_DEF))
		return;

	hclge_update_fec_stats(hdev);

	hclge_comm_get_fec_stats(hdev, fec_stats);
}

static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode)
{
	struct hclge_config_fec_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false);

	req = (struct hclge_config_fec_cmd *)desc.data;
	if (fec_mode & BIT(HNAE3_FEC_AUTO))
		hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1);
	if (fec_mode & BIT(HNAE3_FEC_RS))
		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS);
	if (fec_mode & BIT(HNAE3_FEC_LLRS))
		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_LLRS);
	if (fec_mode & BIT(HNAE3_FEC_BASER))
		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret);

	return ret;
}

static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_mac *mac = &hdev->hw.mac;
	int ret;

	if (fec_mode && !(mac->fec_ability & fec_mode)) {
		dev_err(&hdev->pdev->dev, "unsupported fec mode\n");
		return -EINVAL;
	}

	ret = hclge_set_fec_hw(hdev, fec_mode);
	if (ret)
		return ret;

	mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF);
	return 0;
}

static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability,
			  u8 *fec_mode)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_mac *mac = &hdev->hw.mac;

	if (fec_ability)
		*fec_ability = mac->fec_ability;
	if (fec_mode)
		*fec_mode = mac->fec_mode;
}

static int hclge_mac_init(struct hclge_dev *hdev)
{
	struct hclge_mac *mac = &hdev->hw.mac;
	int ret;

	hdev->support_sfp_query = true;
	hdev->hw.mac.duplex = HCLGE_MAC_FULL;
	ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed,
					 hdev->hw.mac.duplex, hdev->hw.mac.lane_num);
	if (ret)
		return ret;

	if (hdev->hw.mac.support_autoneg) {
		ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg);
		if (ret)
			return ret;
	}

	mac->link = 0;

	if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) {
		ret = hclge_set_fec_hw(hdev, mac->user_fec_mode);
		if (ret)
			return ret;
	}

	ret = hclge_set_mac_mtu(hdev, hdev->mps);
	if (ret) {
		dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret);
		return ret;
	}

	ret = hclge_set_default_loopback(hdev);
	if (ret)
		return ret;

	ret = hclge_buffer_alloc(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"allocate buffer fail, ret=%d\n", ret);

	return ret;
}

static void hclge_mbx_task_schedule(struct hclge_dev *hdev)
{
	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) {
		hdev->last_mbx_scheduled = jiffies;
		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
	}
}

static void hclge_reset_task_schedule(struct hclge_dev *hdev)
{
	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
	    test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state) &&
	    !test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) {
		hdev->last_rst_scheduled = jiffies;
		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
	}
}

static void hclge_errhand_task_schedule(struct hclge_dev *hdev)
{
	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
}

void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time)
{
	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
	    !test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
		mod_delayed_work(hclge_wq, &hdev->service_task, delay_time);
}

static int hclge_get_mac_link_status(struct hclge_dev *hdev, int *link_status)
{
	struct hclge_link_status_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n",
			ret);
		return ret;
	}

	req = (struct hclge_link_status_cmd *)desc.data;
	*link_status = (req->status & HCLGE_LINK_STATUS_UP_M) > 0 ?
		HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;

	return 0;
}

static int hclge_get_mac_phy_link(struct hclge_dev *hdev, int *link_status)
{
	struct phy_device *phydev = hdev->hw.mac.phydev;

	*link_status = HCLGE_LINK_STATUS_DOWN;

	if (test_bit(HCLGE_STATE_DOWN, &hdev->state))
		return 0;

	if (phydev && (phydev->state != PHY_RUNNING || !phydev->link))
		return 0;

	return hclge_get_mac_link_status(hdev, link_status);
}

static void hclge_push_link_status(struct hclge_dev *hdev)
{
	struct hclge_vport *vport;
	int ret;
	u16 i;

	for (i = 0; i < pci_num_vf(hdev->pdev); i++) {
		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];

		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) ||
		    vport->vf_info.link_state != IFLA_VF_LINK_STATE_AUTO)
			continue;

		ret = hclge_push_vf_link_status(vport);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to push link status to vf%u, ret = %d\n",
				i, ret);
		}
	}
}

static void hclge_update_link_status(struct hclge_dev *hdev)
{
	struct hnae3_handle *rhandle = &hdev->vport[0].roce;
	struct hnae3_handle *handle = &hdev->vport[0].nic;
	struct hnae3_client *rclient = hdev->roce_client;
	struct hnae3_client *client = hdev->nic_client;
	int state;
	int ret;

	if (!client)
		return;

	if (test_and_set_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state))
		return;

	ret = hclge_get_mac_phy_link(hdev, &state);
	if (ret) {
		clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
		return;
	}

	if (state != hdev->hw.mac.link) {
		hdev->hw.mac.link = state;
		client->ops->link_status_change(handle, state);
		hclge_config_mac_tnl_int(hdev, state);
		if (rclient && rclient->ops->link_status_change)
			rclient->ops->link_status_change(rhandle, state);

		hclge_push_link_status(hdev);
	}

	clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
}

static void hclge_update_speed_advertising(struct hclge_mac *mac)
{
	u32 speed_ability;

	if (hclge_get_speed_bit(mac->speed, &speed_ability))
		return;

	switch (mac->module_type) {
	case HNAE3_MODULE_TYPE_FIBRE_LR:
		hclge_convert_setting_lr(speed_ability, mac->advertising);
		break;
	case HNAE3_MODULE_TYPE_FIBRE_SR:
	case HNAE3_MODULE_TYPE_AOC:
		hclge_convert_setting_sr(speed_ability, mac->advertising);
		break;
	case HNAE3_MODULE_TYPE_CR:
		hclge_convert_setting_cr(speed_ability, mac->advertising);
		break;
	case HNAE3_MODULE_TYPE_KR:
		hclge_convert_setting_kr(speed_ability, mac->advertising);
		break;
	default:
		break;
	}
}

static void hclge_update_fec_advertising(struct hclge_mac *mac)
{
	if (mac->fec_mode & BIT(HNAE3_FEC_RS))
		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
				 mac->advertising);
	else if (mac->fec_mode & BIT(HNAE3_FEC_LLRS))
		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT,
				 mac->advertising);
	else if (mac->fec_mode & BIT(HNAE3_FEC_BASER))
		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
				 mac->advertising);
	else
		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
				 mac->advertising);
}

static void hclge_update_pause_advertising(struct hclge_dev *hdev)
{
	struct hclge_mac *mac = &hdev->hw.mac;
	bool rx_en, tx_en;

	switch (hdev->fc_mode_last_time) {
	case HCLGE_FC_RX_PAUSE:
		rx_en = true;
		tx_en = false;
		break;
	case HCLGE_FC_TX_PAUSE:
		rx_en = false;
		tx_en = true;
		break;
	case HCLGE_FC_FULL:
		rx_en = true;
		tx_en = true;
		break;
	default:
		rx_en = false;
		tx_en = false;
		break;
	}

	linkmode_set_pause(mac->advertising, tx_en, rx_en);
}

static void hclge_update_advertising(struct hclge_dev *hdev)
{
	struct hclge_mac *mac = &hdev->hw.mac;

	linkmode_zero(mac->advertising);
	hclge_update_speed_advertising(mac);
	hclge_update_fec_advertising(mac);
	hclge_update_pause_advertising(hdev);
}

static void hclge_update_port_capability(struct hclge_dev *hdev,
					 struct hclge_mac *mac)
{
	if (hnae3_dev_fec_supported(hdev))
		hclge_convert_setting_fec(mac);

	/* firmware can not identify back plane type, the media type
	 * read from configuration can help deal it
	 */
	if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE &&
	    mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN)
		mac->module_type = HNAE3_MODULE_TYPE_KR;
	else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
		mac->module_type = HNAE3_MODULE_TYPE_TP;

	if (mac->support_autoneg) {
		linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported);
		linkmode_copy(mac->advertising, mac->supported);
	} else {
		linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
				   mac->supported);
		hclge_update_advertising(hdev);
	}
}

static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed)
{
	struct hclge_sfp_info_cmd *resp;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
	resp = (struct hclge_sfp_info_cmd *)desc.data;
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret == -EOPNOTSUPP) {
		dev_warn(&hdev->pdev->dev,
			 "IMP do not support get SFP speed %d\n", ret);
		return ret;
	} else if (ret) {
		dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret);
		return ret;
	}

	*speed = le32_to_cpu(resp->speed);

	return 0;
}

static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac)
{
	struct hclge_sfp_info_cmd *resp;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
	resp = (struct hclge_sfp_info_cmd *)desc.data;

	resp->query_type = QUERY_ACTIVE_SPEED;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret == -EOPNOTSUPP) {
		dev_warn(&hdev->pdev->dev,
			 "IMP does not support get SFP info %d\n", ret);
		return ret;
	} else if (ret) {
		dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret);
		return ret;
	}

	/* In some case, mac speed get from IMP may be 0, it shouldn't be
	 * set to mac->speed.
	 */
	if (!le32_to_cpu(resp->speed))
		return 0;

	mac->speed = le32_to_cpu(resp->speed);
	/* if resp->speed_ability is 0, it means it's an old version
	 * firmware, do not update these params
	 */
	if (resp->speed_ability) {
		mac->module_type = le32_to_cpu(resp->module_type);
		mac->speed_ability = le32_to_cpu(resp->speed_ability);
		mac->autoneg = resp->autoneg;
		mac->support_autoneg = resp->autoneg_ability;
		mac->speed_type = QUERY_ACTIVE_SPEED;
		mac->lane_num = resp->lane_num;
		if (!resp->active_fec)
			mac->fec_mode = 0;
		else
			mac->fec_mode = BIT(resp->active_fec);
		mac->fec_ability = resp->fec_ability;
	} else {
		mac->speed_type = QUERY_SFP_SPEED;
	}

	return 0;
}

static int hclge_get_phy_link_ksettings(struct hnae3_handle *handle,
					struct ethtool_link_ksettings *cmd)
{
	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_phy_link_ksetting_0_cmd *req0;
	struct hclge_phy_link_ksetting_1_cmd *req1;
	u32 supported, advertising, lp_advertising;
	struct hclge_dev *hdev = vport->back;
	int ret;

	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
				   true);
	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
				   true);

	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to get phy link ksetting, ret = %d.\n", ret);
		return ret;
	}

	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
	cmd->base.autoneg = req0->autoneg;
	cmd->base.speed = le32_to_cpu(req0->speed);
	cmd->base.duplex = req0->duplex;
	cmd->base.port = req0->port;
	cmd->base.transceiver = req0->transceiver;
	cmd->base.phy_address = req0->phy_address;
	cmd->base.eth_tp_mdix = req0->eth_tp_mdix;
	cmd->base.eth_tp_mdix_ctrl = req0->eth_tp_mdix_ctrl;
	supported = le32_to_cpu(req0->supported);
	advertising = le32_to_cpu(req0->advertising);
	lp_advertising = le32_to_cpu(req0->lp_advertising);
	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
						supported);
	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
						advertising);
	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
						lp_advertising);

	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
	cmd->base.master_slave_cfg = req1->master_slave_cfg;
	cmd->base.master_slave_state = req1->master_slave_state;

	return 0;
}

static int
hclge_set_phy_link_ksettings(struct hnae3_handle *handle,
			     const struct ethtool_link_ksettings *cmd)
{
	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_phy_link_ksetting_0_cmd *req0;
	struct hclge_phy_link_ksetting_1_cmd *req1;
	struct hclge_dev *hdev = vport->back;
	u32 advertising;
	int ret;

	if (cmd->base.autoneg == AUTONEG_DISABLE &&
	    ((cmd->base.speed != SPEED_100 && cmd->base.speed != SPEED_10) ||
	     (cmd->base.duplex != DUPLEX_HALF &&
	      cmd->base.duplex != DUPLEX_FULL)))
		return -EINVAL;

	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
				   false);
	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
				   false);

	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
	req0->autoneg = cmd->base.autoneg;
	req0->speed = cpu_to_le32(cmd->base.speed);
	req0->duplex = cmd->base.duplex;
	ethtool_convert_link_mode_to_legacy_u32(&advertising,
						cmd->link_modes.advertising);
	req0->advertising = cpu_to_le32(advertising);
	req0->eth_tp_mdix_ctrl = cmd->base.eth_tp_mdix_ctrl;

	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
	req1->master_slave_cfg = cmd->base.master_slave_cfg;

	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to set phy link ksettings, ret = %d.\n", ret);
		return ret;
	}

	hdev->hw.mac.autoneg = cmd->base.autoneg;
	hdev->hw.mac.speed = cmd->base.speed;
	hdev->hw.mac.duplex = cmd->base.duplex;
	linkmode_copy(hdev->hw.mac.advertising, cmd->link_modes.advertising);

	return 0;
}

static int hclge_update_tp_port_info(struct hclge_dev *hdev)
{
	struct ethtool_link_ksettings cmd;
	int ret;

	if (!hnae3_dev_phy_imp_supported(hdev))
		return 0;

	ret = hclge_get_phy_link_ksettings(&hdev->vport->nic, &cmd);
	if (ret)
		return ret;

	hdev->hw.mac.autoneg = cmd.base.autoneg;
	hdev->hw.mac.speed = cmd.base.speed;
	hdev->hw.mac.duplex = cmd.base.duplex;
	linkmode_copy(hdev->hw.mac.advertising, cmd.link_modes.advertising);

	return 0;
}

static int hclge_tp_port_init(struct hclge_dev *hdev)
{
	struct ethtool_link_ksettings cmd;

	if (!hnae3_dev_phy_imp_supported(hdev))
		return 0;

	cmd.base.autoneg = hdev->hw.mac.autoneg;
	cmd.base.speed = hdev->hw.mac.speed;
	cmd.base.duplex = hdev->hw.mac.duplex;
	linkmode_copy(cmd.link_modes.advertising, hdev->hw.mac.advertising);

	return hclge_set_phy_link_ksettings(&hdev->vport->nic, &cmd);
}

static int hclge_update_port_info(struct hclge_dev *hdev)
{
	struct hclge_mac *mac = &hdev->hw.mac;
	int speed;
	int ret;

	/* get the port info from SFP cmd if not copper port */
	if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
		return hclge_update_tp_port_info(hdev);

	/* if IMP does not support get SFP/qSFP info, return directly */
	if (!hdev->support_sfp_query)
		return 0;

	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
		speed = mac->speed;
		ret = hclge_get_sfp_info(hdev, mac);
	} else {
		speed = HCLGE_MAC_SPEED_UNKNOWN;
		ret = hclge_get_sfp_speed(hdev, &speed);
	}

	if (ret == -EOPNOTSUPP) {
		hdev->support_sfp_query = false;
		return ret;
	} else if (ret) {
		return ret;
	}

	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
		if (mac->speed_type == QUERY_ACTIVE_SPEED) {
			hclge_update_port_capability(hdev, mac);
			if (mac->speed != speed)
				(void)hclge_tm_port_shaper_cfg(hdev);
			return 0;
		}
		return hclge_cfg_mac_speed_dup(hdev, mac->speed,
					       HCLGE_MAC_FULL, mac->lane_num);
	} else {
		if (speed == HCLGE_MAC_SPEED_UNKNOWN)
			return 0; /* do nothing if no SFP */

		/* must config full duplex for SFP */
		return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL, 0);
	}
}

static int hclge_get_status(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	hclge_update_link_status(hdev);

	return hdev->hw.mac.link;
}

static struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf)
{
	if (!pci_num_vf(hdev->pdev)) {
		dev_err(&hdev->pdev->dev,
			"SRIOV is disabled, can not get vport(%d) info.\n", vf);
		return NULL;
	}

	if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) {
		dev_err(&hdev->pdev->dev,
			"vf id(%d) is out of range(0 <= vfid < %d)\n",
			vf, pci_num_vf(hdev->pdev));
		return NULL;
	}

	/* VF start from 1 in vport */
	vf += HCLGE_VF_VPORT_START_NUM;
	return &hdev->vport[vf];
}

static int hclge_get_vf_config(struct hnae3_handle *handle, int vf,
			       struct ifla_vf_info *ivf)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	vport = hclge_get_vf_vport(hdev, vf);
	if (!vport)
		return -EINVAL;

	ivf->vf = vf;
	ivf->linkstate = vport->vf_info.link_state;
	ivf->spoofchk = vport->vf_info.spoofchk;
	ivf->trusted = vport->vf_info.trusted;
	ivf->min_tx_rate = 0;
	ivf->max_tx_rate = vport->vf_info.max_tx_rate;
	ivf->vlan = vport->port_base_vlan_cfg.vlan_info.vlan_tag;
	ivf->vlan_proto = htons(vport->port_base_vlan_cfg.vlan_info.vlan_proto);
	ivf->qos = vport->port_base_vlan_cfg.vlan_info.qos;
	ether_addr_copy(ivf->mac, vport->vf_info.mac);

	return 0;
}

static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf,
				   int link_state)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int link_state_old;
	int ret;

	vport = hclge_get_vf_vport(hdev, vf);
	if (!vport)
		return -EINVAL;

	link_state_old = vport->vf_info.link_state;
	vport->vf_info.link_state = link_state;

	/* return success directly if the VF is unalive, VF will
	 * query link state itself when it starts work.
	 */
	if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
		return 0;

	ret = hclge_push_vf_link_status(vport);
	if (ret) {
		vport->vf_info.link_state = link_state_old;
		dev_err(&hdev->pdev->dev,
			"failed to push vf%d link status, ret = %d\n", vf, ret);
	}

	return ret;
}

static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
{
	u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg;

	/* fetch the events from their corresponding regs */
	cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG);
	msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
	hw_err_src_reg = hclge_read_dev(&hdev->hw,
					HCLGE_RAS_PF_OTHER_INT_STS_REG);

	/* Assumption: If by any chance reset and mailbox events are reported
	 * together then we will only process reset event in this go and will
	 * defer the processing of the mailbox events. Since, we would have not
	 * cleared RX CMDQ event this time we would receive again another
	 * interrupt from H/W just for the mailbox.
	 *
	 * check for vector0 reset event sources
	 */
	if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) {
		dev_info(&hdev->pdev->dev, "IMP reset interrupt\n");
		set_bit(HNAE3_IMP_RESET, &hdev->reset_pending);
		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
		*clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
		hdev->rst_stats.imp_rst_cnt++;
		return HCLGE_VECTOR0_EVENT_RST;
	}

	if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) {
		dev_info(&hdev->pdev->dev, "global reset interrupt\n");
		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
		set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending);
		*clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
		hdev->rst_stats.global_rst_cnt++;
		return HCLGE_VECTOR0_EVENT_RST;
	}

	/* check for vector0 msix event and hardware error event source */
	if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK ||
	    hw_err_src_reg & HCLGE_RAS_REG_ERR_MASK)
		return HCLGE_VECTOR0_EVENT_ERR;

	/* check for vector0 ptp event source */
	if (BIT(HCLGE_VECTOR0_REG_PTP_INT_B) & msix_src_reg) {
		*clearval = msix_src_reg;
		return HCLGE_VECTOR0_EVENT_PTP;
	}

	/* check for vector0 mailbox(=CMDQ RX) event source */
	if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
		cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B);
		*clearval = cmdq_src_reg;
		return HCLGE_VECTOR0_EVENT_MBX;
	}

	/* print other vector0 event source */
	dev_info(&hdev->pdev->dev,
		 "INT status: CMDQ(%#x) HW errors(%#x) other(%#x)\n",
		 cmdq_src_reg, hw_err_src_reg, msix_src_reg);

	return HCLGE_VECTOR0_EVENT_OTHER;
}

static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type,
				    u32 regclr)
{
	switch (event_type) {
	case HCLGE_VECTOR0_EVENT_PTP:
	case HCLGE_VECTOR0_EVENT_RST:
		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr);
		break;
	case HCLGE_VECTOR0_EVENT_MBX:
		hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr);
		break;
	default:
		break;
	}
}

static void hclge_clear_all_event_cause(struct hclge_dev *hdev)
{
	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST,
				BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) |
				BIT(HCLGE_VECTOR0_CORERESET_INT_B) |
				BIT(HCLGE_VECTOR0_IMPRESET_INT_B));
	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0);
}

static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable)
{
	writel(enable ? 1 : 0, vector->addr);
}

static irqreturn_t hclge_misc_irq_handle(int irq, void *data)
{
	struct hclge_dev *hdev = data;
	unsigned long flags;
	u32 clearval = 0;
	u32 event_cause;

	hclge_enable_vector(&hdev->misc_vector, false);
	event_cause = hclge_check_event_cause(hdev, &clearval);

	/* vector 0 interrupt is shared with reset and mailbox source events. */
	switch (event_cause) {
	case HCLGE_VECTOR0_EVENT_ERR:
		hclge_errhand_task_schedule(hdev);
		break;
	case HCLGE_VECTOR0_EVENT_RST:
		hclge_reset_task_schedule(hdev);
		break;
	case HCLGE_VECTOR0_EVENT_PTP:
		spin_lock_irqsave(&hdev->ptp->lock, flags);
		hclge_ptp_clean_tx_hwts(hdev);
		spin_unlock_irqrestore(&hdev->ptp->lock, flags);
		break;
	case HCLGE_VECTOR0_EVENT_MBX:
		/* If we are here then,
		 * 1. Either we are not handling any mbx task and we are not
		 *    scheduled as well
		 *                        OR
		 * 2. We could be handling a mbx task but nothing more is
		 *    scheduled.
		 * In both cases, we should schedule mbx task as there are more
		 * mbx messages reported by this interrupt.
		 */
		hclge_mbx_task_schedule(hdev);
		break;
	default:
		dev_warn(&hdev->pdev->dev,
			 "received unknown or unhandled event of vector0\n");
		break;
	}

	hclge_clear_event_cause(hdev, event_cause, clearval);

	/* Enable interrupt if it is not caused by reset event or error event */
	if (event_cause == HCLGE_VECTOR0_EVENT_PTP ||
	    event_cause == HCLGE_VECTOR0_EVENT_MBX ||
	    event_cause == HCLGE_VECTOR0_EVENT_OTHER)
		hclge_enable_vector(&hdev->misc_vector, true);

	return IRQ_HANDLED;
}

static void hclge_free_vector(struct hclge_dev *hdev, int vector_id)
{
	if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) {
		dev_warn(&hdev->pdev->dev,
			 "vector(vector_id %d) has been freed.\n", vector_id);
		return;
	}

	hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT;
	hdev->num_msi_left += 1;
	hdev->num_msi_used -= 1;
}

static void hclge_get_misc_vector(struct hclge_dev *hdev)
{
	struct hclge_misc_vector *vector = &hdev->misc_vector;

	vector->vector_irq = pci_irq_vector(hdev->pdev, 0);

	vector->addr = hdev->hw.hw.io_base + HCLGE_MISC_VECTOR_REG_BASE;
	hdev->vector_status[0] = 0;

	hdev->num_msi_left -= 1;
	hdev->num_msi_used += 1;
}

static int hclge_misc_irq_init(struct hclge_dev *hdev)
{
	int ret;

	hclge_get_misc_vector(hdev);

	/* this would be explicitly freed in the end */
	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
		 HCLGE_NAME, pci_name(hdev->pdev));
	ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle,
			  0, hdev->misc_vector.name, hdev);
	if (ret) {
		hclge_free_vector(hdev, 0);
		dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n",
			hdev->misc_vector.vector_irq);
	}

	return ret;
}

static void hclge_misc_irq_uninit(struct hclge_dev *hdev)
{
	free_irq(hdev->misc_vector.vector_irq, hdev);
	hclge_free_vector(hdev, 0);
}

int hclge_notify_client(struct hclge_dev *hdev,
			enum hnae3_reset_notify_type type)
{
	struct hnae3_handle *handle = &hdev->vport[0].nic;
	struct hnae3_client *client = hdev->nic_client;
	int ret;

	if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client)
		return 0;

	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
			type, ret);

	return ret;
}

static int hclge_notify_roce_client(struct hclge_dev *hdev,
				    enum hnae3_reset_notify_type type)
{
	struct hnae3_handle *handle = &hdev->vport[0].roce;
	struct hnae3_client *client = hdev->roce_client;
	int ret;

	if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client)
		return 0;

	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
			type, ret);

	return ret;
}

static int hclge_reset_wait(struct hclge_dev *hdev)
{
#define HCLGE_RESET_WATI_MS	100
#define HCLGE_RESET_WAIT_CNT	350

	u32 val, reg, reg_bit;
	u32 cnt = 0;

	switch (hdev->reset_type) {
	case HNAE3_IMP_RESET:
		reg = HCLGE_GLOBAL_RESET_REG;
		reg_bit = HCLGE_IMP_RESET_BIT;
		break;
	case HNAE3_GLOBAL_RESET:
		reg = HCLGE_GLOBAL_RESET_REG;
		reg_bit = HCLGE_GLOBAL_RESET_BIT;
		break;
	case HNAE3_FUNC_RESET:
		reg = HCLGE_FUN_RST_ING;
		reg_bit = HCLGE_FUN_RST_ING_B;
		break;
	default:
		dev_err(&hdev->pdev->dev,
			"Wait for unsupported reset type: %d\n",
			hdev->reset_type);
		return -EINVAL;
	}

	val = hclge_read_dev(&hdev->hw, reg);
	while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) {
		msleep(HCLGE_RESET_WATI_MS);
		val = hclge_read_dev(&hdev->hw, reg);
		cnt++;
	}

	if (cnt >= HCLGE_RESET_WAIT_CNT) {
		dev_warn(&hdev->pdev->dev,
			 "Wait for reset timeout: %d\n", hdev->reset_type);
		return -EBUSY;
	}

	return 0;
}

static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset)
{
	struct hclge_vf_rst_cmd *req;
	struct hclge_desc desc;

	req = (struct hclge_vf_rst_cmd *)desc.data;
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false);
	req->dest_vfid = func_id;

	if (reset)
		req->vf_rst = 0x1;

	return hclge_cmd_send(&hdev->hw, &desc, 1);
}

static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset)
{
	int i;

	for (i = HCLGE_VF_VPORT_START_NUM; i < hdev->num_alloc_vport; i++) {
		struct hclge_vport *vport = &hdev->vport[i];
		int ret;

		/* Send cmd to set/clear VF's FUNC_RST_ING */
		ret = hclge_set_vf_rst(hdev, vport->vport_id, reset);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"set vf(%u) rst failed %d!\n",
				vport->vport_id - HCLGE_VF_VPORT_START_NUM,
				ret);
			return ret;
		}

		if (!reset ||
		    !test_bit(HCLGE_VPORT_STATE_INITED, &vport->state))
			continue;

		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) &&
		    hdev->reset_type == HNAE3_FUNC_RESET) {
			set_bit(HCLGE_VPORT_NEED_NOTIFY_RESET,
				&vport->need_notify);
			continue;
		}

		/* Inform VF to process the reset.
		 * hclge_inform_reset_assert_to_vf may fail if VF
		 * driver is not loaded.
		 */
		ret = hclge_inform_reset_assert_to_vf(vport);
		if (ret)
			dev_warn(&hdev->pdev->dev,
				 "inform reset to vf(%u) failed %d!\n",
				 vport->vport_id - HCLGE_VF_VPORT_START_NUM,
				 ret);
	}

	return 0;
}

static void hclge_mailbox_service_task(struct hclge_dev *hdev)
{
	if (!test_and_clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state) ||
	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state) ||
	    test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state))
		return;

	if (time_is_before_jiffies(hdev->last_mbx_scheduled +
				   HCLGE_MBX_SCHED_TIMEOUT))
		dev_warn(&hdev->pdev->dev,
			 "mbx service task is scheduled after %ums on cpu%u!\n",
			 jiffies_to_msecs(jiffies - hdev->last_mbx_scheduled),
			 smp_processor_id());

	hclge_mbx_handler(hdev);

	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
}

static void hclge_func_reset_sync_vf(struct hclge_dev *hdev)
{
	struct hclge_pf_rst_sync_cmd *req;
	struct hclge_desc desc;
	int cnt = 0;
	int ret;

	req = (struct hclge_pf_rst_sync_cmd *)desc.data;
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true);

	do {
		/* vf need to down netdev by mbx during PF or FLR reset */
		hclge_mailbox_service_task(hdev);

		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
		/* for compatible with old firmware, wait
		 * 100 ms for VF to stop IO
		 */
		if (ret == -EOPNOTSUPP) {
			msleep(HCLGE_RESET_SYNC_TIME);
			return;
		} else if (ret) {
			dev_warn(&hdev->pdev->dev, "sync with VF fail %d!\n",
				 ret);
			return;
		} else if (req->all_vf_ready) {
			return;
		}
		msleep(HCLGE_PF_RESET_SYNC_TIME);
		hclge_comm_cmd_reuse_desc(&desc, true);
	} while (cnt++ < HCLGE_PF_RESET_SYNC_CNT);

	dev_warn(&hdev->pdev->dev, "sync with VF timeout!\n");
}

void hclge_report_hw_error(struct hclge_dev *hdev,
			   enum hnae3_hw_error_type type)
{
	struct hnae3_client *client = hdev->nic_client;

	if (!client || !client->ops->process_hw_error ||
	    !test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state))
		return;

	client->ops->process_hw_error(&hdev->vport[0].nic, type);
}

static void hclge_handle_imp_error(struct hclge_dev *hdev)
{
	u32 reg_val;

	reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
	if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) {
		hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR);
		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B);
		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
	}

	if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) {
		hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR);
		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B);
		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
	}
}

int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id)
{
	struct hclge_desc desc;
	struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
	hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1);
	req->fun_reset_vfid = func_id;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"send function reset cmd fail, status =%d\n", ret);

	return ret;
}

static void hclge_do_reset(struct hclge_dev *hdev)
{
	struct hnae3_handle *handle = &hdev->vport[0].nic;
	struct pci_dev *pdev = hdev->pdev;
	u32 val;

	if (hclge_get_hw_reset_stat(handle)) {
		dev_info(&pdev->dev, "hardware reset not finish\n");
		dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n",
			 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING),
			 hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG));
		return;
	}

	switch (hdev->reset_type) {
	case HNAE3_IMP_RESET:
		dev_info(&pdev->dev, "IMP reset requested\n");
		val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
		hnae3_set_bit(val, HCLGE_TRIGGER_IMP_RESET_B, 1);
		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, val);
		break;
	case HNAE3_GLOBAL_RESET:
		dev_info(&pdev->dev, "global reset requested\n");
		val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG);
		hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1);
		hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val);
		break;
	case HNAE3_FUNC_RESET:
		dev_info(&pdev->dev, "PF reset requested\n");
		/* schedule again to check later */
		set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending);
		hclge_reset_task_schedule(hdev);
		break;
	default:
		dev_warn(&pdev->dev,
			 "unsupported reset type: %d\n", hdev->reset_type);
		break;
	}
}

static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
						   unsigned long *addr)
{
	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
	struct hclge_dev *hdev = ae_dev->priv;

	/* return the highest priority reset level amongst all */
	if (test_bit(HNAE3_IMP_RESET, addr)) {
		rst_level = HNAE3_IMP_RESET;
		clear_bit(HNAE3_IMP_RESET, addr);
		clear_bit(HNAE3_GLOBAL_RESET, addr);
		clear_bit(HNAE3_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_GLOBAL_RESET, addr)) {
		rst_level = HNAE3_GLOBAL_RESET;
		clear_bit(HNAE3_GLOBAL_RESET, addr);
		clear_bit(HNAE3_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_FUNC_RESET, addr)) {
		rst_level = HNAE3_FUNC_RESET;
		clear_bit(HNAE3_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
		rst_level = HNAE3_FLR_RESET;
		clear_bit(HNAE3_FLR_RESET, addr);
	}

	if (hdev->reset_type != HNAE3_NONE_RESET &&
	    rst_level < hdev->reset_type)
		return HNAE3_NONE_RESET;

	return rst_level;
}

static void hclge_clear_reset_cause(struct hclge_dev *hdev)
{
	u32 clearval = 0;

	switch (hdev->reset_type) {
	case HNAE3_IMP_RESET:
		clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
		break;
	case HNAE3_GLOBAL_RESET:
		clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
		break;
	default:
		break;
	}

	if (!clearval)
		return;

	/* For revision 0x20, the reset interrupt source
	 * can only be cleared after hardware reset done
	 */
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG,
				clearval);

	hclge_enable_vector(&hdev->misc_vector, true);
}

static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable)
{
	u32 reg_val;

	reg_val = hclge_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
	if (enable)
		reg_val |= HCLGE_COMM_NIC_SW_RST_RDY;
	else
		reg_val &= ~HCLGE_COMM_NIC_SW_RST_RDY;

	hclge_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, reg_val);
}

static int hclge_func_reset_notify_vf(struct hclge_dev *hdev)
{
	int ret;

	ret = hclge_set_all_vf_rst(hdev, true);
	if (ret)
		return ret;

	hclge_func_reset_sync_vf(hdev);

	return 0;
}

static int hclge_reset_prepare_wait(struct hclge_dev *hdev)
{
	u32 reg_val;
	int ret = 0;

	switch (hdev->reset_type) {
	case HNAE3_FUNC_RESET:
		ret = hclge_func_reset_notify_vf(hdev);
		if (ret)
			return ret;

		ret = hclge_func_reset_cmd(hdev, 0);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"asserting function reset fail %d!\n", ret);
			return ret;
		}

		/* After performaning pf reset, it is not necessary to do the
		 * mailbox handling or send any command to firmware, because
		 * any mailbox handling or command to firmware is only valid
		 * after hclge_comm_cmd_init is called.
		 */
		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
		hdev->rst_stats.pf_rst_cnt++;
		break;
	case HNAE3_FLR_RESET:
		ret = hclge_func_reset_notify_vf(hdev);
		if (ret)
			return ret;
		break;
	case HNAE3_IMP_RESET:
		hclge_handle_imp_error(hdev);
		reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG,
				BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val);
		break;
	default:
		break;
	}

	/* inform hardware that preparatory work is done */
	msleep(HCLGE_RESET_SYNC_TIME);
	hclge_reset_handshake(hdev, true);
	dev_info(&hdev->pdev->dev, "prepare wait ok\n");

	return ret;
}

static void hclge_show_rst_info(struct hclge_dev *hdev)
{
	char *buf;

	buf = kzalloc(HCLGE_DBG_RESET_INFO_LEN, GFP_KERNEL);
	if (!buf)
		return;

	hclge_dbg_dump_rst_info(hdev, buf, HCLGE_DBG_RESET_INFO_LEN);

	dev_info(&hdev->pdev->dev, "dump reset info:\n%s", buf);

	kfree(buf);
}

static bool hclge_reset_err_handle(struct hclge_dev *hdev)
{
#define MAX_RESET_FAIL_CNT 5

	if (hdev->reset_pending) {
		dev_info(&hdev->pdev->dev, "Reset pending %lu\n",
			 hdev->reset_pending);
		return true;
	} else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) &
		   HCLGE_RESET_INT_M) {
		dev_info(&hdev->pdev->dev,
			 "reset failed because new reset interrupt\n");
		hclge_clear_reset_cause(hdev);
		return false;
	} else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) {
		hdev->rst_stats.reset_fail_cnt++;
		set_bit(hdev->reset_type, &hdev->reset_pending);
		dev_info(&hdev->pdev->dev,
			 "re-schedule reset task(%u)\n",
			 hdev->rst_stats.reset_fail_cnt);
		return true;
	}

	hclge_clear_reset_cause(hdev);

	/* recover the handshake status when reset fail */
	hclge_reset_handshake(hdev, true);

	dev_err(&hdev->pdev->dev, "Reset fail!\n");

	hclge_show_rst_info(hdev);

	set_bit(HCLGE_STATE_RST_FAIL, &hdev->state);

	return false;
}

static void hclge_update_reset_level(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	enum hnae3_reset_type reset_level;

	/* reset request will not be set during reset, so clear
	 * pending reset request to avoid unnecessary reset
	 * caused by the same reason.
	 */
	hclge_get_reset_level(ae_dev, &hdev->reset_request);

	/* if default_reset_request has a higher level reset request,
	 * it should be handled as soon as possible. since some errors
	 * need this kind of reset to fix.
	 */
	reset_level = hclge_get_reset_level(ae_dev,
					    &hdev->default_reset_request);
	if (reset_level != HNAE3_NONE_RESET)
		set_bit(reset_level, &hdev->reset_request);
}

static int hclge_set_rst_done(struct hclge_dev *hdev)
{
	struct hclge_pf_rst_done_cmd *req;
	struct hclge_desc desc;
	int ret;

	req = (struct hclge_pf_rst_done_cmd *)desc.data;
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false);
	req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	/* To be compatible with the old firmware, which does not support
	 * command HCLGE_OPC_PF_RST_DONE, just print a warning and
	 * return success
	 */
	if (ret == -EOPNOTSUPP) {
		dev_warn(&hdev->pdev->dev,
			 "current firmware does not support command(0x%x)!\n",
			 HCLGE_OPC_PF_RST_DONE);
		return 0;
	} else if (ret) {
		dev_err(&hdev->pdev->dev, "assert PF reset done fail %d!\n",
			ret);
	}

	return ret;
}

static int hclge_reset_prepare_up(struct hclge_dev *hdev)
{
	int ret = 0;

	switch (hdev->reset_type) {
	case HNAE3_FUNC_RESET:
	case HNAE3_FLR_RESET:
		ret = hclge_set_all_vf_rst(hdev, false);
		break;
	case HNAE3_GLOBAL_RESET:
	case HNAE3_IMP_RESET:
		ret = hclge_set_rst_done(hdev);
		break;
	default:
		break;
	}

	/* clear up the handshake status after re-initialize done */
	hclge_reset_handshake(hdev, false);

	return ret;
}

static int hclge_reset_stack(struct hclge_dev *hdev)
{
	int ret;

	ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;

	ret = hclge_reset_ae_dev(hdev->ae_dev);
	if (ret)
		return ret;

	return hclge_notify_client(hdev, HNAE3_INIT_CLIENT);
}

static int hclge_reset_prepare(struct hclge_dev *hdev)
{
	int ret;

	hdev->rst_stats.reset_cnt++;
	/* perform reset of the stack & ae device for a client */
	ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;

	rtnl_lock();
	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
	rtnl_unlock();
	if (ret)
		return ret;

	return hclge_reset_prepare_wait(hdev);
}

static int hclge_reset_rebuild(struct hclge_dev *hdev)
{
	int ret;

	hdev->rst_stats.hw_reset_done_cnt++;

	ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;

	rtnl_lock();
	ret = hclge_reset_stack(hdev);
	rtnl_unlock();
	if (ret)
		return ret;

	hclge_clear_reset_cause(hdev);

	ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
	/* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1
	 * times
	 */
	if (ret &&
	    hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1)
		return ret;

	ret = hclge_reset_prepare_up(hdev);
	if (ret)
		return ret;

	rtnl_lock();
	ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT);
	rtnl_unlock();
	if (ret)
		return ret;

	ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT);
	if (ret)
		return ret;

	hdev->last_reset_time = jiffies;
	hdev->rst_stats.reset_fail_cnt = 0;
	hdev->rst_stats.reset_done_cnt++;
	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);

	hclge_update_reset_level(hdev);

	return 0;
}

static void hclge_reset(struct hclge_dev *hdev)
{
	if (hclge_reset_prepare(hdev))
		goto err_reset;

	if (hclge_reset_wait(hdev))
		goto err_reset;

	if (hclge_reset_rebuild(hdev))
		goto err_reset;

	return;

err_reset:
	if (hclge_reset_err_handle(hdev))
		hclge_reset_task_schedule(hdev);
}

static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct hclge_dev *hdev = ae_dev->priv;

	/* We might end up getting called broadly because of 2 below cases:
	 * 1. Recoverable error was conveyed through APEI and only way to bring
	 *    normalcy is to reset.
	 * 2. A new reset request from the stack due to timeout
	 *
	 * check if this is a new reset request and we are not here just because
	 * last reset attempt did not succeed and watchdog hit us again. We will
	 * know this if last reset request did not occur very recently (watchdog
	 * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz)
	 * In case of new request we reset the "reset level" to PF reset.
	 * And if it is a repeat reset request of the most recent one then we
	 * want to make sure we throttle the reset request. Therefore, we will
	 * not allow it again before 3*HZ times.
	 */

	if (time_before(jiffies, (hdev->last_reset_time +
				  HCLGE_RESET_INTERVAL))) {
		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
		return;
	}

	if (hdev->default_reset_request) {
		hdev->reset_level =
			hclge_get_reset_level(ae_dev,
					      &hdev->default_reset_request);
	} else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) {
		hdev->reset_level = HNAE3_FUNC_RESET;
	}

	dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n",
		 hdev->reset_level);

	/* request reset & schedule reset task */
	set_bit(hdev->reset_level, &hdev->reset_request);
	hclge_reset_task_schedule(hdev);

	if (hdev->reset_level < HNAE3_GLOBAL_RESET)
		hdev->reset_level++;
}

static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
					enum hnae3_reset_type rst_type)
{
	struct hclge_dev *hdev = ae_dev->priv;

	set_bit(rst_type, &hdev->default_reset_request);
}

static void hclge_reset_timer(struct timer_list *t)
{
	struct hclge_dev *hdev = from_timer(hdev, t, reset_timer);

	/* if default_reset_request has no value, it means that this reset
	 * request has already be handled, so just return here
	 */
	if (!hdev->default_reset_request)
		return;

	dev_info(&hdev->pdev->dev,
		 "triggering reset in reset timer\n");
	hclge_reset_event(hdev->pdev, NULL);
}

static void hclge_reset_subtask(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);

	/* check if there is any ongoing reset in the hardware. This status can
	 * be checked from reset_pending. If there is then, we need to wait for
	 * hardware to complete reset.
	 *    a. If we are able to figure out in reasonable time that hardware
	 *       has fully resetted then, we can proceed with driver, client
	 *       reset.
	 *    b. else, we can come back later to check this status so re-sched
	 *       now.
	 */
	hdev->last_reset_time = jiffies;
	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending);
	if (hdev->reset_type != HNAE3_NONE_RESET)
		hclge_reset(hdev);

	/* check if we got any *new* reset requests to be honored */
	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request);
	if (hdev->reset_type != HNAE3_NONE_RESET)
		hclge_do_reset(hdev);

	hdev->reset_type = HNAE3_NONE_RESET;
}

static void hclge_handle_err_reset_request(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	enum hnae3_reset_type reset_type;

	if (ae_dev->hw_err_reset_req) {
		reset_type = hclge_get_reset_level(ae_dev,
						   &ae_dev->hw_err_reset_req);
		hclge_set_def_reset_request(ae_dev, reset_type);
	}

	if (hdev->default_reset_request && ae_dev->ops->reset_event)
		ae_dev->ops->reset_event(hdev->pdev, NULL);

	/* enable interrupt after error handling complete */
	hclge_enable_vector(&hdev->misc_vector, true);
}

static void hclge_handle_err_recovery(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);

	ae_dev->hw_err_reset_req = 0;

	if (hclge_find_error_source(hdev)) {
		hclge_handle_error_info_log(ae_dev);
		hclge_handle_mac_tnl(hdev);
	}

	hclge_handle_err_reset_request(hdev);
}

static void hclge_misc_err_recovery(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct device *dev = &hdev->pdev->dev;
	u32 msix_sts_reg;

	msix_sts_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
	if (msix_sts_reg & HCLGE_VECTOR0_REG_MSIX_MASK) {
		if (hclge_handle_hw_msix_error
				(hdev, &hdev->default_reset_request))
			dev_info(dev, "received msix interrupt 0x%x\n",
				 msix_sts_reg);
	}

	hclge_handle_hw_ras_error(ae_dev);

	hclge_handle_err_reset_request(hdev);
}

static void hclge_errhand_service_task(struct hclge_dev *hdev)
{
	if (!test_and_clear_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
		return;

	if (hnae3_dev_ras_imp_supported(hdev))
		hclge_handle_err_recovery(hdev);
	else
		hclge_misc_err_recovery(hdev);
}

static void hclge_reset_service_task(struct hclge_dev *hdev)
{
	if (!test_and_clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state))
		return;

	if (time_is_before_jiffies(hdev->last_rst_scheduled +
				   HCLGE_RESET_SCHED_TIMEOUT))
		dev_warn(&hdev->pdev->dev,
			 "reset service task is scheduled after %ums on cpu%u!\n",
			 jiffies_to_msecs(jiffies - hdev->last_rst_scheduled),
			 smp_processor_id());

	down(&hdev->reset_sem);
	set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);

	hclge_reset_subtask(hdev);

	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
	up(&hdev->reset_sem);
}

static void hclge_update_vport_alive(struct hclge_dev *hdev)
{
#define HCLGE_ALIVE_SECONDS_NORMAL		8

	unsigned long alive_time = HCLGE_ALIVE_SECONDS_NORMAL * HZ;
	int i;

	/* start from vport 1 for PF is always alive */
	for (i = 1; i < hdev->num_alloc_vport; i++) {
		struct hclge_vport *vport = &hdev->vport[i];

		if (!test_bit(HCLGE_VPORT_STATE_INITED, &vport->state) ||
		    !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
			continue;
		if (time_after(jiffies, vport->last_active_jiffies +
			       alive_time)) {
			clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
			dev_warn(&hdev->pdev->dev,
				 "VF %u heartbeat timeout\n",
				 i - HCLGE_VF_VPORT_START_NUM);
		}
	}
}

static void hclge_periodic_service_task(struct hclge_dev *hdev)
{
	unsigned long delta = round_jiffies_relative(HZ);

	if (test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
		return;

	/* Always handle the link updating to make sure link state is
	 * updated when it is triggered by mbx.
	 */
	hclge_update_link_status(hdev);
	hclge_sync_mac_table(hdev);
	hclge_sync_promisc_mode(hdev);
	hclge_sync_fd_table(hdev);

	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
		delta = jiffies - hdev->last_serv_processed;

		if (delta < round_jiffies_relative(HZ)) {
			delta = round_jiffies_relative(HZ) - delta;
			goto out;
		}
	}

	hdev->serv_processed_cnt++;
	hclge_update_vport_alive(hdev);

	if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) {
		hdev->last_serv_processed = jiffies;
		goto out;
	}

	if (!(hdev->serv_processed_cnt % HCLGE_STATS_TIMER_INTERVAL))
		hclge_update_stats_for_all(hdev);

	hclge_update_port_info(hdev);
	hclge_sync_vlan_filter(hdev);

	if (!(hdev->serv_processed_cnt % HCLGE_ARFS_EXPIRE_INTERVAL))
		hclge_rfs_filter_expire(hdev);

	hdev->last_serv_processed = jiffies;

out:
	hclge_task_schedule(hdev, delta);
}

static void hclge_ptp_service_task(struct hclge_dev *hdev)
{
	unsigned long flags;

	if (!test_bit(HCLGE_STATE_PTP_EN, &hdev->state) ||
	    !test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state) ||
	    !time_is_before_jiffies(hdev->ptp->tx_start + HZ))
		return;

	/* to prevent concurrence with the irq handler */
	spin_lock_irqsave(&hdev->ptp->lock, flags);

	/* check HCLGE_STATE_PTP_TX_HANDLING here again, since the irq
	 * handler may handle it just before spin_lock_irqsave().
	 */
	if (test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state))
		hclge_ptp_clean_tx_hwts(hdev);

	spin_unlock_irqrestore(&hdev->ptp->lock, flags);
}

static void hclge_service_task(struct work_struct *work)
{
	struct hclge_dev *hdev =
		container_of(work, struct hclge_dev, service_task.work);

	hclge_errhand_service_task(hdev);
	hclge_reset_service_task(hdev);
	hclge_ptp_service_task(hdev);
	hclge_mailbox_service_task(hdev);
	hclge_periodic_service_task(hdev);

	/* Handle error recovery, reset and mbx again in case periodical task
	 * delays the handling by calling hclge_task_schedule() in
	 * hclge_periodic_service_task().
	 */
	hclge_errhand_service_task(hdev);
	hclge_reset_service_task(hdev);
	hclge_mailbox_service_task(hdev);
}

struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle)
{
	/* VF handle has no client */
	if (!handle->client)
		return container_of(handle, struct hclge_vport, nic);
	else if (handle->client->type == HNAE3_CLIENT_ROCE)
		return container_of(handle, struct hclge_vport, roce);
	else
		return container_of(handle, struct hclge_vport, nic);
}

static void hclge_get_vector_info(struct hclge_dev *hdev, u16 idx,
				  struct hnae3_vector_info *vector_info)
{
#define HCLGE_PF_MAX_VECTOR_NUM_DEV_V2	64

	vector_info->vector = pci_irq_vector(hdev->pdev, idx);

	/* need an extend offset to config vector >= 64 */
	if (idx - 1 < HCLGE_PF_MAX_VECTOR_NUM_DEV_V2)
		vector_info->io_addr = hdev->hw.hw.io_base +
				HCLGE_VECTOR_REG_BASE +
				(idx - 1) * HCLGE_VECTOR_REG_OFFSET;
	else
		vector_info->io_addr = hdev->hw.hw.io_base +
				HCLGE_VECTOR_EXT_REG_BASE +
				(idx - 1) / HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
				HCLGE_VECTOR_REG_OFFSET_H +
				(idx - 1) % HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
				HCLGE_VECTOR_REG_OFFSET;

	hdev->vector_status[idx] = hdev->vport[0].vport_id;
	hdev->vector_irq[idx] = vector_info->vector;
}

static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num,
			    struct hnae3_vector_info *vector_info)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hnae3_vector_info *vector = vector_info;
	struct hclge_dev *hdev = vport->back;
	int alloc = 0;
	u16 i = 0;
	u16 j;

	vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num);
	vector_num = min(hdev->num_msi_left, vector_num);

	for (j = 0; j < vector_num; j++) {
		while (++i < hdev->num_nic_msi) {
			if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) {
				hclge_get_vector_info(hdev, i, vector);
				vector++;
				alloc++;

				break;
			}
		}
	}
	hdev->num_msi_left -= alloc;
	hdev->num_msi_used += alloc;

	return alloc;
}

static int hclge_get_vector_index(struct hclge_dev *hdev, int vector)
{
	int i;

	for (i = 0; i < hdev->num_msi; i++)
		if (vector == hdev->vector_irq[i])
			return i;

	return -EINVAL;
}

static int hclge_put_vector(struct hnae3_handle *handle, int vector)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int vector_id;

	vector_id = hclge_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&hdev->pdev->dev,
			"Get vector index fail. vector = %d\n", vector);
		return vector_id;
	}

	hclge_free_vector(hdev, vector_id);

	return 0;
}

static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir,
			 u8 *key, u8 *hfunc)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_comm_rss_cfg *rss_cfg = &vport->back->rss_cfg;

	hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);

	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
				     ae_dev->dev_specs.rss_ind_tbl_size);

	return 0;
}

static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir,
			 const  u8 *key, const  u8 hfunc)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int ret, i;

	ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, hfunc);
	if (ret) {
		dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc);
		return ret;
	}

	/* Update the shadow RSS table with user specified qids */
	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
		rss_cfg->rss_indirection_tbl[i] = indir[i];

	/* Update the hardware */
	return hclge_comm_set_rss_indir_table(ae_dev, &hdev->hw.hw,
					      rss_cfg->rss_indirection_tbl);
}

static int hclge_set_rss_tuple(struct hnae3_handle *handle,
			       struct ethtool_rxnfc *nfc)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int ret;

	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
				       &hdev->rss_cfg, nfc);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to set rss tuple, ret = %d.\n", ret);
		return ret;
	}

	return 0;
}

static int hclge_get_rss_tuple(struct hnae3_handle *handle,
			       struct ethtool_rxnfc *nfc)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	u8 tuple_sets;
	int ret;

	nfc->data = 0;

	ret = hclge_comm_get_rss_tuple(&vport->back->rss_cfg, nfc->flow_type,
				       &tuple_sets);
	if (ret || !tuple_sets)
		return ret;

	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);

	return 0;
}

static int hclge_get_tc_size(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return hdev->pf_rss_size_max;
}

static int hclge_init_rss_tc_mode(struct hclge_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
	struct hclge_vport *vport = hdev->vport;
	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
	u16 tc_valid[HCLGE_MAX_TC_NUM] = {0};
	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
	struct hnae3_tc_info *tc_info;
	u16 roundup_size;
	u16 rss_size;
	int i;

	tc_info = &vport->nic.kinfo.tc_info;
	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		rss_size = tc_info->tqp_count[i];
		tc_valid[i] = 0;

		if (!(hdev->hw_tc_map & BIT(i)))
			continue;

		/* tc_size set to hardware is the log2 of roundup power of two
		 * of rss_size, the acutal queue size is limited by indirection
		 * table.
		 */
		if (rss_size > ae_dev->dev_specs.rss_ind_tbl_size ||
		    rss_size == 0) {
			dev_err(&hdev->pdev->dev,
				"Configure rss tc size failed, invalid TC_SIZE = %u\n",
				rss_size);
			return -EINVAL;
		}

		roundup_size = roundup_pow_of_two(rss_size);
		roundup_size = ilog2(roundup_size);

		tc_valid[i] = 1;
		tc_size[i] = roundup_size;
		tc_offset[i] = tc_info->tqp_offset[i];
	}

	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
					  tc_size);
}

int hclge_rss_init_hw(struct hclge_dev *hdev)
{
	u16 *rss_indir = hdev->rss_cfg.rss_indirection_tbl;
	u8 *key = hdev->rss_cfg.rss_hash_key;
	u8 hfunc = hdev->rss_cfg.rss_algo;
	int ret;

	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
					     rss_indir);
	if (ret)
		return ret;

	ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, hfunc, key);
	if (ret)
		return ret;

	ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, &hdev->rss_cfg);
	if (ret)
		return ret;

	return hclge_init_rss_tc_mode(hdev);
}

int hclge_bind_ring_with_vector(struct hclge_vport *vport,
				int vector_id, bool en,
				struct hnae3_ring_chain_node *ring_chain)
{
	struct hclge_dev *hdev = vport->back;
	struct hnae3_ring_chain_node *node;
	struct hclge_desc desc;
	struct hclge_ctrl_vector_chain_cmd *req =
		(struct hclge_ctrl_vector_chain_cmd *)desc.data;
	enum hclge_comm_cmd_status status;
	enum hclge_opcode_type op;
	u16 tqp_type_and_id;
	int i;

	op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR;
	hclge_cmd_setup_basic_desc(&desc, op, false);
	req->int_vector_id_l = hnae3_get_field(vector_id,
					       HCLGE_VECTOR_ID_L_M,
					       HCLGE_VECTOR_ID_L_S);
	req->int_vector_id_h = hnae3_get_field(vector_id,
					       HCLGE_VECTOR_ID_H_M,
					       HCLGE_VECTOR_ID_H_S);

	i = 0;
	for (node = ring_chain; node; node = node->next) {
		tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]);
		hnae3_set_field(tqp_type_and_id,  HCLGE_INT_TYPE_M,
				HCLGE_INT_TYPE_S,
				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B));
		hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M,
				HCLGE_TQP_ID_S, node->tqp_index);
		hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M,
				HCLGE_INT_GL_IDX_S,
				hnae3_get_field(node->int_gl_idx,
						HNAE3_RING_GL_IDX_M,
						HNAE3_RING_GL_IDX_S));
		req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id);
		if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) {
			req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD;
			req->vfid = vport->vport_id;

			status = hclge_cmd_send(&hdev->hw, &desc, 1);
			if (status) {
				dev_err(&hdev->pdev->dev,
					"Map TQP fail, status is %d.\n",
					status);
				return -EIO;
			}
			i = 0;

			hclge_cmd_setup_basic_desc(&desc,
						   op,
						   false);
			req->int_vector_id_l =
				hnae3_get_field(vector_id,
						HCLGE_VECTOR_ID_L_M,
						HCLGE_VECTOR_ID_L_S);
			req->int_vector_id_h =
				hnae3_get_field(vector_id,
						HCLGE_VECTOR_ID_H_M,
						HCLGE_VECTOR_ID_H_S);
		}
	}

	if (i > 0) {
		req->int_cause_num = i;
		req->vfid = vport->vport_id;
		status = hclge_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Map TQP fail, status is %d.\n", status);
			return -EIO;
		}
	}

	return 0;
}

static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector,
				    struct hnae3_ring_chain_node *ring_chain)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int vector_id;

	vector_id = hclge_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&hdev->pdev->dev,
			"failed to get vector index. vector=%d\n", vector);
		return vector_id;
	}

	return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain);
}

static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector,
				       struct hnae3_ring_chain_node *ring_chain)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int vector_id, ret;

	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
		return 0;

	vector_id = hclge_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain);
	if (ret)
		dev_err(&handle->pdev->dev,
			"Unmap ring from vector fail. vectorid=%d, ret =%d\n",
			vector_id, ret);

	return ret;
}

static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, u8 vf_id,
				      bool en_uc, bool en_mc, bool en_bc)
{
	struct hclge_vport *vport = &hdev->vport[vf_id];
	struct hnae3_handle *handle = &vport->nic;
	struct hclge_promisc_cfg_cmd *req;
	struct hclge_desc desc;
	bool uc_tx_en = en_uc;
	u8 promisc_cfg = 0;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false);

	req = (struct hclge_promisc_cfg_cmd *)desc.data;
	req->vf_id = vf_id;

	if (test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags))
		uc_tx_en = false;

	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_RX_EN, en_uc ? 1 : 0);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_RX_EN, en_mc ? 1 : 0);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_RX_EN, en_bc ? 1 : 0);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_TX_EN, uc_tx_en ? 1 : 0);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_TX_EN, en_mc ? 1 : 0);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_TX_EN, en_bc ? 1 : 0);
	req->extend_promisc = promisc_cfg;

	/* to be compatible with DEVICE_VERSION_V1/2 */
	promisc_cfg = 0;
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_UC, en_uc ? 1 : 0);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_MC, en_mc ? 1 : 0);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_BC, en_bc ? 1 : 0);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_TX_EN, 1);
	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_RX_EN, 1);
	req->promisc = promisc_cfg;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to set vport %u promisc mode, ret = %d.\n",
			vf_id, ret);

	return ret;
}

int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc,
				 bool en_mc_pmc, bool en_bc_pmc)
{
	return hclge_cmd_set_promisc_mode(vport->back, vport->vport_id,
					  en_uc_pmc, en_mc_pmc, en_bc_pmc);
}

static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
				  bool en_mc_pmc)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	bool en_bc_pmc = true;

	/* For device whose version below V2, if broadcast promisc enabled,
	 * vlan filter is always bypassed. So broadcast promisc should be
	 * disabled until user enable promisc mode
	 */
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false;

	return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc,
					    en_bc_pmc);
}

static void hclge_request_update_promisc_mode(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
}

static void hclge_sync_fd_state(struct hclge_dev *hdev)
{
	if (hlist_empty(&hdev->fd_rule_list))
		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
}

static void hclge_fd_inc_rule_cnt(struct hclge_dev *hdev, u16 location)
{
	if (!test_bit(location, hdev->fd_bmap)) {
		set_bit(location, hdev->fd_bmap);
		hdev->hclge_fd_rule_num++;
	}
}

static void hclge_fd_dec_rule_cnt(struct hclge_dev *hdev, u16 location)
{
	if (test_bit(location, hdev->fd_bmap)) {
		clear_bit(location, hdev->fd_bmap);
		hdev->hclge_fd_rule_num--;
	}
}

static void hclge_fd_free_node(struct hclge_dev *hdev,
			       struct hclge_fd_rule *rule)
{
	hlist_del(&rule->rule_node);
	kfree(rule);
	hclge_sync_fd_state(hdev);
}

static void hclge_update_fd_rule_node(struct hclge_dev *hdev,
				      struct hclge_fd_rule *old_rule,
				      struct hclge_fd_rule *new_rule,
				      enum HCLGE_FD_NODE_STATE state)
{
	switch (state) {
	case HCLGE_FD_TO_ADD:
	case HCLGE_FD_ACTIVE:
		/* 1) if the new state is TO_ADD, just replace the old rule
		 * with the same location, no matter its state, because the
		 * new rule will be configured to the hardware.
		 * 2) if the new state is ACTIVE, it means the new rule
		 * has been configured to the hardware, so just replace
		 * the old rule node with the same location.
		 * 3) for it doesn't add a new node to the list, so it's
		 * unnecessary to update the rule number and fd_bmap.
		 */
		new_rule->rule_node.next = old_rule->rule_node.next;
		new_rule->rule_node.pprev = old_rule->rule_node.pprev;
		memcpy(old_rule, new_rule, sizeof(*old_rule));
		kfree(new_rule);
		break;
	case HCLGE_FD_DELETED:
		hclge_fd_dec_rule_cnt(hdev, old_rule->location);
		hclge_fd_free_node(hdev, old_rule);
		break;
	case HCLGE_FD_TO_DEL:
		/* if new request is TO_DEL, and old rule is existent
		 * 1) the state of old rule is TO_DEL, we need do nothing,
		 * because we delete rule by location, other rule content
		 * is unncessary.
		 * 2) the state of old rule is ACTIVE, we need to change its
		 * state to TO_DEL, so the rule will be deleted when periodic
		 * task being scheduled.
		 * 3) the state of old rule is TO_ADD, it means the rule hasn't
		 * been added to hardware, so we just delete the rule node from
		 * fd_rule_list directly.
		 */
		if (old_rule->state == HCLGE_FD_TO_ADD) {
			hclge_fd_dec_rule_cnt(hdev, old_rule->location);
			hclge_fd_free_node(hdev, old_rule);
			return;
		}
		old_rule->state = HCLGE_FD_TO_DEL;
		break;
	}
}

static struct hclge_fd_rule *hclge_find_fd_rule(struct hlist_head *hlist,
						u16 location,
						struct hclge_fd_rule **parent)
{
	struct hclge_fd_rule *rule;
	struct hlist_node *node;

	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
		if (rule->location == location)
			return rule;
		else if (rule->location > location)
			return NULL;
		/* record the parent node, use to keep the nodes in fd_rule_list
		 * in ascend order.
		 */
		*parent = rule;
	}

	return NULL;
}

/* insert fd rule node in ascend order according to rule->location */
static void hclge_fd_insert_rule_node(struct hlist_head *hlist,
				      struct hclge_fd_rule *rule,
				      struct hclge_fd_rule *parent)
{
	INIT_HLIST_NODE(&rule->rule_node);

	if (parent)
		hlist_add_behind(&rule->rule_node, &parent->rule_node);
	else
		hlist_add_head(&rule->rule_node, hlist);
}

static int hclge_fd_set_user_def_cmd(struct hclge_dev *hdev,
				     struct hclge_fd_user_def_cfg *cfg)
{
	struct hclge_fd_user_def_cfg_cmd *req;
	struct hclge_desc desc;
	u16 data = 0;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_USER_DEF_OP, false);

	req = (struct hclge_fd_user_def_cfg_cmd *)desc.data;

	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[0].ref_cnt > 0);
	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
			HCLGE_FD_USER_DEF_OFT_S, cfg[0].offset);
	req->ol2_cfg = cpu_to_le16(data);

	data = 0;
	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[1].ref_cnt > 0);
	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
			HCLGE_FD_USER_DEF_OFT_S, cfg[1].offset);
	req->ol3_cfg = cpu_to_le16(data);

	data = 0;
	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[2].ref_cnt > 0);
	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
			HCLGE_FD_USER_DEF_OFT_S, cfg[2].offset);
	req->ol4_cfg = cpu_to_le16(data);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to set fd user def data, ret= %d\n", ret);
	return ret;
}

static void hclge_sync_fd_user_def_cfg(struct hclge_dev *hdev, bool locked)
{
	int ret;

	if (!test_and_clear_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state))
		return;

	if (!locked)
		spin_lock_bh(&hdev->fd_rule_lock);

	ret = hclge_fd_set_user_def_cmd(hdev, hdev->fd_cfg.user_def_cfg);
	if (ret)
		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);

	if (!locked)
		spin_unlock_bh(&hdev->fd_rule_lock);
}

static int hclge_fd_check_user_def_refcnt(struct hclge_dev *hdev,
					  struct hclge_fd_rule *rule)
{
	struct hlist_head *hlist = &hdev->fd_rule_list;
	struct hclge_fd_rule *fd_rule, *parent = NULL;
	struct hclge_fd_user_def_info *info, *old_info;
	struct hclge_fd_user_def_cfg *cfg;

	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
		return 0;

	/* for valid layer is start from 1, so need minus 1 to get the cfg */
	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
	info = &rule->ep.user_def;

	if (!cfg->ref_cnt || cfg->offset == info->offset)
		return 0;

	if (cfg->ref_cnt > 1)
		goto error;

	fd_rule = hclge_find_fd_rule(hlist, rule->location, &parent);
	if (fd_rule) {
		old_info = &fd_rule->ep.user_def;
		if (info->layer == old_info->layer)
			return 0;
	}

error:
	dev_err(&hdev->pdev->dev,
		"No available offset for layer%d fd rule, each layer only support one user def offset.\n",
		info->layer + 1);
	return -ENOSPC;
}

static void hclge_fd_inc_user_def_refcnt(struct hclge_dev *hdev,
					 struct hclge_fd_rule *rule)
{
	struct hclge_fd_user_def_cfg *cfg;

	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
		return;

	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
	if (!cfg->ref_cnt) {
		cfg->offset = rule->ep.user_def.offset;
		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
	}
	cfg->ref_cnt++;
}

static void hclge_fd_dec_user_def_refcnt(struct hclge_dev *hdev,
					 struct hclge_fd_rule *rule)
{
	struct hclge_fd_user_def_cfg *cfg;

	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
		return;

	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
	if (!cfg->ref_cnt)
		return;

	cfg->ref_cnt--;
	if (!cfg->ref_cnt) {
		cfg->offset = 0;
		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
	}
}

static void hclge_update_fd_list(struct hclge_dev *hdev,
				 enum HCLGE_FD_NODE_STATE state, u16 location,
				 struct hclge_fd_rule *new_rule)
{
	struct hlist_head *hlist = &hdev->fd_rule_list;
	struct hclge_fd_rule *fd_rule, *parent = NULL;

	fd_rule = hclge_find_fd_rule(hlist, location, &parent);
	if (fd_rule) {
		hclge_fd_dec_user_def_refcnt(hdev, fd_rule);
		if (state == HCLGE_FD_ACTIVE)
			hclge_fd_inc_user_def_refcnt(hdev, new_rule);
		hclge_sync_fd_user_def_cfg(hdev, true);

		hclge_update_fd_rule_node(hdev, fd_rule, new_rule, state);
		return;
	}

	/* it's unlikely to fail here, because we have checked the rule
	 * exist before.
	 */
	if (unlikely(state == HCLGE_FD_TO_DEL || state == HCLGE_FD_DELETED)) {
		dev_warn(&hdev->pdev->dev,
			 "failed to delete fd rule %u, it's inexistent\n",
			 location);
		return;
	}

	hclge_fd_inc_user_def_refcnt(hdev, new_rule);
	hclge_sync_fd_user_def_cfg(hdev, true);

	hclge_fd_insert_rule_node(hlist, new_rule, parent);
	hclge_fd_inc_rule_cnt(hdev, new_rule->location);

	if (state == HCLGE_FD_TO_ADD) {
		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
		hclge_task_schedule(hdev, 0);
	}
}

static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode)
{
	struct hclge_get_fd_mode_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true);

	req = (struct hclge_get_fd_mode_cmd *)desc.data;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret);
		return ret;
	}

	*fd_mode = req->mode;

	return ret;
}

static int hclge_get_fd_allocation(struct hclge_dev *hdev,
				   u32 *stage1_entry_num,
				   u32 *stage2_entry_num,
				   u16 *stage1_counter_num,
				   u16 *stage2_counter_num)
{
	struct hclge_get_fd_allocation_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true);

	req = (struct hclge_get_fd_allocation_cmd *)desc.data;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n",
			ret);
		return ret;
	}

	*stage1_entry_num = le32_to_cpu(req->stage1_entry_num);
	*stage2_entry_num = le32_to_cpu(req->stage2_entry_num);
	*stage1_counter_num = le16_to_cpu(req->stage1_counter_num);
	*stage2_counter_num = le16_to_cpu(req->stage2_counter_num);

	return ret;
}

static int hclge_set_fd_key_config(struct hclge_dev *hdev,
				   enum HCLGE_FD_STAGE stage_num)
{
	struct hclge_set_fd_key_config_cmd *req;
	struct hclge_fd_key_cfg *stage;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false);

	req = (struct hclge_set_fd_key_config_cmd *)desc.data;
	stage = &hdev->fd_cfg.key_cfg[stage_num];
	req->stage = stage_num;
	req->key_select = stage->key_sel;
	req->inner_sipv6_word_en = stage->inner_sipv6_word_en;
	req->inner_dipv6_word_en = stage->inner_dipv6_word_en;
	req->outer_sipv6_word_en = stage->outer_sipv6_word_en;
	req->outer_dipv6_word_en = stage->outer_dipv6_word_en;
	req->tuple_mask = cpu_to_le32(~stage->tuple_active);
	req->meta_data_mask = cpu_to_le32(~stage->meta_data_active);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret);

	return ret;
}

static void hclge_fd_disable_user_def(struct hclge_dev *hdev)
{
	struct hclge_fd_user_def_cfg *cfg = hdev->fd_cfg.user_def_cfg;

	spin_lock_bh(&hdev->fd_rule_lock);
	memset(cfg, 0, sizeof(hdev->fd_cfg.user_def_cfg));
	spin_unlock_bh(&hdev->fd_rule_lock);

	hclge_fd_set_user_def_cmd(hdev, cfg);
}

static int hclge_init_fd_config(struct hclge_dev *hdev)
{
#define LOW_2_WORDS		0x03
	struct hclge_fd_key_cfg *key_cfg;
	int ret;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return 0;

	ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode);
	if (ret)
		return ret;

	switch (hdev->fd_cfg.fd_mode) {
	case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1:
		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH;
		break;
	case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1:
		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2;
		break;
	default:
		dev_err(&hdev->pdev->dev,
			"Unsupported flow director mode %u\n",
			hdev->fd_cfg.fd_mode);
		return -EOPNOTSUPP;
	}

	key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1];
	key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE;
	key_cfg->inner_sipv6_word_en = LOW_2_WORDS;
	key_cfg->inner_dipv6_word_en = LOW_2_WORDS;
	key_cfg->outer_sipv6_word_en = 0;
	key_cfg->outer_dipv6_word_en = 0;

	key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) |
				BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) |
				BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
				BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);

	/* If use max 400bit key, we can support tuples for ether type */
	if (hdev->fd_cfg.fd_mode == HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
		key_cfg->tuple_active |=
				BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC);
		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
			key_cfg->tuple_active |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
	}

	/* roce_type is used to filter roce frames
	 * dst_vport is used to specify the rule
	 */
	key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT);

	ret = hclge_get_fd_allocation(hdev,
				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1],
				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2],
				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1],
				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]);
	if (ret)
		return ret;

	return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1);
}

static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x,
				int loc, u8 *key, bool is_add)
{
	struct hclge_fd_tcam_config_1_cmd *req1;
	struct hclge_fd_tcam_config_2_cmd *req2;
	struct hclge_fd_tcam_config_3_cmd *req3;
	struct hclge_desc desc[3];
	int ret;

	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false);
	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false);
	desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false);

	req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data;
	req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data;
	req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data;

	req1->stage = stage;
	req1->xy_sel = sel_x ? 1 : 0;
	hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0);
	req1->index = cpu_to_le32(loc);
	req1->entry_vld = sel_x ? is_add : 0;

	if (key) {
		memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data));
		memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)],
		       sizeof(req2->tcam_data));
		memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) +
		       sizeof(req2->tcam_data)], sizeof(req3->tcam_data));
	}

	ret = hclge_cmd_send(&hdev->hw, desc, 3);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"config tcam key fail, ret=%d\n",
			ret);

	return ret;
}

static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc,
			      struct hclge_fd_ad_data *action)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclge_fd_ad_config_cmd *req;
	struct hclge_desc desc;
	u64 ad_data = 0;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false);

	req = (struct hclge_fd_ad_config_cmd *)desc.data;
	req->index = cpu_to_le32(loc);
	req->stage = stage;

	hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B,
		      action->write_rule_id_to_bd);
	hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S,
			action->rule_id);
	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
		hnae3_set_bit(ad_data, HCLGE_FD_AD_TC_OVRD_B,
			      action->override_tc);
		hnae3_set_field(ad_data, HCLGE_FD_AD_TC_SIZE_M,
				HCLGE_FD_AD_TC_SIZE_S, (u32)action->tc_size);
	}
	ad_data <<= 32;
	hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet);
	hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B,
		      action->forward_to_direct_queue);
	hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S,
			action->queue_id);
	hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter);
	hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M,
			HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id);
	hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage);
	hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S,
			action->counter_id);

	req->ad_data = cpu_to_le64(ad_data);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret);

	return ret;
}

static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y,
				   struct hclge_fd_rule *rule)
{
	int offset, moffset, ip_offset;
	enum HCLGE_FD_KEY_OPT key_opt;
	u16 tmp_x_s, tmp_y_s;
	u32 tmp_x_l, tmp_y_l;
	u8 *p = (u8 *)rule;
	int i;

	if (rule->unused_tuple & BIT(tuple_bit))
		return true;

	key_opt = tuple_key_info[tuple_bit].key_opt;
	offset = tuple_key_info[tuple_bit].offset;
	moffset = tuple_key_info[tuple_bit].moffset;

	switch (key_opt) {
	case KEY_OPT_U8:
		calc_x(*key_x, p[offset], p[moffset]);
		calc_y(*key_y, p[offset], p[moffset]);

		return true;
	case KEY_OPT_LE16:
		calc_x(tmp_x_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
		calc_y(tmp_y_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
		*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
		*(__le16 *)key_y = cpu_to_le16(tmp_y_s);

		return true;
	case KEY_OPT_LE32:
		calc_x(tmp_x_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
		calc_y(tmp_y_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);

		return true;
	case KEY_OPT_MAC:
		for (i = 0; i < ETH_ALEN; i++) {
			calc_x(key_x[ETH_ALEN - 1 - i], p[offset + i],
			       p[moffset + i]);
			calc_y(key_y[ETH_ALEN - 1 - i], p[offset + i],
			       p[moffset + i]);
		}

		return true;
	case KEY_OPT_IP:
		ip_offset = IPV4_INDEX * sizeof(u32);
		calc_x(tmp_x_l, *(u32 *)(&p[offset + ip_offset]),
		       *(u32 *)(&p[moffset + ip_offset]));
		calc_y(tmp_y_l, *(u32 *)(&p[offset + ip_offset]),
		       *(u32 *)(&p[moffset + ip_offset]));
		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);

		return true;
	default:
		return false;
	}
}

static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id,
				 u8 vf_id, u8 network_port_id)
{
	u32 port_number = 0;

	if (port_type == HOST_PORT) {
		hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S,
				pf_id);
		hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S,
				vf_id);
		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT);
	} else {
		hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M,
				HCLGE_NETWORK_PORT_ID_S, network_port_id);
		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT);
	}

	return port_number;
}

static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg,
				       __le32 *key_x, __le32 *key_y,
				       struct hclge_fd_rule *rule)
{
	u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number;
	u8 cur_pos = 0, tuple_size, shift_bits;
	unsigned int i;

	for (i = 0; i < MAX_META_DATA; i++) {
		tuple_size = meta_data_key_info[i].key_length;
		tuple_bit = key_cfg->meta_data_active & BIT(i);

		switch (tuple_bit) {
		case BIT(ROCE_TYPE):
			hnae3_set_bit(meta_data, cur_pos, NIC_PACKET);
			cur_pos += tuple_size;
			break;
		case BIT(DST_VPORT):
			port_number = hclge_get_port_number(HOST_PORT, 0,
							    rule->vf_id, 0);
			hnae3_set_field(meta_data,
					GENMASK(cur_pos + tuple_size, cur_pos),
					cur_pos, port_number);
			cur_pos += tuple_size;
			break;
		default:
			break;
		}
	}

	calc_x(tmp_x, meta_data, 0xFFFFFFFF);
	calc_y(tmp_y, meta_data, 0xFFFFFFFF);
	shift_bits = sizeof(meta_data) * 8 - cur_pos;

	*key_x = cpu_to_le32(tmp_x << shift_bits);
	*key_y = cpu_to_le32(tmp_y << shift_bits);
}

/* A complete key is combined with meta data key and tuple key.
 * Meta data key is stored at the MSB region, and tuple key is stored at
 * the LSB region, unused bits will be filled 0.
 */
static int hclge_config_key(struct hclge_dev *hdev, u8 stage,
			    struct hclge_fd_rule *rule)
{
	struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage];
	u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES];
	u8 *cur_key_x, *cur_key_y;
	u8 meta_data_region;
	u8 tuple_size;
	int ret;
	u32 i;

	memset(key_x, 0, sizeof(key_x));
	memset(key_y, 0, sizeof(key_y));
	cur_key_x = key_x;
	cur_key_y = key_y;

	for (i = 0; i < MAX_TUPLE; i++) {
		bool tuple_valid;

		tuple_size = tuple_key_info[i].key_length / 8;
		if (!(key_cfg->tuple_active & BIT(i)))
			continue;

		tuple_valid = hclge_fd_convert_tuple(i, cur_key_x,
						     cur_key_y, rule);
		if (tuple_valid) {
			cur_key_x += tuple_size;
			cur_key_y += tuple_size;
		}
	}

	meta_data_region = hdev->fd_cfg.max_key_length / 8 -
			MAX_META_DATA_LENGTH / 8;

	hclge_fd_convert_meta_data(key_cfg,
				   (__le32 *)(key_x + meta_data_region),
				   (__le32 *)(key_y + meta_data_region),
				   rule);

	ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y,
				   true);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"fd key_y config fail, loc=%u, ret=%d\n",
			rule->queue_id, ret);
		return ret;
	}

	ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x,
				   true);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"fd key_x config fail, loc=%u, ret=%d\n",
			rule->queue_id, ret);
	return ret;
}

static int hclge_config_action(struct hclge_dev *hdev, u8 stage,
			       struct hclge_fd_rule *rule)
{
	struct hclge_vport *vport = hdev->vport;
	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
	struct hclge_fd_ad_data ad_data;

	memset(&ad_data, 0, sizeof(struct hclge_fd_ad_data));
	ad_data.ad_id = rule->location;

	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
		ad_data.drop_packet = true;
	} else if (rule->action == HCLGE_FD_ACTION_SELECT_TC) {
		ad_data.override_tc = true;
		ad_data.queue_id =
			kinfo->tc_info.tqp_offset[rule->cls_flower.tc];
		ad_data.tc_size =
			ilog2(kinfo->tc_info.tqp_count[rule->cls_flower.tc]);
	} else {
		ad_data.forward_to_direct_queue = true;
		ad_data.queue_id = rule->queue_id;
	}

	if (hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]) {
		ad_data.use_counter = true;
		ad_data.counter_id = rule->vf_id %
				     hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1];
	} else {
		ad_data.use_counter = false;
		ad_data.counter_id = 0;
	}

	ad_data.use_next_stage = false;
	ad_data.next_input_key = 0;

	ad_data.write_rule_id_to_bd = true;
	ad_data.rule_id = rule->location;

	return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data);
}

static int hclge_fd_check_tcpip4_tuple(struct ethtool_tcpip4_spec *spec,
				       u32 *unused_tuple)
{
	if (!spec || !unused_tuple)
		return -EINVAL;

	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);

	if (!spec->ip4src)
		*unused_tuple |= BIT(INNER_SRC_IP);

	if (!spec->ip4dst)
		*unused_tuple |= BIT(INNER_DST_IP);

	if (!spec->psrc)
		*unused_tuple |= BIT(INNER_SRC_PORT);

	if (!spec->pdst)
		*unused_tuple |= BIT(INNER_DST_PORT);

	if (!spec->tos)
		*unused_tuple |= BIT(INNER_IP_TOS);

	return 0;
}

static int hclge_fd_check_ip4_tuple(struct ethtool_usrip4_spec *spec,
				    u32 *unused_tuple)
{
	if (!spec || !unused_tuple)
		return -EINVAL;

	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);

	if (!spec->ip4src)
		*unused_tuple |= BIT(INNER_SRC_IP);

	if (!spec->ip4dst)
		*unused_tuple |= BIT(INNER_DST_IP);

	if (!spec->tos)
		*unused_tuple |= BIT(INNER_IP_TOS);

	if (!spec->proto)
		*unused_tuple |= BIT(INNER_IP_PROTO);

	if (spec->l4_4_bytes)
		return -EOPNOTSUPP;

	if (spec->ip_ver != ETH_RX_NFC_IP4)
		return -EOPNOTSUPP;

	return 0;
}

static int hclge_fd_check_tcpip6_tuple(struct ethtool_tcpip6_spec *spec,
				       u32 *unused_tuple)
{
	if (!spec || !unused_tuple)
		return -EINVAL;

	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);

	/* check whether src/dst ip address used */
	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
		*unused_tuple |= BIT(INNER_SRC_IP);

	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
		*unused_tuple |= BIT(INNER_DST_IP);

	if (!spec->psrc)
		*unused_tuple |= BIT(INNER_SRC_PORT);

	if (!spec->pdst)
		*unused_tuple |= BIT(INNER_DST_PORT);

	if (!spec->tclass)
		*unused_tuple |= BIT(INNER_IP_TOS);

	return 0;
}

static int hclge_fd_check_ip6_tuple(struct ethtool_usrip6_spec *spec,
				    u32 *unused_tuple)
{
	if (!spec || !unused_tuple)
		return -EINVAL;

	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
			BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);

	/* check whether src/dst ip address used */
	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
		*unused_tuple |= BIT(INNER_SRC_IP);

	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
		*unused_tuple |= BIT(INNER_DST_IP);

	if (!spec->l4_proto)
		*unused_tuple |= BIT(INNER_IP_PROTO);

	if (!spec->tclass)
		*unused_tuple |= BIT(INNER_IP_TOS);

	if (spec->l4_4_bytes)
		return -EOPNOTSUPP;

	return 0;
}

static int hclge_fd_check_ether_tuple(struct ethhdr *spec, u32 *unused_tuple)
{
	if (!spec || !unused_tuple)
		return -EINVAL;

	*unused_tuple |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) |
		BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO);

	if (is_zero_ether_addr(spec->h_source))
		*unused_tuple |= BIT(INNER_SRC_MAC);

	if (is_zero_ether_addr(spec->h_dest))
		*unused_tuple |= BIT(INNER_DST_MAC);

	if (!spec->h_proto)
		*unused_tuple |= BIT(INNER_ETH_TYPE);

	return 0;
}

static int hclge_fd_check_ext_tuple(struct hclge_dev *hdev,
				    struct ethtool_rx_flow_spec *fs,
				    u32 *unused_tuple)
{
	if (fs->flow_type & FLOW_EXT) {
		if (fs->h_ext.vlan_etype) {
			dev_err(&hdev->pdev->dev, "vlan-etype is not supported!\n");
			return -EOPNOTSUPP;
		}

		if (!fs->h_ext.vlan_tci)
			*unused_tuple |= BIT(INNER_VLAN_TAG_FST);

		if (fs->m_ext.vlan_tci &&
		    be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) {
			dev_err(&hdev->pdev->dev,
				"failed to config vlan_tci, invalid vlan_tci: %u, max is %d.\n",
				ntohs(fs->h_ext.vlan_tci), VLAN_N_VID - 1);
			return -EINVAL;
		}
	} else {
		*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
	}

	if (fs->flow_type & FLOW_MAC_EXT) {
		if (hdev->fd_cfg.fd_mode !=
		    HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
			dev_err(&hdev->pdev->dev,
				"FLOW_MAC_EXT is not supported in current fd mode!\n");
			return -EOPNOTSUPP;
		}

		if (is_zero_ether_addr(fs->h_ext.h_dest))
			*unused_tuple |= BIT(INNER_DST_MAC);
		else
			*unused_tuple &= ~BIT(INNER_DST_MAC);
	}

	return 0;
}

static int hclge_fd_get_user_def_layer(u32 flow_type, u32 *unused_tuple,
				       struct hclge_fd_user_def_info *info)
{
	switch (flow_type) {
	case ETHER_FLOW:
		info->layer = HCLGE_FD_USER_DEF_L2;
		*unused_tuple &= ~BIT(INNER_L2_RSV);
		break;
	case IP_USER_FLOW:
	case IPV6_USER_FLOW:
		info->layer = HCLGE_FD_USER_DEF_L3;
		*unused_tuple &= ~BIT(INNER_L3_RSV);
		break;
	case TCP_V4_FLOW:
	case UDP_V4_FLOW:
	case TCP_V6_FLOW:
	case UDP_V6_FLOW:
		info->layer = HCLGE_FD_USER_DEF_L4;
		*unused_tuple &= ~BIT(INNER_L4_RSV);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static bool hclge_fd_is_user_def_all_masked(struct ethtool_rx_flow_spec *fs)
{
	return be32_to_cpu(fs->m_ext.data[1] | fs->m_ext.data[0]) == 0;
}

static int hclge_fd_parse_user_def_field(struct hclge_dev *hdev,
					 struct ethtool_rx_flow_spec *fs,
					 u32 *unused_tuple,
					 struct hclge_fd_user_def_info *info)
{
	u32 tuple_active = hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1].tuple_active;
	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
	u16 data, offset, data_mask, offset_mask;
	int ret;

	info->layer = HCLGE_FD_USER_DEF_NONE;
	*unused_tuple |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;

	if (!(fs->flow_type & FLOW_EXT) || hclge_fd_is_user_def_all_masked(fs))
		return 0;

	/* user-def data from ethtool is 64 bit value, the bit0~15 is used
	 * for data, and bit32~47 is used for offset.
	 */
	data = be32_to_cpu(fs->h_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
	data_mask = be32_to_cpu(fs->m_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
	offset = be32_to_cpu(fs->h_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
	offset_mask = be32_to_cpu(fs->m_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;

	if (!(tuple_active & HCLGE_FD_TUPLE_USER_DEF_TUPLES)) {
		dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n");
		return -EOPNOTSUPP;
	}

	if (offset > HCLGE_FD_MAX_USER_DEF_OFFSET) {
		dev_err(&hdev->pdev->dev,
			"user-def offset[%u] should be no more than %u\n",
			offset, HCLGE_FD_MAX_USER_DEF_OFFSET);
		return -EINVAL;
	}

	if (offset_mask != HCLGE_FD_USER_DEF_OFFSET_UNMASK) {
		dev_err(&hdev->pdev->dev, "user-def offset can't be masked\n");
		return -EINVAL;
	}

	ret = hclge_fd_get_user_def_layer(flow_type, unused_tuple, info);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"unsupported flow type for user-def bytes, ret = %d\n",
			ret);
		return ret;
	}

	info->data = data;
	info->data_mask = data_mask;
	info->offset = offset;

	return 0;
}

static int hclge_fd_check_spec(struct hclge_dev *hdev,
			       struct ethtool_rx_flow_spec *fs,
			       u32 *unused_tuple,
			       struct hclge_fd_user_def_info *info)
{
	u32 flow_type;
	int ret;

	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
		dev_err(&hdev->pdev->dev,
			"failed to config fd rules, invalid rule location: %u, max is %u\n.",
			fs->location,
			hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1] - 1);
		return -EINVAL;
	}

	ret = hclge_fd_parse_user_def_field(hdev, fs, unused_tuple, info);
	if (ret)
		return ret;

	flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
	switch (flow_type) {
	case SCTP_V4_FLOW:
	case TCP_V4_FLOW:
	case UDP_V4_FLOW:
		ret = hclge_fd_check_tcpip4_tuple(&fs->h_u.tcp_ip4_spec,
						  unused_tuple);
		break;
	case IP_USER_FLOW:
		ret = hclge_fd_check_ip4_tuple(&fs->h_u.usr_ip4_spec,
					       unused_tuple);
		break;
	case SCTP_V6_FLOW:
	case TCP_V6_FLOW:
	case UDP_V6_FLOW:
		ret = hclge_fd_check_tcpip6_tuple(&fs->h_u.tcp_ip6_spec,
						  unused_tuple);
		break;
	case IPV6_USER_FLOW:
		ret = hclge_fd_check_ip6_tuple(&fs->h_u.usr_ip6_spec,
					       unused_tuple);
		break;
	case ETHER_FLOW:
		if (hdev->fd_cfg.fd_mode !=
			HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
			dev_err(&hdev->pdev->dev,
				"ETHER_FLOW is not supported in current fd mode!\n");
			return -EOPNOTSUPP;
		}

		ret = hclge_fd_check_ether_tuple(&fs->h_u.ether_spec,
						 unused_tuple);
		break;
	default:
		dev_err(&hdev->pdev->dev,
			"unsupported protocol type, protocol type = %#x\n",
			flow_type);
		return -EOPNOTSUPP;
	}

	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to check flow union tuple, ret = %d\n",
			ret);
		return ret;
	}

	return hclge_fd_check_ext_tuple(hdev, fs, unused_tuple);
}

static void hclge_fd_get_tcpip4_tuple(struct ethtool_rx_flow_spec *fs,
				      struct hclge_fd_rule *rule, u8 ip_proto)
{
	rule->tuples.src_ip[IPV4_INDEX] =
			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src);
	rule->tuples_mask.src_ip[IPV4_INDEX] =
			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src);

	rule->tuples.dst_ip[IPV4_INDEX] =
			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst);
	rule->tuples_mask.dst_ip[IPV4_INDEX] =
			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst);

	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc);
	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc);

	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst);
	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst);

	rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos;
	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos;

	rule->tuples.ether_proto = ETH_P_IP;
	rule->tuples_mask.ether_proto = 0xFFFF;

	rule->tuples.ip_proto = ip_proto;
	rule->tuples_mask.ip_proto = 0xFF;
}

static void hclge_fd_get_ip4_tuple(struct ethtool_rx_flow_spec *fs,
				   struct hclge_fd_rule *rule)
{
	rule->tuples.src_ip[IPV4_INDEX] =
			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src);
	rule->tuples_mask.src_ip[IPV4_INDEX] =
			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src);

	rule->tuples.dst_ip[IPV4_INDEX] =
			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst);
	rule->tuples_mask.dst_ip[IPV4_INDEX] =
			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst);

	rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos;
	rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos;

	rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto;
	rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto;

	rule->tuples.ether_proto = ETH_P_IP;
	rule->tuples_mask.ether_proto = 0xFFFF;
}

static void hclge_fd_get_tcpip6_tuple(struct ethtool_rx_flow_spec *fs,
				      struct hclge_fd_rule *rule, u8 ip_proto)
{
	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.tcp_ip6_spec.ip6src,
			  IPV6_SIZE);
	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.tcp_ip6_spec.ip6src,
			  IPV6_SIZE);

	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.tcp_ip6_spec.ip6dst,
			  IPV6_SIZE);
	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.tcp_ip6_spec.ip6dst,
			  IPV6_SIZE);

	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc);
	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc);

	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst);
	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst);

	rule->tuples.ether_proto = ETH_P_IPV6;
	rule->tuples_mask.ether_proto = 0xFFFF;

	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;

	rule->tuples.ip_proto = ip_proto;
	rule->tuples_mask.ip_proto = 0xFF;
}

static void hclge_fd_get_ip6_tuple(struct ethtool_rx_flow_spec *fs,
				   struct hclge_fd_rule *rule)
{
	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.usr_ip6_spec.ip6src,
			  IPV6_SIZE);
	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.usr_ip6_spec.ip6src,
			  IPV6_SIZE);

	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.usr_ip6_spec.ip6dst,
			  IPV6_SIZE);
	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.usr_ip6_spec.ip6dst,
			  IPV6_SIZE);

	rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto;
	rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto;

	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;

	rule->tuples.ether_proto = ETH_P_IPV6;
	rule->tuples_mask.ether_proto = 0xFFFF;
}

static void hclge_fd_get_ether_tuple(struct ethtool_rx_flow_spec *fs,
				     struct hclge_fd_rule *rule)
{
	ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source);
	ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source);

	ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest);
	ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest);

	rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto);
	rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto);
}

static void hclge_fd_get_user_def_tuple(struct hclge_fd_user_def_info *info,
					struct hclge_fd_rule *rule)
{
	switch (info->layer) {
	case HCLGE_FD_USER_DEF_L2:
		rule->tuples.l2_user_def = info->data;
		rule->tuples_mask.l2_user_def = info->data_mask;
		break;
	case HCLGE_FD_USER_DEF_L3:
		rule->tuples.l3_user_def = info->data;
		rule->tuples_mask.l3_user_def = info->data_mask;
		break;
	case HCLGE_FD_USER_DEF_L4:
		rule->tuples.l4_user_def = (u32)info->data << 16;
		rule->tuples_mask.l4_user_def = (u32)info->data_mask << 16;
		break;
	default:
		break;
	}

	rule->ep.user_def = *info;
}

static int hclge_fd_get_tuple(struct ethtool_rx_flow_spec *fs,
			      struct hclge_fd_rule *rule,
			      struct hclge_fd_user_def_info *info)
{
	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);

	switch (flow_type) {
	case SCTP_V4_FLOW:
		hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_SCTP);
		break;
	case TCP_V4_FLOW:
		hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_TCP);
		break;
	case UDP_V4_FLOW:
		hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_UDP);
		break;
	case IP_USER_FLOW:
		hclge_fd_get_ip4_tuple(fs, rule);
		break;
	case SCTP_V6_FLOW:
		hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_SCTP);
		break;
	case TCP_V6_FLOW:
		hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_TCP);
		break;
	case UDP_V6_FLOW:
		hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_UDP);
		break;
	case IPV6_USER_FLOW:
		hclge_fd_get_ip6_tuple(fs, rule);
		break;
	case ETHER_FLOW:
		hclge_fd_get_ether_tuple(fs, rule);
		break;
	default:
		return -EOPNOTSUPP;
	}

	if (fs->flow_type & FLOW_EXT) {
		rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci);
		rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci);
		hclge_fd_get_user_def_tuple(info, rule);
	}

	if (fs->flow_type & FLOW_MAC_EXT) {
		ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest);
		ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest);
	}

	return 0;
}

static int hclge_fd_config_rule(struct hclge_dev *hdev,
				struct hclge_fd_rule *rule)
{
	int ret;

	ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule);
	if (ret)
		return ret;

	return hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule);
}

static int hclge_add_fd_entry_common(struct hclge_dev *hdev,
				     struct hclge_fd_rule *rule)
{
	int ret;

	spin_lock_bh(&hdev->fd_rule_lock);

	if (hdev->fd_active_type != rule->rule_type &&
	    (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
	     hdev->fd_active_type == HCLGE_FD_EP_ACTIVE)) {
		dev_err(&hdev->pdev->dev,
			"mode conflict(new type %d, active type %d), please delete existent rules first\n",
			rule->rule_type, hdev->fd_active_type);
		spin_unlock_bh(&hdev->fd_rule_lock);
		return -EINVAL;
	}

	ret = hclge_fd_check_user_def_refcnt(hdev, rule);
	if (ret)
		goto out;

	ret = hclge_clear_arfs_rules(hdev);
	if (ret)
		goto out;

	ret = hclge_fd_config_rule(hdev, rule);
	if (ret)
		goto out;

	rule->state = HCLGE_FD_ACTIVE;
	hdev->fd_active_type = rule->rule_type;
	hclge_update_fd_list(hdev, rule->state, rule->location, rule);

out:
	spin_unlock_bh(&hdev->fd_rule_lock);
	return ret;
}

static bool hclge_is_cls_flower_active(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE;
}

static int hclge_fd_parse_ring_cookie(struct hclge_dev *hdev, u64 ring_cookie,
				      u16 *vport_id, u8 *action, u16 *queue_id)
{
	struct hclge_vport *vport = hdev->vport;

	if (ring_cookie == RX_CLS_FLOW_DISC) {
		*action = HCLGE_FD_ACTION_DROP_PACKET;
	} else {
		u32 ring = ethtool_get_flow_spec_ring(ring_cookie);
		u8 vf = ethtool_get_flow_spec_ring_vf(ring_cookie);
		u16 tqps;

		/* To keep consistent with user's configuration, minus 1 when
		 * printing 'vf', because vf id from ethtool is added 1 for vf.
		 */
		if (vf > hdev->num_req_vfs) {
			dev_err(&hdev->pdev->dev,
				"Error: vf id (%u) should be less than %u\n",
				vf - 1U, hdev->num_req_vfs);
			return -EINVAL;
		}

		*vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id;
		tqps = hdev->vport[vf].nic.kinfo.num_tqps;

		if (ring >= tqps) {
			dev_err(&hdev->pdev->dev,
				"Error: queue id (%u) > max tqp num (%u)\n",
				ring, tqps - 1U);
			return -EINVAL;
		}

		*action = HCLGE_FD_ACTION_SELECT_QUEUE;
		*queue_id = ring;
	}

	return 0;
}

static int hclge_add_fd_entry(struct hnae3_handle *handle,
			      struct ethtool_rxnfc *cmd)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_fd_user_def_info info;
	u16 dst_vport_id = 0, q_index = 0;
	struct ethtool_rx_flow_spec *fs;
	struct hclge_fd_rule *rule;
	u32 unused = 0;
	u8 action;
	int ret;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
		dev_err(&hdev->pdev->dev,
			"flow table director is not supported\n");
		return -EOPNOTSUPP;
	}

	if (!hdev->fd_en) {
		dev_err(&hdev->pdev->dev,
			"please enable flow director first\n");
		return -EOPNOTSUPP;
	}

	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;

	ret = hclge_fd_check_spec(hdev, fs, &unused, &info);
	if (ret)
		return ret;

	ret = hclge_fd_parse_ring_cookie(hdev, fs->ring_cookie, &dst_vport_id,
					 &action, &q_index);
	if (ret)
		return ret;

	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
	if (!rule)
		return -ENOMEM;

	ret = hclge_fd_get_tuple(fs, rule, &info);
	if (ret) {
		kfree(rule);
		return ret;
	}

	rule->flow_type = fs->flow_type;
	rule->location = fs->location;
	rule->unused_tuple = unused;
	rule->vf_id = dst_vport_id;
	rule->queue_id = q_index;
	rule->action = action;
	rule->rule_type = HCLGE_FD_EP_ACTIVE;

	ret = hclge_add_fd_entry_common(hdev, rule);
	if (ret)
		kfree(rule);

	return ret;
}

static int hclge_del_fd_entry(struct hnae3_handle *handle,
			      struct ethtool_rxnfc *cmd)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct ethtool_rx_flow_spec *fs;
	int ret;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return -EOPNOTSUPP;

	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;

	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
		return -EINVAL;

	spin_lock_bh(&hdev->fd_rule_lock);
	if (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
	    !test_bit(fs->location, hdev->fd_bmap)) {
		dev_err(&hdev->pdev->dev,
			"Delete fail, rule %u is inexistent\n", fs->location);
		spin_unlock_bh(&hdev->fd_rule_lock);
		return -ENOENT;
	}

	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location,
				   NULL, false);
	if (ret)
		goto out;

	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, fs->location, NULL);

out:
	spin_unlock_bh(&hdev->fd_rule_lock);
	return ret;
}

static void hclge_clear_fd_rules_in_list(struct hclge_dev *hdev,
					 bool clear_list)
{
	struct hclge_fd_rule *rule;
	struct hlist_node *node;
	u16 location;

	spin_lock_bh(&hdev->fd_rule_lock);

	for_each_set_bit(location, hdev->fd_bmap,
			 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
		hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location,
				     NULL, false);

	if (clear_list) {
		hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list,
					  rule_node) {
			hlist_del(&rule->rule_node);
			kfree(rule);
		}
		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
		hdev->hclge_fd_rule_num = 0;
		bitmap_zero(hdev->fd_bmap,
			    hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
	}

	spin_unlock_bh(&hdev->fd_rule_lock);
}

static void hclge_del_all_fd_entries(struct hclge_dev *hdev)
{
	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return;

	hclge_clear_fd_rules_in_list(hdev, true);
	hclge_fd_disable_user_def(hdev);
}

static int hclge_restore_fd_entries(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_fd_rule *rule;
	struct hlist_node *node;

	/* Return ok here, because reset error handling will check this
	 * return value. If error is returned here, the reset process will
	 * fail.
	 */
	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return 0;

	/* if fd is disabled, should not restore it when reset */
	if (!hdev->fd_en)
		return 0;

	spin_lock_bh(&hdev->fd_rule_lock);
	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
		if (rule->state == HCLGE_FD_ACTIVE)
			rule->state = HCLGE_FD_TO_ADD;
	}
	spin_unlock_bh(&hdev->fd_rule_lock);
	set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);

	return 0;
}

static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *cmd)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev) || hclge_is_cls_flower_active(handle))
		return -EOPNOTSUPP;

	cmd->rule_cnt = hdev->hclge_fd_rule_num;
	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];

	return 0;
}

static void hclge_fd_get_tcpip4_info(struct hclge_fd_rule *rule,
				     struct ethtool_tcpip4_spec *spec,
				     struct ethtool_tcpip4_spec *spec_mask)
{
	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);

	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);

	spec->psrc = cpu_to_be16(rule->tuples.src_port);
	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
			0 : cpu_to_be16(rule->tuples_mask.src_port);

	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
			0 : cpu_to_be16(rule->tuples_mask.dst_port);

	spec->tos = rule->tuples.ip_tos;
	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
			0 : rule->tuples_mask.ip_tos;
}

static void hclge_fd_get_ip4_info(struct hclge_fd_rule *rule,
				  struct ethtool_usrip4_spec *spec,
				  struct ethtool_usrip4_spec *spec_mask)
{
	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);

	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);

	spec->tos = rule->tuples.ip_tos;
	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
			0 : rule->tuples_mask.ip_tos;

	spec->proto = rule->tuples.ip_proto;
	spec_mask->proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
			0 : rule->tuples_mask.ip_proto;

	spec->ip_ver = ETH_RX_NFC_IP4;
}

static void hclge_fd_get_tcpip6_info(struct hclge_fd_rule *rule,
				     struct ethtool_tcpip6_spec *spec,
				     struct ethtool_tcpip6_spec *spec_mask)
{
	cpu_to_be32_array(spec->ip6src,
			  rule->tuples.src_ip, IPV6_SIZE);
	cpu_to_be32_array(spec->ip6dst,
			  rule->tuples.dst_ip, IPV6_SIZE);
	if (rule->unused_tuple & BIT(INNER_SRC_IP))
		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
	else
		cpu_to_be32_array(spec_mask->ip6src, rule->tuples_mask.src_ip,
				  IPV6_SIZE);

	if (rule->unused_tuple & BIT(INNER_DST_IP))
		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
	else
		cpu_to_be32_array(spec_mask->ip6dst, rule->tuples_mask.dst_ip,
				  IPV6_SIZE);

	spec->tclass = rule->tuples.ip_tos;
	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
			0 : rule->tuples_mask.ip_tos;

	spec->psrc = cpu_to_be16(rule->tuples.src_port);
	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
			0 : cpu_to_be16(rule->tuples_mask.src_port);

	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
			0 : cpu_to_be16(rule->tuples_mask.dst_port);
}

static void hclge_fd_get_ip6_info(struct hclge_fd_rule *rule,
				  struct ethtool_usrip6_spec *spec,
				  struct ethtool_usrip6_spec *spec_mask)
{
	cpu_to_be32_array(spec->ip6src, rule->tuples.src_ip, IPV6_SIZE);
	cpu_to_be32_array(spec->ip6dst, rule->tuples.dst_ip, IPV6_SIZE);
	if (rule->unused_tuple & BIT(INNER_SRC_IP))
		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
	else
		cpu_to_be32_array(spec_mask->ip6src,
				  rule->tuples_mask.src_ip, IPV6_SIZE);

	if (rule->unused_tuple & BIT(INNER_DST_IP))
		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
	else
		cpu_to_be32_array(spec_mask->ip6dst,
				  rule->tuples_mask.dst_ip, IPV6_SIZE);

	spec->tclass = rule->tuples.ip_tos;
	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
			0 : rule->tuples_mask.ip_tos;

	spec->l4_proto = rule->tuples.ip_proto;
	spec_mask->l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
			0 : rule->tuples_mask.ip_proto;
}

static void hclge_fd_get_ether_info(struct hclge_fd_rule *rule,
				    struct ethhdr *spec,
				    struct ethhdr *spec_mask)
{
	ether_addr_copy(spec->h_source, rule->tuples.src_mac);
	ether_addr_copy(spec->h_dest, rule->tuples.dst_mac);

	if (rule->unused_tuple & BIT(INNER_SRC_MAC))
		eth_zero_addr(spec_mask->h_source);
	else
		ether_addr_copy(spec_mask->h_source, rule->tuples_mask.src_mac);

	if (rule->unused_tuple & BIT(INNER_DST_MAC))
		eth_zero_addr(spec_mask->h_dest);
	else
		ether_addr_copy(spec_mask->h_dest, rule->tuples_mask.dst_mac);

	spec->h_proto = cpu_to_be16(rule->tuples.ether_proto);
	spec_mask->h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ?
			0 : cpu_to_be16(rule->tuples_mask.ether_proto);
}

static void hclge_fd_get_user_def_info(struct ethtool_rx_flow_spec *fs,
				       struct hclge_fd_rule *rule)
{
	if ((rule->unused_tuple & HCLGE_FD_TUPLE_USER_DEF_TUPLES) ==
	    HCLGE_FD_TUPLE_USER_DEF_TUPLES) {
		fs->h_ext.data[0] = 0;
		fs->h_ext.data[1] = 0;
		fs->m_ext.data[0] = 0;
		fs->m_ext.data[1] = 0;
	} else {
		fs->h_ext.data[0] = cpu_to_be32(rule->ep.user_def.offset);
		fs->h_ext.data[1] = cpu_to_be32(rule->ep.user_def.data);
		fs->m_ext.data[0] =
				cpu_to_be32(HCLGE_FD_USER_DEF_OFFSET_UNMASK);
		fs->m_ext.data[1] = cpu_to_be32(rule->ep.user_def.data_mask);
	}
}

static void hclge_fd_get_ext_info(struct ethtool_rx_flow_spec *fs,
				  struct hclge_fd_rule *rule)
{
	if (fs->flow_type & FLOW_EXT) {
		fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1);
		fs->m_ext.vlan_tci =
				rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ?
				0 : cpu_to_be16(rule->tuples_mask.vlan_tag1);

		hclge_fd_get_user_def_info(fs, rule);
	}

	if (fs->flow_type & FLOW_MAC_EXT) {
		ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac);
		if (rule->unused_tuple & BIT(INNER_DST_MAC))
			eth_zero_addr(fs->m_u.ether_spec.h_dest);
		else
			ether_addr_copy(fs->m_u.ether_spec.h_dest,
					rule->tuples_mask.dst_mac);
	}
}

static struct hclge_fd_rule *hclge_get_fd_rule(struct hclge_dev *hdev,
					       u16 location)
{
	struct hclge_fd_rule *rule = NULL;
	struct hlist_node *node2;

	hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) {
		if (rule->location == location)
			return rule;
		else if (rule->location > location)
			return NULL;
	}

	return NULL;
}

static void hclge_fd_get_ring_cookie(struct ethtool_rx_flow_spec *fs,
				     struct hclge_fd_rule *rule)
{
	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
		fs->ring_cookie = RX_CLS_FLOW_DISC;
	} else {
		u64 vf_id;

		fs->ring_cookie = rule->queue_id;
		vf_id = rule->vf_id;
		vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
		fs->ring_cookie |= vf_id;
	}
}

static int hclge_get_fd_rule_info(struct hnae3_handle *handle,
				  struct ethtool_rxnfc *cmd)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_fd_rule *rule = NULL;
	struct hclge_dev *hdev = vport->back;
	struct ethtool_rx_flow_spec *fs;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return -EOPNOTSUPP;

	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;

	spin_lock_bh(&hdev->fd_rule_lock);

	rule = hclge_get_fd_rule(hdev, fs->location);
	if (!rule) {
		spin_unlock_bh(&hdev->fd_rule_lock);
		return -ENOENT;
	}

	fs->flow_type = rule->flow_type;
	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
	case SCTP_V4_FLOW:
	case TCP_V4_FLOW:
	case UDP_V4_FLOW:
		hclge_fd_get_tcpip4_info(rule, &fs->h_u.tcp_ip4_spec,
					 &fs->m_u.tcp_ip4_spec);
		break;
	case IP_USER_FLOW:
		hclge_fd_get_ip4_info(rule, &fs->h_u.usr_ip4_spec,
				      &fs->m_u.usr_ip4_spec);
		break;
	case SCTP_V6_FLOW:
	case TCP_V6_FLOW:
	case UDP_V6_FLOW:
		hclge_fd_get_tcpip6_info(rule, &fs->h_u.tcp_ip6_spec,
					 &fs->m_u.tcp_ip6_spec);
		break;
	case IPV6_USER_FLOW:
		hclge_fd_get_ip6_info(rule, &fs->h_u.usr_ip6_spec,
				      &fs->m_u.usr_ip6_spec);
		break;
	/* The flow type of fd rule has been checked before adding in to rule
	 * list. As other flow types have been handled, it must be ETHER_FLOW
	 * for the default case
	 */
	default:
		hclge_fd_get_ether_info(rule, &fs->h_u.ether_spec,
					&fs->m_u.ether_spec);
		break;
	}

	hclge_fd_get_ext_info(fs, rule);

	hclge_fd_get_ring_cookie(fs, rule);

	spin_unlock_bh(&hdev->fd_rule_lock);

	return 0;
}

static int hclge_get_all_rules(struct hnae3_handle *handle,
			       struct ethtool_rxnfc *cmd, u32 *rule_locs)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_fd_rule *rule;
	struct hlist_node *node2;
	int cnt = 0;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return -EOPNOTSUPP;

	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];

	spin_lock_bh(&hdev->fd_rule_lock);
	hlist_for_each_entry_safe(rule, node2,
				  &hdev->fd_rule_list, rule_node) {
		if (cnt == cmd->rule_cnt) {
			spin_unlock_bh(&hdev->fd_rule_lock);
			return -EMSGSIZE;
		}

		if (rule->state == HCLGE_FD_TO_DEL)
			continue;

		rule_locs[cnt] = rule->location;
		cnt++;
	}

	spin_unlock_bh(&hdev->fd_rule_lock);

	cmd->rule_cnt = cnt;

	return 0;
}

static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys,
				     struct hclge_fd_rule_tuples *tuples)
{
#define flow_ip6_src fkeys->addrs.v6addrs.src.in6_u.u6_addr32
#define flow_ip6_dst fkeys->addrs.v6addrs.dst.in6_u.u6_addr32

	tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto);
	tuples->ip_proto = fkeys->basic.ip_proto;
	tuples->dst_port = be16_to_cpu(fkeys->ports.dst);

	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
		tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src);
		tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst);
	} else {
		int i;

		for (i = 0; i < IPV6_SIZE; i++) {
			tuples->src_ip[i] = be32_to_cpu(flow_ip6_src[i]);
			tuples->dst_ip[i] = be32_to_cpu(flow_ip6_dst[i]);
		}
	}
}

/* traverse all rules, check whether an existed rule has the same tuples */
static struct hclge_fd_rule *
hclge_fd_search_flow_keys(struct hclge_dev *hdev,
			  const struct hclge_fd_rule_tuples *tuples)
{
	struct hclge_fd_rule *rule = NULL;
	struct hlist_node *node;

	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
		if (!memcmp(tuples, &rule->tuples, sizeof(*tuples)))
			return rule;
	}

	return NULL;
}

static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples,
				     struct hclge_fd_rule *rule)
{
	rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
			     BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) |
			     BIT(INNER_SRC_PORT);
	rule->action = 0;
	rule->vf_id = 0;
	rule->rule_type = HCLGE_FD_ARFS_ACTIVE;
	rule->state = HCLGE_FD_TO_ADD;
	if (tuples->ether_proto == ETH_P_IP) {
		if (tuples->ip_proto == IPPROTO_TCP)
			rule->flow_type = TCP_V4_FLOW;
		else
			rule->flow_type = UDP_V4_FLOW;
	} else {
		if (tuples->ip_proto == IPPROTO_TCP)
			rule->flow_type = TCP_V6_FLOW;
		else
			rule->flow_type = UDP_V6_FLOW;
	}
	memcpy(&rule->tuples, tuples, sizeof(rule->tuples));
	memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask));
}

static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id,
				      u16 flow_id, struct flow_keys *fkeys)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_fd_rule_tuples new_tuples = {};
	struct hclge_dev *hdev = vport->back;
	struct hclge_fd_rule *rule;
	u16 bit_id;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return -EOPNOTSUPP;

	/* when there is already fd rule existed add by user,
	 * arfs should not work
	 */
	spin_lock_bh(&hdev->fd_rule_lock);
	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE &&
	    hdev->fd_active_type != HCLGE_FD_RULE_NONE) {
		spin_unlock_bh(&hdev->fd_rule_lock);
		return -EOPNOTSUPP;
	}

	hclge_fd_get_flow_tuples(fkeys, &new_tuples);

	/* check is there flow director filter existed for this flow,
	 * if not, create a new filter for it;
	 * if filter exist with different queue id, modify the filter;
	 * if filter exist with same queue id, do nothing
	 */
	rule = hclge_fd_search_flow_keys(hdev, &new_tuples);
	if (!rule) {
		bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM);
		if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
			spin_unlock_bh(&hdev->fd_rule_lock);
			return -ENOSPC;
		}

		rule = kzalloc(sizeof(*rule), GFP_ATOMIC);
		if (!rule) {
			spin_unlock_bh(&hdev->fd_rule_lock);
			return -ENOMEM;
		}

		rule->location = bit_id;
		rule->arfs.flow_id = flow_id;
		rule->queue_id = queue_id;
		hclge_fd_build_arfs_rule(&new_tuples, rule);
		hclge_update_fd_list(hdev, rule->state, rule->location, rule);
		hdev->fd_active_type = HCLGE_FD_ARFS_ACTIVE;
	} else if (rule->queue_id != queue_id) {
		rule->queue_id = queue_id;
		rule->state = HCLGE_FD_TO_ADD;
		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
		hclge_task_schedule(hdev, 0);
	}
	spin_unlock_bh(&hdev->fd_rule_lock);
	return rule->location;
}

static void hclge_rfs_filter_expire(struct hclge_dev *hdev)
{
#ifdef CONFIG_RFS_ACCEL
	struct hnae3_handle *handle = &hdev->vport[0].nic;
	struct hclge_fd_rule *rule;
	struct hlist_node *node;

	spin_lock_bh(&hdev->fd_rule_lock);
	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) {
		spin_unlock_bh(&hdev->fd_rule_lock);
		return;
	}
	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
		if (rule->state != HCLGE_FD_ACTIVE)
			continue;
		if (rps_may_expire_flow(handle->netdev, rule->queue_id,
					rule->arfs.flow_id, rule->location)) {
			rule->state = HCLGE_FD_TO_DEL;
			set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
		}
	}
	spin_unlock_bh(&hdev->fd_rule_lock);
#endif
}

/* make sure being called after lock up with fd_rule_lock */
static int hclge_clear_arfs_rules(struct hclge_dev *hdev)
{
#ifdef CONFIG_RFS_ACCEL
	struct hclge_fd_rule *rule;
	struct hlist_node *node;
	int ret;

	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE)
		return 0;

	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
		switch (rule->state) {
		case HCLGE_FD_TO_DEL:
		case HCLGE_FD_ACTIVE:
			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
						   rule->location, NULL, false);
			if (ret)
				return ret;
			fallthrough;
		case HCLGE_FD_TO_ADD:
			hclge_fd_dec_rule_cnt(hdev, rule->location);
			hlist_del(&rule->rule_node);
			kfree(rule);
			break;
		default:
			break;
		}
	}
	hclge_sync_fd_state(hdev);

#endif
	return 0;
}

static void hclge_get_cls_key_basic(const struct flow_rule *flow,
				    struct hclge_fd_rule *rule)
{
	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_BASIC)) {
		struct flow_match_basic match;
		u16 ethtype_key, ethtype_mask;

		flow_rule_match_basic(flow, &match);
		ethtype_key = ntohs(match.key->n_proto);
		ethtype_mask = ntohs(match.mask->n_proto);

		if (ethtype_key == ETH_P_ALL) {
			ethtype_key = 0;
			ethtype_mask = 0;
		}
		rule->tuples.ether_proto = ethtype_key;
		rule->tuples_mask.ether_proto = ethtype_mask;
		rule->tuples.ip_proto = match.key->ip_proto;
		rule->tuples_mask.ip_proto = match.mask->ip_proto;
	} else {
		rule->unused_tuple |= BIT(INNER_IP_PROTO);
		rule->unused_tuple |= BIT(INNER_ETH_TYPE);
	}
}

static void hclge_get_cls_key_mac(const struct flow_rule *flow,
				  struct hclge_fd_rule *rule)
{
	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
		struct flow_match_eth_addrs match;

		flow_rule_match_eth_addrs(flow, &match);
		ether_addr_copy(rule->tuples.dst_mac, match.key->dst);
		ether_addr_copy(rule->tuples_mask.dst_mac, match.mask->dst);
		ether_addr_copy(rule->tuples.src_mac, match.key->src);
		ether_addr_copy(rule->tuples_mask.src_mac, match.mask->src);
	} else {
		rule->unused_tuple |= BIT(INNER_DST_MAC);
		rule->unused_tuple |= BIT(INNER_SRC_MAC);
	}
}

static void hclge_get_cls_key_vlan(const struct flow_rule *flow,
				   struct hclge_fd_rule *rule)
{
	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
		struct flow_match_vlan match;

		flow_rule_match_vlan(flow, &match);
		rule->tuples.vlan_tag1 = match.key->vlan_id |
				(match.key->vlan_priority << VLAN_PRIO_SHIFT);
		rule->tuples_mask.vlan_tag1 = match.mask->vlan_id |
				(match.mask->vlan_priority << VLAN_PRIO_SHIFT);
	} else {
		rule->unused_tuple |= BIT(INNER_VLAN_TAG_FST);
	}
}

static void hclge_get_cls_key_ip(const struct flow_rule *flow,
				 struct hclge_fd_rule *rule)
{
	u16 addr_type = 0;

	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_CONTROL)) {
		struct flow_match_control match;

		flow_rule_match_control(flow, &match);
		addr_type = match.key->addr_type;
	}

	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
		struct flow_match_ipv4_addrs match;

		flow_rule_match_ipv4_addrs(flow, &match);
		rule->tuples.src_ip[IPV4_INDEX] = be32_to_cpu(match.key->src);
		rule->tuples_mask.src_ip[IPV4_INDEX] =
						be32_to_cpu(match.mask->src);
		rule->tuples.dst_ip[IPV4_INDEX] = be32_to_cpu(match.key->dst);
		rule->tuples_mask.dst_ip[IPV4_INDEX] =
						be32_to_cpu(match.mask->dst);
	} else if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
		struct flow_match_ipv6_addrs match;

		flow_rule_match_ipv6_addrs(flow, &match);
		be32_to_cpu_array(rule->tuples.src_ip, match.key->src.s6_addr32,
				  IPV6_SIZE);
		be32_to_cpu_array(rule->tuples_mask.src_ip,
				  match.mask->src.s6_addr32, IPV6_SIZE);
		be32_to_cpu_array(rule->tuples.dst_ip, match.key->dst.s6_addr32,
				  IPV6_SIZE);
		be32_to_cpu_array(rule->tuples_mask.dst_ip,
				  match.mask->dst.s6_addr32, IPV6_SIZE);
	} else {
		rule->unused_tuple |= BIT(INNER_SRC_IP);
		rule->unused_tuple |= BIT(INNER_DST_IP);
	}
}

static void hclge_get_cls_key_port(const struct flow_rule *flow,
				   struct hclge_fd_rule *rule)
{
	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
		struct flow_match_ports match;

		flow_rule_match_ports(flow, &match);

		rule->tuples.src_port = be16_to_cpu(match.key->src);
		rule->tuples_mask.src_port = be16_to_cpu(match.mask->src);
		rule->tuples.dst_port = be16_to_cpu(match.key->dst);
		rule->tuples_mask.dst_port = be16_to_cpu(match.mask->dst);
	} else {
		rule->unused_tuple |= BIT(INNER_SRC_PORT);
		rule->unused_tuple |= BIT(INNER_DST_PORT);
	}
}

static int hclge_parse_cls_flower(struct hclge_dev *hdev,
				  struct flow_cls_offload *cls_flower,
				  struct hclge_fd_rule *rule)
{
	struct flow_rule *flow = flow_cls_offload_flow_rule(cls_flower);
	struct flow_dissector *dissector = flow->match.dissector;

	if (dissector->used_keys &
	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
	      BIT(FLOW_DISSECTOR_KEY_PORTS))) {
		dev_err(&hdev->pdev->dev, "unsupported key set: %#x\n",
			dissector->used_keys);
		return -EOPNOTSUPP;
	}

	hclge_get_cls_key_basic(flow, rule);
	hclge_get_cls_key_mac(flow, rule);
	hclge_get_cls_key_vlan(flow, rule);
	hclge_get_cls_key_ip(flow, rule);
	hclge_get_cls_key_port(flow, rule);

	return 0;
}

static int hclge_check_cls_flower(struct hclge_dev *hdev,
				  struct flow_cls_offload *cls_flower, int tc)
{
	u32 prio = cls_flower->common.prio;

	if (tc < 0 || tc > hdev->tc_max) {
		dev_err(&hdev->pdev->dev, "invalid traffic class\n");
		return -EINVAL;
	}

	if (prio == 0 ||
	    prio > hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
		dev_err(&hdev->pdev->dev,
			"prio %u should be in range[1, %u]\n",
			prio, hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
		return -EINVAL;
	}

	if (test_bit(prio - 1, hdev->fd_bmap)) {
		dev_err(&hdev->pdev->dev, "prio %u is already used\n", prio);
		return -EINVAL;
	}
	return 0;
}

static int hclge_add_cls_flower(struct hnae3_handle *handle,
				struct flow_cls_offload *cls_flower,
				int tc)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_fd_rule *rule;
	int ret;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
		dev_err(&hdev->pdev->dev,
			"cls flower is not supported\n");
		return -EOPNOTSUPP;
	}

	ret = hclge_check_cls_flower(hdev, cls_flower, tc);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to check cls flower params, ret = %d\n", ret);
		return ret;
	}

	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
	if (!rule)
		return -ENOMEM;

	ret = hclge_parse_cls_flower(hdev, cls_flower, rule);
	if (ret) {
		kfree(rule);
		return ret;
	}

	rule->action = HCLGE_FD_ACTION_SELECT_TC;
	rule->cls_flower.tc = tc;
	rule->location = cls_flower->common.prio - 1;
	rule->vf_id = 0;
	rule->cls_flower.cookie = cls_flower->cookie;
	rule->rule_type = HCLGE_FD_TC_FLOWER_ACTIVE;

	ret = hclge_add_fd_entry_common(hdev, rule);
	if (ret)
		kfree(rule);

	return ret;
}

static struct hclge_fd_rule *hclge_find_cls_flower(struct hclge_dev *hdev,
						   unsigned long cookie)
{
	struct hclge_fd_rule *rule;
	struct hlist_node *node;

	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
		if (rule->cls_flower.cookie == cookie)
			return rule;
	}

	return NULL;
}

static int hclge_del_cls_flower(struct hnae3_handle *handle,
				struct flow_cls_offload *cls_flower)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_fd_rule *rule;
	int ret;

	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return -EOPNOTSUPP;

	spin_lock_bh(&hdev->fd_rule_lock);

	rule = hclge_find_cls_flower(hdev, cls_flower->cookie);
	if (!rule) {
		spin_unlock_bh(&hdev->fd_rule_lock);
		return -EINVAL;
	}

	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location,
				   NULL, false);
	if (ret) {
		spin_unlock_bh(&hdev->fd_rule_lock);
		return ret;
	}

	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, rule->location, NULL);
	spin_unlock_bh(&hdev->fd_rule_lock);

	return 0;
}

static void hclge_sync_fd_list(struct hclge_dev *hdev, struct hlist_head *hlist)
{
	struct hclge_fd_rule *rule;
	struct hlist_node *node;
	int ret = 0;

	if (!test_and_clear_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state))
		return;

	spin_lock_bh(&hdev->fd_rule_lock);

	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
		switch (rule->state) {
		case HCLGE_FD_TO_ADD:
			ret = hclge_fd_config_rule(hdev, rule);
			if (ret)
				goto out;
			rule->state = HCLGE_FD_ACTIVE;
			break;
		case HCLGE_FD_TO_DEL:
			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
						   rule->location, NULL, false);
			if (ret)
				goto out;
			hclge_fd_dec_rule_cnt(hdev, rule->location);
			hclge_fd_free_node(hdev, rule);
			break;
		default:
			break;
		}
	}

out:
	if (ret)
		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);

	spin_unlock_bh(&hdev->fd_rule_lock);
}

static void hclge_sync_fd_table(struct hclge_dev *hdev)
{
	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
		return;

	if (test_and_clear_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state)) {
		bool clear_list = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE;

		hclge_clear_fd_rules_in_list(hdev, clear_list);
	}

	hclge_sync_fd_user_def_cfg(hdev, false);

	hclge_sync_fd_list(hdev, &hdev->fd_rule_list);
}

static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) ||
	       hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING);
}

static bool hclge_get_cmdq_stat(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
}

static bool hclge_ae_dev_resetting(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
}

static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return hdev->rst_stats.hw_reset_done_cnt;
}

static void hclge_enable_fd(struct hnae3_handle *handle, bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	hdev->fd_en = enable;

	if (!enable)
		set_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state);
	else
		hclge_restore_fd_entries(handle);

	hclge_task_schedule(hdev, 0);
}

static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable)
{
#define HCLGE_LINK_STATUS_WAIT_CNT  3

	struct hclge_desc desc;
	struct hclge_config_mac_mode_cmd *req =
		(struct hclge_config_mac_mode_cmd *)desc.data;
	u32 loop_en = 0;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false);

	if (enable) {
		hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U);
		hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U);
	}

	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"mac enable fail, ret =%d.\n", ret);
		return;
	}

	if (!enable)
		hclge_mac_link_status_wait(hdev, HCLGE_LINK_STATUS_DOWN,
					   HCLGE_LINK_STATUS_WAIT_CNT);
}

static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid,
				     u8 switch_param, u8 param_mask)
{
	struct hclge_mac_vlan_switch_cmd *req;
	struct hclge_desc desc;
	u32 func_id;
	int ret;

	func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0);
	req = (struct hclge_mac_vlan_switch_cmd *)desc.data;

	/* read current config parameter */
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM,
				   true);
	req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL;
	req->func_id = cpu_to_le32(func_id);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"read mac vlan switch parameter fail, ret = %d\n", ret);
		return ret;
	}

	/* modify and write new config parameter */
	hclge_comm_cmd_reuse_desc(&desc, false);
	req->switch_param = (req->switch_param & param_mask) | switch_param;
	req->param_mask = param_mask;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"set mac vlan switch parameter fail, ret = %d\n", ret);
	return ret;
}

static void hclge_phy_link_status_wait(struct hclge_dev *hdev,
				       int link_ret)
{
#define HCLGE_PHY_LINK_STATUS_NUM  200

	struct phy_device *phydev = hdev->hw.mac.phydev;
	int i = 0;
	int ret;

	do {
		ret = phy_read_status(phydev);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"phy update link status fail, ret = %d\n", ret);
			return;
		}

		if (phydev->link == link_ret)
			break;

		msleep(HCLGE_LINK_STATUS_MS);
	} while (++i < HCLGE_PHY_LINK_STATUS_NUM);
}

static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret,
				      int wait_cnt)
{
	int link_status;
	int i = 0;
	int ret;

	do {
		ret = hclge_get_mac_link_status(hdev, &link_status);
		if (ret)
			return ret;
		if (link_status == link_ret)
			return 0;

		msleep(HCLGE_LINK_STATUS_MS);
	} while (++i < wait_cnt);
	return -EBUSY;
}

static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en,
					  bool is_phy)
{
#define HCLGE_MAC_LINK_STATUS_NUM  100

	int link_ret;

	link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;

	if (is_phy)
		hclge_phy_link_status_wait(hdev, link_ret);

	return hclge_mac_link_status_wait(hdev, link_ret,
					  HCLGE_MAC_LINK_STATUS_NUM);
}

static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en)
{
	struct hclge_config_mac_mode_cmd *req;
	struct hclge_desc desc;
	u32 loop_en;
	int ret;

	req = (struct hclge_config_mac_mode_cmd *)&desc.data[0];
	/* 1 Read out the MAC mode config at first */
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"mac loopback get fail, ret =%d.\n", ret);
		return ret;
	}

	/* 2 Then setup the loopback flag */
	loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en);
	hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0);

	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);

	/* 3 Config mac work mode with loopback flag
	 * and its original configure parameters
	 */
	hclge_comm_cmd_reuse_desc(&desc, false);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"mac loopback set fail, ret =%d.\n", ret);
	return ret;
}

static int hclge_cfg_common_loopback_cmd_send(struct hclge_dev *hdev, bool en,
					      enum hnae3_loop loop_mode)
{
	struct hclge_common_lb_cmd *req;
	struct hclge_desc desc;
	u8 loop_mode_b;
	int ret;

	req = (struct hclge_common_lb_cmd *)desc.data;
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, false);

	switch (loop_mode) {
	case HNAE3_LOOP_SERIAL_SERDES:
		loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B;
		break;
	case HNAE3_LOOP_PARALLEL_SERDES:
		loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B;
		break;
	case HNAE3_LOOP_PHY:
		loop_mode_b = HCLGE_CMD_GE_PHY_INNER_LOOP_B;
		break;
	default:
		dev_err(&hdev->pdev->dev,
			"unsupported loopback mode %d\n", loop_mode);
		return -ENOTSUPP;
	}

	req->mask = loop_mode_b;
	if (en)
		req->enable = loop_mode_b;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to send loopback cmd, loop_mode = %d, ret = %d\n",
			loop_mode, ret);

	return ret;
}

static int hclge_cfg_common_loopback_wait(struct hclge_dev *hdev)
{
#define HCLGE_COMMON_LB_RETRY_MS	10
#define HCLGE_COMMON_LB_RETRY_NUM	100

	struct hclge_common_lb_cmd *req;
	struct hclge_desc desc;
	u32 i = 0;
	int ret;

	req = (struct hclge_common_lb_cmd *)desc.data;

	do {
		msleep(HCLGE_COMMON_LB_RETRY_MS);
		hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK,
					   true);
		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to get loopback done status, ret = %d\n",
				ret);
			return ret;
		}
	} while (++i < HCLGE_COMMON_LB_RETRY_NUM &&
		 !(req->result & HCLGE_CMD_COMMON_LB_DONE_B));

	if (!(req->result & HCLGE_CMD_COMMON_LB_DONE_B)) {
		dev_err(&hdev->pdev->dev, "wait loopback timeout\n");
		return -EBUSY;
	} else if (!(req->result & HCLGE_CMD_COMMON_LB_SUCCESS_B)) {
		dev_err(&hdev->pdev->dev, "failed to do loopback test\n");
		return -EIO;
	}

	return 0;
}

static int hclge_cfg_common_loopback(struct hclge_dev *hdev, bool en,
				     enum hnae3_loop loop_mode)
{
	int ret;

	ret = hclge_cfg_common_loopback_cmd_send(hdev, en, loop_mode);
	if (ret)
		return ret;

	return hclge_cfg_common_loopback_wait(hdev);
}

static int hclge_set_common_loopback(struct hclge_dev *hdev, bool en,
				     enum hnae3_loop loop_mode)
{
	int ret;

	ret = hclge_cfg_common_loopback(hdev, en, loop_mode);
	if (ret)
		return ret;

	hclge_cfg_mac_mode(hdev, en);

	ret = hclge_mac_phy_link_status_wait(hdev, en, false);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"serdes loopback config mac mode timeout\n");

	return ret;
}

static int hclge_enable_phy_loopback(struct hclge_dev *hdev,
				     struct phy_device *phydev)
{
	int ret;

	if (!phydev->suspended) {
		ret = phy_suspend(phydev);
		if (ret)
			return ret;
	}

	ret = phy_resume(phydev);
	if (ret)
		return ret;

	return phy_loopback(phydev, true);
}

static int hclge_disable_phy_loopback(struct hclge_dev *hdev,
				      struct phy_device *phydev)
{
	int ret;

	ret = phy_loopback(phydev, false);
	if (ret)
		return ret;

	return phy_suspend(phydev);
}

static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en)
{
	struct phy_device *phydev = hdev->hw.mac.phydev;
	int ret;

	if (!phydev) {
		if (hnae3_dev_phy_imp_supported(hdev))
			return hclge_set_common_loopback(hdev, en,
							 HNAE3_LOOP_PHY);
		return -ENOTSUPP;
	}

	if (en)
		ret = hclge_enable_phy_loopback(hdev, phydev);
	else
		ret = hclge_disable_phy_loopback(hdev, phydev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"set phy loopback fail, ret = %d\n", ret);
		return ret;
	}

	hclge_cfg_mac_mode(hdev, en);

	ret = hclge_mac_phy_link_status_wait(hdev, en, true);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"phy loopback config mac mode timeout\n");

	return ret;
}

static int hclge_tqp_enable_cmd_send(struct hclge_dev *hdev, u16 tqp_id,
				     u16 stream_id, bool enable)
{
	struct hclge_desc desc;
	struct hclge_cfg_com_tqp_queue_cmd *req =
		(struct hclge_cfg_com_tqp_queue_cmd *)desc.data;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
	req->tqp_id = cpu_to_le16(tqp_id);
	req->stream_id = cpu_to_le16(stream_id);
	if (enable)
		req->enable |= 1U << HCLGE_TQP_ENABLE_B;

	return hclge_cmd_send(&hdev->hw, &desc, 1);
}

static int hclge_tqp_enable(struct hnae3_handle *handle, bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int ret;
	u16 i;

	for (i = 0; i < handle->kinfo.num_tqps; i++) {
		ret = hclge_tqp_enable_cmd_send(hdev, i, 0, enable);
		if (ret)
			return ret;
	}
	return 0;
}

static int hclge_set_loopback(struct hnae3_handle *handle,
			      enum hnae3_loop loop_mode, bool en)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int ret = 0;

	/* Loopback can be enabled in three places: SSU, MAC, and serdes. By
	 * default, SSU loopback is enabled, so if the SMAC and the DMAC are
	 * the same, the packets are looped back in the SSU. If SSU loopback
	 * is disabled, packets can reach MAC even if SMAC is the same as DMAC.
	 */
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
		u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B);

		ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param,
						HCLGE_SWITCH_ALW_LPBK_MASK);
		if (ret)
			return ret;
	}

	switch (loop_mode) {
	case HNAE3_LOOP_APP:
		ret = hclge_set_app_loopback(hdev, en);
		break;
	case HNAE3_LOOP_SERIAL_SERDES:
	case HNAE3_LOOP_PARALLEL_SERDES:
		ret = hclge_set_common_loopback(hdev, en, loop_mode);
		break;
	case HNAE3_LOOP_PHY:
		ret = hclge_set_phy_loopback(hdev, en);
		break;
	case HNAE3_LOOP_EXTERNAL:
		break;
	default:
		ret = -ENOTSUPP;
		dev_err(&hdev->pdev->dev,
			"loop_mode %d is not supported\n", loop_mode);
		break;
	}

	if (ret)
		return ret;

	ret = hclge_tqp_enable(handle, en);
	if (ret)
		dev_err(&hdev->pdev->dev, "failed to %s tqp in loopback, ret = %d\n",
			en ? "enable" : "disable", ret);

	return ret;
}

static int hclge_set_default_loopback(struct hclge_dev *hdev)
{
	int ret;

	ret = hclge_set_app_loopback(hdev, false);
	if (ret)
		return ret;

	ret = hclge_cfg_common_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES);
	if (ret)
		return ret;

	return hclge_cfg_common_loopback(hdev, false,
					 HNAE3_LOOP_PARALLEL_SERDES);
}

static void hclge_flush_link_update(struct hclge_dev *hdev)
{
#define HCLGE_FLUSH_LINK_TIMEOUT	100000

	unsigned long last = hdev->serv_processed_cnt;
	int i = 0;

	while (test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state) &&
	       i++ < HCLGE_FLUSH_LINK_TIMEOUT &&
	       last == hdev->serv_processed_cnt)
		usleep_range(1, 1);
}

static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	if (enable) {
		hclge_task_schedule(hdev, 0);
	} else {
		/* Set the DOWN flag here to disable link updating */
		set_bit(HCLGE_STATE_DOWN, &hdev->state);

		/* flush memory to make sure DOWN is seen by service task */
		smp_mb__before_atomic();
		hclge_flush_link_update(hdev);
	}
}

static int hclge_ae_start(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	/* mac enable */
	hclge_cfg_mac_mode(hdev, true);
	clear_bit(HCLGE_STATE_DOWN, &hdev->state);
	hdev->hw.mac.link = 0;

	/* reset tqp stats */
	hclge_comm_reset_tqp_stats(handle);

	hclge_mac_start_phy(hdev);

	return 0;
}

static void hclge_ae_stop(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	set_bit(HCLGE_STATE_DOWN, &hdev->state);
	spin_lock_bh(&hdev->fd_rule_lock);
	hclge_clear_arfs_rules(hdev);
	spin_unlock_bh(&hdev->fd_rule_lock);

	/* If it is not PF reset or FLR, the firmware will disable the MAC,
	 * so it only need to stop phy here.
	 */
	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) {
		hclge_pfc_pause_en_cfg(hdev, HCLGE_PFC_TX_RX_DISABLE,
				       HCLGE_PFC_DISABLE);
		if (hdev->reset_type != HNAE3_FUNC_RESET &&
		    hdev->reset_type != HNAE3_FLR_RESET) {
			hclge_mac_stop_phy(hdev);
			hclge_update_link_status(hdev);
			return;
		}
	}

	hclge_reset_tqp(handle);

	hclge_config_mac_tnl_int(hdev, false);

	/* Mac disable */
	hclge_cfg_mac_mode(hdev, false);

	hclge_mac_stop_phy(hdev);

	/* reset tqp stats */
	hclge_comm_reset_tqp_stats(handle);
	hclge_update_link_status(hdev);
}

int hclge_vport_start(struct hclge_vport *vport)
{
	struct hclge_dev *hdev = vport->back;

	set_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
	set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
	vport->last_active_jiffies = jiffies;
	vport->need_notify = 0;

	if (test_bit(vport->vport_id, hdev->vport_config_block)) {
		if (vport->vport_id) {
			hclge_restore_mac_table_common(vport);
			hclge_restore_vport_vlan_table(vport);
		} else {
			hclge_restore_hw_table(hdev);
		}
	}

	clear_bit(vport->vport_id, hdev->vport_config_block);

	return 0;
}

void hclge_vport_stop(struct hclge_vport *vport)
{
	clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
	clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
	vport->need_notify = 0;
}

static int hclge_client_start(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	return hclge_vport_start(vport);
}

static void hclge_client_stop(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	hclge_vport_stop(vport);
}

static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport,
					 u16 cmdq_resp, u8  resp_code,
					 enum hclge_mac_vlan_tbl_opcode op)
{
	struct hclge_dev *hdev = vport->back;

	if (cmdq_resp) {
		dev_err(&hdev->pdev->dev,
			"cmdq execute failed for get_mac_vlan_cmd_status,status=%u.\n",
			cmdq_resp);
		return -EIO;
	}

	if (op == HCLGE_MAC_VLAN_ADD) {
		if (!resp_code || resp_code == 1)
			return 0;
		else if (resp_code == HCLGE_ADD_UC_OVERFLOW ||
			 resp_code == HCLGE_ADD_MC_OVERFLOW)
			return -ENOSPC;

		dev_err(&hdev->pdev->dev,
			"add mac addr failed for undefined, code=%u.\n",
			resp_code);
		return -EIO;
	} else if (op == HCLGE_MAC_VLAN_REMOVE) {
		if (!resp_code) {
			return 0;
		} else if (resp_code == 1) {
			dev_dbg(&hdev->pdev->dev,
				"remove mac addr failed for miss.\n");
			return -ENOENT;
		}

		dev_err(&hdev->pdev->dev,
			"remove mac addr failed for undefined, code=%u.\n",
			resp_code);
		return -EIO;
	} else if (op == HCLGE_MAC_VLAN_LKUP) {
		if (!resp_code) {
			return 0;
		} else if (resp_code == 1) {
			dev_dbg(&hdev->pdev->dev,
				"lookup mac addr failed for miss.\n");
			return -ENOENT;
		}

		dev_err(&hdev->pdev->dev,
			"lookup mac addr failed for undefined, code=%u.\n",
			resp_code);
		return -EIO;
	}

	dev_err(&hdev->pdev->dev,
		"unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op);

	return -EINVAL;
}

static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr)
{
#define HCLGE_VF_NUM_IN_FIRST_DESC 192

	unsigned int word_num;
	unsigned int bit_num;

	if (vfid > 255 || vfid < 0)
		return -EIO;

	if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) {
		word_num = vfid / 32;
		bit_num  = vfid % 32;
		if (clr)
			desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num));
		else
			desc[1].data[word_num] |= cpu_to_le32(1 << bit_num);
	} else {
		word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32;
		bit_num  = vfid % 32;
		if (clr)
			desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num));
		else
			desc[2].data[word_num] |= cpu_to_le32(1 << bit_num);
	}

	return 0;
}

static bool hclge_is_all_function_id_zero(struct hclge_desc *desc)
{
#define HCLGE_DESC_NUMBER 3
#define HCLGE_FUNC_NUMBER_PER_DESC 6
	int i, j;

	for (i = 1; i < HCLGE_DESC_NUMBER; i++)
		for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++)
			if (desc[i].data[j])
				return false;

	return true;
}

static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req,
				   const u8 *addr, bool is_mc)
{
	const unsigned char *mac_addr = addr;
	u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) |
		       (mac_addr[0]) | (mac_addr[1] << 8);
	u32 low_val  = mac_addr[4] | (mac_addr[5] << 8);

	hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
	if (is_mc) {
		hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1);
		hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
	}

	new_req->mac_addr_hi32 = cpu_to_le32(high_val);
	new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff);
}

static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport,
				     struct hclge_mac_vlan_tbl_entry_cmd *req)
{
	struct hclge_dev *hdev = vport->back;
	struct hclge_desc desc;
	u8 resp_code;
	u16 retval;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false);

	memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd));

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"del mac addr failed for cmd_send, ret =%d.\n",
			ret);
		return ret;
	}
	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
	retval = le16_to_cpu(desc.retval);

	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
					     HCLGE_MAC_VLAN_REMOVE);
}

static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport,
				     struct hclge_mac_vlan_tbl_entry_cmd *req,
				     struct hclge_desc *desc,
				     bool is_mc)
{
	struct hclge_dev *hdev = vport->back;
	u8 resp_code;
	u16 retval;
	int ret;

	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true);
	if (is_mc) {
		desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
		memcpy(desc[0].data,
		       req,
		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
		hclge_cmd_setup_basic_desc(&desc[1],
					   HCLGE_OPC_MAC_VLAN_ADD,
					   true);
		desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
		hclge_cmd_setup_basic_desc(&desc[2],
					   HCLGE_OPC_MAC_VLAN_ADD,
					   true);
		ret = hclge_cmd_send(&hdev->hw, desc, 3);
	} else {
		memcpy(desc[0].data,
		       req,
		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
		ret = hclge_cmd_send(&hdev->hw, desc, 1);
	}
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"lookup mac addr failed for cmd_send, ret =%d.\n",
			ret);
		return ret;
	}
	resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff;
	retval = le16_to_cpu(desc[0].retval);

	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
					     HCLGE_MAC_VLAN_LKUP);
}

static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport,
				  struct hclge_mac_vlan_tbl_entry_cmd *req,
				  struct hclge_desc *mc_desc)
{
	struct hclge_dev *hdev = vport->back;
	int cfg_status;
	u8 resp_code;
	u16 retval;
	int ret;

	if (!mc_desc) {
		struct hclge_desc desc;

		hclge_cmd_setup_basic_desc(&desc,
					   HCLGE_OPC_MAC_VLAN_ADD,
					   false);
		memcpy(desc.data, req,
		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
		resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
		retval = le16_to_cpu(desc.retval);

		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
							   resp_code,
							   HCLGE_MAC_VLAN_ADD);
	} else {
		hclge_comm_cmd_reuse_desc(&mc_desc[0], false);
		mc_desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
		hclge_comm_cmd_reuse_desc(&mc_desc[1], false);
		mc_desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
		hclge_comm_cmd_reuse_desc(&mc_desc[2], false);
		mc_desc[2].flag &= cpu_to_le16(~HCLGE_COMM_CMD_FLAG_NEXT);
		memcpy(mc_desc[0].data, req,
		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
		ret = hclge_cmd_send(&hdev->hw, mc_desc, 3);
		resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff;
		retval = le16_to_cpu(mc_desc[0].retval);

		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
							   resp_code,
							   HCLGE_MAC_VLAN_ADD);
	}

	if (ret) {
		dev_err(&hdev->pdev->dev,
			"add mac addr failed for cmd_send, ret =%d.\n",
			ret);
		return ret;
	}

	return cfg_status;
}

static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size,
			       u16 *allocated_size)
{
	struct hclge_umv_spc_alc_cmd *req;
	struct hclge_desc desc;
	int ret;

	req = (struct hclge_umv_spc_alc_cmd *)desc.data;
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false);

	req->space_size = cpu_to_le32(space_size);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev, "failed to set umv space, ret = %d\n",
			ret);
		return ret;
	}

	*allocated_size = le32_to_cpu(desc.data[1]);

	return 0;
}

static int hclge_init_umv_space(struct hclge_dev *hdev)
{
	u16 allocated_size = 0;
	int ret;

	ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size);
	if (ret)
		return ret;

	if (allocated_size < hdev->wanted_umv_size)
		dev_warn(&hdev->pdev->dev,
			 "failed to alloc umv space, want %u, get %u\n",
			 hdev->wanted_umv_size, allocated_size);

	hdev->max_umv_size = allocated_size;
	hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_alloc_vport + 1);
	hdev->share_umv_size = hdev->priv_umv_size +
			hdev->max_umv_size % (hdev->num_alloc_vport + 1);

	if (hdev->ae_dev->dev_specs.mc_mac_size)
		set_bit(HNAE3_DEV_SUPPORT_MC_MAC_MNG_B, hdev->ae_dev->caps);

	return 0;
}

static void hclge_reset_umv_space(struct hclge_dev *hdev)
{
	struct hclge_vport *vport;
	int i;

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		vport = &hdev->vport[i];
		vport->used_umv_num = 0;
	}

	mutex_lock(&hdev->vport_lock);
	hdev->share_umv_size = hdev->priv_umv_size +
			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
	mutex_unlock(&hdev->vport_lock);

	hdev->used_mc_mac_num = 0;
}

static bool hclge_is_umv_space_full(struct hclge_vport *vport, bool need_lock)
{
	struct hclge_dev *hdev = vport->back;
	bool is_full;

	if (need_lock)
		mutex_lock(&hdev->vport_lock);

	is_full = (vport->used_umv_num >= hdev->priv_umv_size &&
		   hdev->share_umv_size == 0);

	if (need_lock)
		mutex_unlock(&hdev->vport_lock);

	return is_full;
}

static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free)
{
	struct hclge_dev *hdev = vport->back;

	if (is_free) {
		if (vport->used_umv_num > hdev->priv_umv_size)
			hdev->share_umv_size++;

		if (vport->used_umv_num > 0)
			vport->used_umv_num--;
	} else {
		if (vport->used_umv_num >= hdev->priv_umv_size &&
		    hdev->share_umv_size > 0)
			hdev->share_umv_size--;
		vport->used_umv_num++;
	}
}

static struct hclge_mac_node *hclge_find_mac_node(struct list_head *list,
						  const u8 *mac_addr)
{
	struct hclge_mac_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node)
		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
			return mac_node;

	return NULL;
}

static void hclge_update_mac_node(struct hclge_mac_node *mac_node,
				  enum HCLGE_MAC_NODE_STATE state)
{
	switch (state) {
	/* from set_rx_mode or tmp_add_list */
	case HCLGE_MAC_TO_ADD:
		if (mac_node->state == HCLGE_MAC_TO_DEL)
			mac_node->state = HCLGE_MAC_ACTIVE;
		break;
	/* only from set_rx_mode */
	case HCLGE_MAC_TO_DEL:
		if (mac_node->state == HCLGE_MAC_TO_ADD) {
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			mac_node->state = HCLGE_MAC_TO_DEL;
		}
		break;
	/* only from tmp_add_list, the mac_node->state won't be
	 * ACTIVE.
	 */
	case HCLGE_MAC_ACTIVE:
		if (mac_node->state == HCLGE_MAC_TO_ADD)
			mac_node->state = HCLGE_MAC_ACTIVE;

		break;
	}
}

int hclge_update_mac_list(struct hclge_vport *vport,
			  enum HCLGE_MAC_NODE_STATE state,
			  enum HCLGE_MAC_ADDR_TYPE mac_type,
			  const unsigned char *addr)
{
	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
	struct hclge_dev *hdev = vport->back;
	struct hclge_mac_node *mac_node;
	struct list_head *list;

	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
		&vport->uc_mac_list : &vport->mc_mac_list;

	spin_lock_bh(&vport->mac_list_lock);

	/* if the mac addr is already in the mac list, no need to add a new
	 * one into it, just check the mac addr state, convert it to a new
	 * state, or just remove it, or do nothing.
	 */
	mac_node = hclge_find_mac_node(list, addr);
	if (mac_node) {
		hclge_update_mac_node(mac_node, state);
		spin_unlock_bh(&vport->mac_list_lock);
		set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
		return 0;
	}

	/* if this address is never added, unnecessary to delete */
	if (state == HCLGE_MAC_TO_DEL) {
		spin_unlock_bh(&vport->mac_list_lock);
		hnae3_format_mac_addr(format_mac_addr, addr);
		dev_err(&hdev->pdev->dev,
			"failed to delete address %s from mac list\n",
			format_mac_addr);
		return -ENOENT;
	}

	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
	if (!mac_node) {
		spin_unlock_bh(&vport->mac_list_lock);
		return -ENOMEM;
	}

	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);

	mac_node->state = state;
	ether_addr_copy(mac_node->mac_addr, addr);
	list_add_tail(&mac_node->node, list);

	spin_unlock_bh(&vport->mac_list_lock);

	return 0;
}

static int hclge_add_uc_addr(struct hnae3_handle *handle,
			     const unsigned char *addr)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_UC,
				     addr);
}

int hclge_add_uc_addr_common(struct hclge_vport *vport,
			     const unsigned char *addr)
{
	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
	struct hclge_dev *hdev = vport->back;
	struct hclge_mac_vlan_tbl_entry_cmd req;
	struct hclge_desc desc;
	u16 egress_port = 0;
	int ret;

	/* mac addr check */
	if (is_zero_ether_addr(addr) ||
	    is_broadcast_ether_addr(addr) ||
	    is_multicast_ether_addr(addr)) {
		hnae3_format_mac_addr(format_mac_addr, addr);
		dev_err(&hdev->pdev->dev,
			"Set_uc mac err! invalid mac:%s. is_zero:%d,is_br=%d,is_mul=%d\n",
			 format_mac_addr, is_zero_ether_addr(addr),
			 is_broadcast_ether_addr(addr),
			 is_multicast_ether_addr(addr));
		return -EINVAL;
	}

	memset(&req, 0, sizeof(req));

	hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M,
			HCLGE_MAC_EPORT_VFID_S, vport->vport_id);

	req.egress_port = cpu_to_le16(egress_port);

	hclge_prepare_mac_addr(&req, addr, false);

	/* Lookup the mac address in the mac_vlan table, and add
	 * it if the entry is inexistent. Repeated unicast entry
	 * is not allowed in the mac vlan table.
	 */
	ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false);
	if (ret == -ENOENT) {
		mutex_lock(&hdev->vport_lock);
		if (!hclge_is_umv_space_full(vport, false)) {
			ret = hclge_add_mac_vlan_tbl(vport, &req, NULL);
			if (!ret)
				hclge_update_umv_space(vport, false);
			mutex_unlock(&hdev->vport_lock);
			return ret;
		}
		mutex_unlock(&hdev->vport_lock);

		if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE))
			dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n",
				hdev->priv_umv_size);

		return -ENOSPC;
	}

	/* check if we just hit the duplicate */
	if (!ret)
		return -EEXIST;

	return ret;
}

static int hclge_rm_uc_addr(struct hnae3_handle *handle,
			    const unsigned char *addr)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_UC,
				     addr);
}

int hclge_rm_uc_addr_common(struct hclge_vport *vport,
			    const unsigned char *addr)
{
	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
	struct hclge_dev *hdev = vport->back;
	struct hclge_mac_vlan_tbl_entry_cmd req;
	int ret;

	/* mac addr check */
	if (is_zero_ether_addr(addr) ||
	    is_broadcast_ether_addr(addr) ||
	    is_multicast_ether_addr(addr)) {
		hnae3_format_mac_addr(format_mac_addr, addr);
		dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%s.\n",
			format_mac_addr);
		return -EINVAL;
	}

	memset(&req, 0, sizeof(req));
	hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0);
	hclge_prepare_mac_addr(&req, addr, false);
	ret = hclge_remove_mac_vlan_tbl(vport, &req);
	if (!ret || ret == -ENOENT) {
		mutex_lock(&hdev->vport_lock);
		hclge_update_umv_space(vport, true);
		mutex_unlock(&hdev->vport_lock);
		return 0;
	}

	return ret;
}

static int hclge_add_mc_addr(struct hnae3_handle *handle,
			     const unsigned char *addr)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_MC,
				     addr);
}

int hclge_add_mc_addr_common(struct hclge_vport *vport,
			     const unsigned char *addr)
{
	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
	struct hclge_dev *hdev = vport->back;
	struct hclge_mac_vlan_tbl_entry_cmd req;
	struct hclge_desc desc[3];
	bool is_new_addr = false;
	int status;

	/* mac addr check */
	if (!is_multicast_ether_addr(addr)) {
		hnae3_format_mac_addr(format_mac_addr, addr);
		dev_err(&hdev->pdev->dev,
			"Add mc mac err! invalid mac:%s.\n",
			 format_mac_addr);
		return -EINVAL;
	}
	memset(&req, 0, sizeof(req));
	hclge_prepare_mac_addr(&req, addr, true);
	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
	if (status) {
		if (hnae3_ae_dev_mc_mac_mng_supported(hdev->ae_dev) &&
		    hdev->used_mc_mac_num >=
		    hdev->ae_dev->dev_specs.mc_mac_size)
			goto err_no_space;

		is_new_addr = true;

		/* This mac addr do not exist, add new entry for it */
		memset(desc[0].data, 0, sizeof(desc[0].data));
		memset(desc[1].data, 0, sizeof(desc[0].data));
		memset(desc[2].data, 0, sizeof(desc[0].data));
	}
	status = hclge_update_desc_vfid(desc, vport->vport_id, false);
	if (status)
		return status;
	status = hclge_add_mac_vlan_tbl(vport, &req, desc);
	if (status == -ENOSPC)
		goto err_no_space;
	else if (!status && is_new_addr)
		hdev->used_mc_mac_num++;

	return status;

err_no_space:
	/* if already overflow, not to print each time */
	if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE)) {
		vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
		dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n");
	}

	return -ENOSPC;
}

static int hclge_rm_mc_addr(struct hnae3_handle *handle,
			    const unsigned char *addr)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_MC,
				     addr);
}

int hclge_rm_mc_addr_common(struct hclge_vport *vport,
			    const unsigned char *addr)
{
	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
	struct hclge_dev *hdev = vport->back;
	struct hclge_mac_vlan_tbl_entry_cmd req;
	enum hclge_comm_cmd_status status;
	struct hclge_desc desc[3];

	/* mac addr check */
	if (!is_multicast_ether_addr(addr)) {
		hnae3_format_mac_addr(format_mac_addr, addr);
		dev_dbg(&hdev->pdev->dev,
			"Remove mc mac err! invalid mac:%s.\n",
			 format_mac_addr);
		return -EINVAL;
	}

	memset(&req, 0, sizeof(req));
	hclge_prepare_mac_addr(&req, addr, true);
	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
	if (!status) {
		/* This mac addr exist, remove this handle's VFID for it */
		status = hclge_update_desc_vfid(desc, vport->vport_id, true);
		if (status)
			return status;

		if (hclge_is_all_function_id_zero(desc)) {
			/* All the vfid is zero, so need to delete this entry */
			status = hclge_remove_mac_vlan_tbl(vport, &req);
			if (!status)
				hdev->used_mc_mac_num--;
		} else {
			/* Not all the vfid is zero, update the vfid */
			status = hclge_add_mac_vlan_tbl(vport, &req, desc);
		}
	} else if (status == -ENOENT) {
		status = 0;
	}

	return status;
}

static void hclge_sync_vport_mac_list(struct hclge_vport *vport,
				      struct list_head *list,
				      enum HCLGE_MAC_ADDR_TYPE mac_type)
{
	int (*sync)(struct hclge_vport *vport, const unsigned char *addr);
	struct hclge_mac_node *mac_node, *tmp;
	int ret;

	if (mac_type == HCLGE_MAC_ADDR_UC)
		sync = hclge_add_uc_addr_common;
	else
		sync = hclge_add_mc_addr_common;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		ret = sync(vport, mac_node->mac_addr);
		if (!ret) {
			mac_node->state = HCLGE_MAC_ACTIVE;
		} else {
			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
				&vport->state);

			/* If one unicast mac address is existing in hardware,
			 * we need to try whether other unicast mac addresses
			 * are new addresses that can be added.
			 * Multicast mac address can be reusable, even though
			 * there is no space to add new multicast mac address,
			 * we should check whether other mac addresses are
			 * existing in hardware for reuse.
			 */
			if ((mac_type == HCLGE_MAC_ADDR_UC && ret != -EEXIST) ||
			    (mac_type == HCLGE_MAC_ADDR_MC && ret != -ENOSPC))
				break;
		}
	}
}

static void hclge_unsync_vport_mac_list(struct hclge_vport *vport,
					struct list_head *list,
					enum HCLGE_MAC_ADDR_TYPE mac_type)
{
	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
	struct hclge_mac_node *mac_node, *tmp;
	int ret;

	if (mac_type == HCLGE_MAC_ADDR_UC)
		unsync = hclge_rm_uc_addr_common;
	else
		unsync = hclge_rm_mc_addr_common;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		ret = unsync(vport, mac_node->mac_addr);
		if (!ret || ret == -ENOENT) {
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
				&vport->state);
			break;
		}
	}
}

static bool hclge_sync_from_add_list(struct list_head *add_list,
				     struct list_head *mac_list)
{
	struct hclge_mac_node *mac_node, *tmp, *new_node;
	bool all_added = true;

	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
		if (mac_node->state == HCLGE_MAC_TO_ADD)
			all_added = false;

		/* if the mac address from tmp_add_list is not in the
		 * uc/mc_mac_list, it means have received a TO_DEL request
		 * during the time window of adding the mac address into mac
		 * table. if mac_node state is ACTIVE, then change it to TO_DEL,
		 * then it will be removed at next time. else it must be TO_ADD,
		 * this address hasn't been added into mac table,
		 * so just remove the mac node.
		 */
		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			hclge_update_mac_node(new_node, mac_node->state);
			list_del(&mac_node->node);
			kfree(mac_node);
		} else if (mac_node->state == HCLGE_MAC_ACTIVE) {
			mac_node->state = HCLGE_MAC_TO_DEL;
			list_move_tail(&mac_node->node, mac_list);
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}

	return all_added;
}

static void hclge_sync_from_del_list(struct list_head *del_list,
				     struct list_head *mac_list)
{
	struct hclge_mac_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			/* If the mac addr exists in the mac list, it means
			 * received a new TO_ADD request during the time window
			 * of configuring the mac address. For the mac node
			 * state is TO_ADD, and the address is already in the
			 * in the hardware(due to delete fail), so we just need
			 * to change the mac node state to ACTIVE.
			 */
			new_node->state = HCLGE_MAC_ACTIVE;
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			list_move_tail(&mac_node->node, mac_list);
		}
	}
}

static void hclge_update_overflow_flags(struct hclge_vport *vport,
					enum HCLGE_MAC_ADDR_TYPE mac_type,
					bool is_all_added)
{
	if (mac_type == HCLGE_MAC_ADDR_UC) {
		if (is_all_added)
			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_UPE;
		else
			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_UPE;
	} else {
		if (is_all_added)
			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_MPE;
		else
			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
	}
}

static void hclge_sync_vport_mac_table(struct hclge_vport *vport,
				       enum HCLGE_MAC_ADDR_TYPE mac_type)
{
	struct hclge_mac_node *mac_node, *tmp, *new_node;
	struct list_head tmp_add_list, tmp_del_list;
	struct list_head *list;
	bool all_added;

	INIT_LIST_HEAD(&tmp_add_list);
	INIT_LIST_HEAD(&tmp_del_list);

	/* move the mac addr to the tmp_add_list and tmp_del_list, then
	 * we can add/delete these mac addr outside the spin lock
	 */
	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
		&vport->uc_mac_list : &vport->mc_mac_list;

	spin_lock_bh(&vport->mac_list_lock);

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		switch (mac_node->state) {
		case HCLGE_MAC_TO_DEL:
			list_move_tail(&mac_node->node, &tmp_del_list);
			break;
		case HCLGE_MAC_TO_ADD:
			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
			if (!new_node)
				goto stop_traverse;
			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
			new_node->state = mac_node->state;
			list_add_tail(&new_node->node, &tmp_add_list);
			break;
		default:
			break;
		}
	}

stop_traverse:
	spin_unlock_bh(&vport->mac_list_lock);

	/* delete first, in order to get max mac table space for adding */
	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
	hclge_sync_vport_mac_list(vport, &tmp_add_list, mac_type);

	/* if some mac addresses were added/deleted fail, move back to the
	 * mac_list, and retry at next time.
	 */
	spin_lock_bh(&vport->mac_list_lock);

	hclge_sync_from_del_list(&tmp_del_list, list);
	all_added = hclge_sync_from_add_list(&tmp_add_list, list);

	spin_unlock_bh(&vport->mac_list_lock);

	hclge_update_overflow_flags(vport, mac_type, all_added);
}

static bool hclge_need_sync_mac_table(struct hclge_vport *vport)
{
	struct hclge_dev *hdev = vport->back;

	if (test_bit(vport->vport_id, hdev->vport_config_block))
		return false;

	if (test_and_clear_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state))
		return true;

	return false;
}

static void hclge_sync_mac_table(struct hclge_dev *hdev)
{
	int i;

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		struct hclge_vport *vport = &hdev->vport[i];

		if (!hclge_need_sync_mac_table(vport))
			continue;

		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_UC);
		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_MC);
	}
}

static void hclge_build_del_list(struct list_head *list,
				 bool is_del_list,
				 struct list_head *tmp_del_list)
{
	struct hclge_mac_node *mac_cfg, *tmp;

	list_for_each_entry_safe(mac_cfg, tmp, list, node) {
		switch (mac_cfg->state) {
		case HCLGE_MAC_TO_DEL:
		case HCLGE_MAC_ACTIVE:
			list_move_tail(&mac_cfg->node, tmp_del_list);
			break;
		case HCLGE_MAC_TO_ADD:
			if (is_del_list) {
				list_del(&mac_cfg->node);
				kfree(mac_cfg);
			}
			break;
		}
	}
}

static void hclge_unsync_del_list(struct hclge_vport *vport,
				  int (*unsync)(struct hclge_vport *vport,
						const unsigned char *addr),
				  bool is_del_list,
				  struct list_head *tmp_del_list)
{
	struct hclge_mac_node *mac_cfg, *tmp;
	int ret;

	list_for_each_entry_safe(mac_cfg, tmp, tmp_del_list, node) {
		ret = unsync(vport, mac_cfg->mac_addr);
		if (!ret || ret == -ENOENT) {
			/* clear all mac addr from hardware, but remain these
			 * mac addr in the mac list, and restore them after
			 * vf reset finished.
			 */
			if (!is_del_list &&
			    mac_cfg->state == HCLGE_MAC_ACTIVE) {
				mac_cfg->state = HCLGE_MAC_TO_ADD;
			} else {
				list_del(&mac_cfg->node);
				kfree(mac_cfg);
			}
		} else if (is_del_list) {
			mac_cfg->state = HCLGE_MAC_TO_DEL;
		}
	}
}

void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list,
				  enum HCLGE_MAC_ADDR_TYPE mac_type)
{
	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
	struct hclge_dev *hdev = vport->back;
	struct list_head tmp_del_list, *list;

	if (mac_type == HCLGE_MAC_ADDR_UC) {
		list = &vport->uc_mac_list;
		unsync = hclge_rm_uc_addr_common;
	} else {
		list = &vport->mc_mac_list;
		unsync = hclge_rm_mc_addr_common;
	}

	INIT_LIST_HEAD(&tmp_del_list);

	if (!is_del_list)
		set_bit(vport->vport_id, hdev->vport_config_block);

	spin_lock_bh(&vport->mac_list_lock);

	hclge_build_del_list(list, is_del_list, &tmp_del_list);

	spin_unlock_bh(&vport->mac_list_lock);

	hclge_unsync_del_list(vport, unsync, is_del_list, &tmp_del_list);

	spin_lock_bh(&vport->mac_list_lock);

	hclge_sync_from_del_list(&tmp_del_list, list);

	spin_unlock_bh(&vport->mac_list_lock);
}

/* remove all mac address when uninitailize */
static void hclge_uninit_vport_mac_list(struct hclge_vport *vport,
					enum HCLGE_MAC_ADDR_TYPE mac_type)
{
	struct hclge_mac_node *mac_node, *tmp;
	struct hclge_dev *hdev = vport->back;
	struct list_head tmp_del_list, *list;

	INIT_LIST_HEAD(&tmp_del_list);

	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
		&vport->uc_mac_list : &vport->mc_mac_list;

	spin_lock_bh(&vport->mac_list_lock);

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		switch (mac_node->state) {
		case HCLGE_MAC_TO_DEL:
		case HCLGE_MAC_ACTIVE:
			list_move_tail(&mac_node->node, &tmp_del_list);
			break;
		case HCLGE_MAC_TO_ADD:
			list_del(&mac_node->node);
			kfree(mac_node);
			break;
		}
	}

	spin_unlock_bh(&vport->mac_list_lock);

	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);

	if (!list_empty(&tmp_del_list))
		dev_warn(&hdev->pdev->dev,
			 "uninit %s mac list for vport %u not completely.\n",
			 mac_type == HCLGE_MAC_ADDR_UC ? "uc" : "mc",
			 vport->vport_id);

	list_for_each_entry_safe(mac_node, tmp, &tmp_del_list, node) {
		list_del(&mac_node->node);
		kfree(mac_node);
	}
}

static void hclge_uninit_mac_table(struct hclge_dev *hdev)
{
	struct hclge_vport *vport;
	int i;

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		vport = &hdev->vport[i];
		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_UC);
		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_MC);
	}
}

static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev,
					      u16 cmdq_resp, u8 resp_code)
{
#define HCLGE_ETHERTYPE_SUCCESS_ADD		0
#define HCLGE_ETHERTYPE_ALREADY_ADD		1
#define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW	2
#define HCLGE_ETHERTYPE_KEY_CONFLICT		3

	int return_status;

	if (cmdq_resp) {
		dev_err(&hdev->pdev->dev,
			"cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
			cmdq_resp);
		return -EIO;
	}

	switch (resp_code) {
	case HCLGE_ETHERTYPE_SUCCESS_ADD:
	case HCLGE_ETHERTYPE_ALREADY_ADD:
		return_status = 0;
		break;
	case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW:
		dev_err(&hdev->pdev->dev,
			"add mac ethertype failed for manager table overflow.\n");
		return_status = -EIO;
		break;
	case HCLGE_ETHERTYPE_KEY_CONFLICT:
		dev_err(&hdev->pdev->dev,
			"add mac ethertype failed for key conflict.\n");
		return_status = -EIO;
		break;
	default:
		dev_err(&hdev->pdev->dev,
			"add mac ethertype failed for undefined, code=%u.\n",
			resp_code);
		return_status = -EIO;
	}

	return return_status;
}

static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf,
			    u8 *mac_addr)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
	struct hclge_dev *hdev = vport->back;

	vport = hclge_get_vf_vport(hdev, vf);
	if (!vport)
		return -EINVAL;

	hnae3_format_mac_addr(format_mac_addr, mac_addr);
	if (ether_addr_equal(mac_addr, vport->vf_info.mac)) {
		dev_info(&hdev->pdev->dev,
			 "Specified MAC(=%s) is same as before, no change committed!\n",
			 format_mac_addr);
		return 0;
	}

	ether_addr_copy(vport->vf_info.mac, mac_addr);

	/* there is a timewindow for PF to know VF unalive, it may
	 * cause send mailbox fail, but it doesn't matter, VF will
	 * query it when reinit.
	 */
	if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) {
		dev_info(&hdev->pdev->dev,
			 "MAC of VF %d has been set to %s, and it will be reinitialized!\n",
			 vf, format_mac_addr);
		(void)hclge_inform_reset_assert_to_vf(vport);
		return 0;
	}

	dev_info(&hdev->pdev->dev,
		 "MAC of VF %d has been set to %s, will be active after VF reset\n",
		 vf, format_mac_addr);
	return 0;
}

static int hclge_add_mgr_tbl(struct hclge_dev *hdev,
			     const struct hclge_mac_mgr_tbl_entry_cmd *req)
{
	struct hclge_desc desc;
	u8 resp_code;
	u16 retval;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false);
	memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd));

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"add mac ethertype failed for cmd_send, ret =%d.\n",
			ret);
		return ret;
	}

	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
	retval = le16_to_cpu(desc.retval);

	return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code);
}

static int init_mgr_tbl(struct hclge_dev *hdev)
{
	int ret;
	int i;

	for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) {
		ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"add mac ethertype failed, ret =%d.\n",
				ret);
			return ret;
		}
	}

	return 0;
}

static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	ether_addr_copy(p, hdev->hw.mac.mac_addr);
}

int hclge_update_mac_node_for_dev_addr(struct hclge_vport *vport,
				       const u8 *old_addr, const u8 *new_addr)
{
	struct list_head *list = &vport->uc_mac_list;
	struct hclge_mac_node *old_node, *new_node;

	new_node = hclge_find_mac_node(list, new_addr);
	if (!new_node) {
		new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
		if (!new_node)
			return -ENOMEM;

		new_node->state = HCLGE_MAC_TO_ADD;
		ether_addr_copy(new_node->mac_addr, new_addr);
		list_add(&new_node->node, list);
	} else {
		if (new_node->state == HCLGE_MAC_TO_DEL)
			new_node->state = HCLGE_MAC_ACTIVE;

		/* make sure the new addr is in the list head, avoid dev
		 * addr may be not re-added into mac table for the umv space
		 * limitation after global/imp reset which will clear mac
		 * table by hardware.
		 */
		list_move(&new_node->node, list);
	}

	if (old_addr && !ether_addr_equal(old_addr, new_addr)) {
		old_node = hclge_find_mac_node(list, old_addr);
		if (old_node) {
			if (old_node->state == HCLGE_MAC_TO_ADD) {
				list_del(&old_node->node);
				kfree(old_node);
			} else {
				old_node->state = HCLGE_MAC_TO_DEL;
			}
		}
	}

	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);

	return 0;
}

static int hclge_set_mac_addr(struct hnae3_handle *handle, const void *p,
			      bool is_first)
{
	const unsigned char *new_addr = (const unsigned char *)p;
	struct hclge_vport *vport = hclge_get_vport(handle);
	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
	struct hclge_dev *hdev = vport->back;
	unsigned char *old_addr = NULL;
	int ret;

	/* mac addr check */
	if (is_zero_ether_addr(new_addr) ||
	    is_broadcast_ether_addr(new_addr) ||
	    is_multicast_ether_addr(new_addr)) {
		hnae3_format_mac_addr(format_mac_addr, new_addr);
		dev_err(&hdev->pdev->dev,
			"change uc mac err! invalid mac: %s.\n",
			 format_mac_addr);
		return -EINVAL;
	}

	ret = hclge_pause_addr_cfg(hdev, new_addr);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to configure mac pause address, ret = %d\n",
			ret);
		return ret;
	}

	if (!is_first)
		old_addr = hdev->hw.mac.mac_addr;

	spin_lock_bh(&vport->mac_list_lock);
	ret = hclge_update_mac_node_for_dev_addr(vport, old_addr, new_addr);
	if (ret) {
		hnae3_format_mac_addr(format_mac_addr, new_addr);
		dev_err(&hdev->pdev->dev,
			"failed to change the mac addr:%s, ret = %d\n",
			format_mac_addr, ret);
		spin_unlock_bh(&vport->mac_list_lock);

		if (!is_first)
			hclge_pause_addr_cfg(hdev, old_addr);

		return ret;
	}
	/* we must update dev addr with spin lock protect, preventing dev addr
	 * being removed by set_rx_mode path.
	 */
	ether_addr_copy(hdev->hw.mac.mac_addr, new_addr);
	spin_unlock_bh(&vport->mac_list_lock);

	hclge_task_schedule(hdev, 0);

	return 0;
}

static int hclge_mii_ioctl(struct hclge_dev *hdev, struct ifreq *ifr, int cmd)
{
	struct mii_ioctl_data *data = if_mii(ifr);

	if (!hnae3_dev_phy_imp_supported(hdev))
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = hdev->hw.mac.phy_addr;
		/* this command reads phy id and register at the same time */
		fallthrough;
	case SIOCGMIIREG:
		data->val_out = hclge_read_phy_reg(hdev, data->reg_num);
		return 0;

	case SIOCSMIIREG:
		return hclge_write_phy_reg(hdev, data->reg_num, data->val_in);
	default:
		return -EOPNOTSUPP;
	}
}

static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr,
			  int cmd)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	switch (cmd) {
	case SIOCGHWTSTAMP:
		return hclge_ptp_get_cfg(hdev, ifr);
	case SIOCSHWTSTAMP:
		return hclge_ptp_set_cfg(hdev, ifr);
	default:
		if (!hdev->hw.mac.phydev)
			return hclge_mii_ioctl(hdev, ifr, cmd);
	}

	return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd);
}

static int hclge_set_port_vlan_filter_bypass(struct hclge_dev *hdev, u8 vf_id,
					     bool bypass_en)
{
	struct hclge_port_vlan_filter_bypass_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PORT_VLAN_BYPASS, false);
	req = (struct hclge_port_vlan_filter_bypass_cmd *)desc.data;
	req->vf_id = vf_id;
	hnae3_set_bit(req->bypass_state, HCLGE_INGRESS_BYPASS_B,
		      bypass_en ? 1 : 0);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to set vport%u port vlan filter bypass state, ret = %d.\n",
			vf_id, ret);

	return ret;
}

static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type,
				      u8 fe_type, bool filter_en, u8 vf_id)
{
	struct hclge_vlan_filter_ctrl_cmd *req;
	struct hclge_desc desc;
	int ret;

	/* read current vlan filter parameter */
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, true);
	req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data;
	req->vlan_type = vlan_type;
	req->vf_id = vf_id;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev, "failed to get vport%u vlan filter config, ret = %d.\n",
			vf_id, ret);
		return ret;
	}

	/* modify and write new config parameter */
	hclge_comm_cmd_reuse_desc(&desc, false);
	req->vlan_fe = filter_en ?
			(req->vlan_fe | fe_type) : (req->vlan_fe & ~fe_type);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev, "failed to set vport%u vlan filter, ret = %d.\n",
			vf_id, ret);

	return ret;
}

static int hclge_set_vport_vlan_filter(struct hclge_vport *vport, bool enable)
{
	struct hclge_dev *hdev = vport->back;
	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
	int ret;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
						  HCLGE_FILTER_FE_EGRESS_V1_B,
						  enable, vport->vport_id);

	ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
					 HCLGE_FILTER_FE_EGRESS, enable,
					 vport->vport_id);
	if (ret)
		return ret;

	if (test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, ae_dev->caps)) {
		ret = hclge_set_port_vlan_filter_bypass(hdev, vport->vport_id,
							!enable);
	} else if (!vport->vport_id) {
		if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
			enable = false;

		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
						 HCLGE_FILTER_FE_INGRESS,
						 enable, 0);
	}

	return ret;
}

static bool hclge_need_enable_vport_vlan_filter(struct hclge_vport *vport)
{
	struct hnae3_handle *handle = &vport->nic;
	struct hclge_vport_vlan_cfg *vlan, *tmp;
	struct hclge_dev *hdev = vport->back;

	if (vport->vport_id) {
		if (vport->port_base_vlan_cfg.state !=
			HNAE3_PORT_BASE_VLAN_DISABLE)
			return true;

		if (vport->vf_info.trusted && vport->vf_info.request_uc_en)
			return false;
	} else if (handle->netdev_flags & HNAE3_USER_UPE) {
		return false;
	}

	if (!vport->req_vlan_fltr_en)
		return false;

	/* compatible with former device, always enable vlan filter */
	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
		return true;

	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node)
		if (vlan->vlan_id != 0)
			return true;

	return false;
}

int hclge_enable_vport_vlan_filter(struct hclge_vport *vport, bool request_en)
{
	struct hclge_dev *hdev = vport->back;
	bool need_en;
	int ret;

	mutex_lock(&hdev->vport_lock);

	vport->req_vlan_fltr_en = request_en;

	need_en = hclge_need_enable_vport_vlan_filter(vport);
	if (need_en == vport->cur_vlan_fltr_en) {
		mutex_unlock(&hdev->vport_lock);
		return 0;
	}

	ret = hclge_set_vport_vlan_filter(vport, need_en);
	if (ret) {
		mutex_unlock(&hdev->vport_lock);
		return ret;
	}

	vport->cur_vlan_fltr_en = need_en;

	mutex_unlock(&hdev->vport_lock);

	return 0;
}

static int hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	return hclge_enable_vport_vlan_filter(vport, enable);
}

static int hclge_set_vf_vlan_filter_cmd(struct hclge_dev *hdev, u16 vfid,
					bool is_kill, u16 vlan,
					struct hclge_desc *desc)
{
	struct hclge_vlan_filter_vf_cfg_cmd *req0;
	struct hclge_vlan_filter_vf_cfg_cmd *req1;
	u8 vf_byte_val;
	u8 vf_byte_off;
	int ret;

	hclge_cmd_setup_basic_desc(&desc[0],
				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
	hclge_cmd_setup_basic_desc(&desc[1],
				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);

	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);

	vf_byte_off = vfid / 8;
	vf_byte_val = 1 << (vfid % 8);

	req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
	req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data;

	req0->vlan_id  = cpu_to_le16(vlan);
	req0->vlan_cfg = is_kill;

	if (vf_byte_off < HCLGE_MAX_VF_BYTES)
		req0->vf_bitmap[vf_byte_off] = vf_byte_val;
	else
		req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val;

	ret = hclge_cmd_send(&hdev->hw, desc, 2);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Send vf vlan command fail, ret =%d.\n",
			ret);
		return ret;
	}

	return 0;
}

static int hclge_check_vf_vlan_cmd_status(struct hclge_dev *hdev, u16 vfid,
					  bool is_kill, struct hclge_desc *desc)
{
	struct hclge_vlan_filter_vf_cfg_cmd *req;

	req = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;

	if (!is_kill) {
#define HCLGE_VF_VLAN_NO_ENTRY	2
		if (!req->resp_code || req->resp_code == 1)
			return 0;

		if (req->resp_code == HCLGE_VF_VLAN_NO_ENTRY) {
			set_bit(vfid, hdev->vf_vlan_full);
			dev_warn(&hdev->pdev->dev,
				 "vf vlan table is full, vf vlan filter is disabled\n");
			return 0;
		}

		dev_err(&hdev->pdev->dev,
			"Add vf vlan filter fail, ret =%u.\n",
			req->resp_code);
	} else {
#define HCLGE_VF_VLAN_DEL_NO_FOUND	1
		if (!req->resp_code)
			return 0;

		/* vf vlan filter is disabled when vf vlan table is full,
		 * then new vlan id will not be added into vf vlan table.
		 * Just return 0 without warning, avoid massive verbose
		 * print logs when unload.
		 */
		if (req->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND)
			return 0;

		dev_err(&hdev->pdev->dev,
			"Kill vf vlan filter fail, ret =%u.\n",
			req->resp_code);
	}

	return -EIO;
}

static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid,
				    bool is_kill, u16 vlan)
{
	struct hclge_vport *vport = &hdev->vport[vfid];
	struct hclge_desc desc[2];
	int ret;

	/* if vf vlan table is full, firmware will close vf vlan filter, it
	 * is unable and unnecessary to add new vlan id to vf vlan filter.
	 * If spoof check is enable, and vf vlan is full, it shouldn't add
	 * new vlan, because tx packets with these vlan id will be dropped.
	 */
	if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) {
		if (vport->vf_info.spoofchk && vlan) {
			dev_err(&hdev->pdev->dev,
				"Can't add vlan due to spoof check is on and vf vlan table is full\n");
			return -EPERM;
		}
		return 0;
	}

	ret = hclge_set_vf_vlan_filter_cmd(hdev, vfid, is_kill, vlan, desc);
	if (ret)
		return ret;

	return hclge_check_vf_vlan_cmd_status(hdev, vfid, is_kill, desc);
}

static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto,
				      u16 vlan_id, bool is_kill)
{
	struct hclge_vlan_filter_pf_cfg_cmd *req;
	struct hclge_desc desc;
	u8 vlan_offset_byte_val;
	u8 vlan_offset_byte;
	u8 vlan_offset_160;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false);

	vlan_offset_160 = vlan_id / HCLGE_VLAN_ID_OFFSET_STEP;
	vlan_offset_byte = (vlan_id % HCLGE_VLAN_ID_OFFSET_STEP) /
			   HCLGE_VLAN_BYTE_SIZE;
	vlan_offset_byte_val = 1 << (vlan_id % HCLGE_VLAN_BYTE_SIZE);

	req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data;
	req->vlan_offset = vlan_offset_160;
	req->vlan_cfg = is_kill;
	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"port vlan command, send fail, ret =%d.\n", ret);
	return ret;
}

static bool hclge_need_update_port_vlan(struct hclge_dev *hdev, u16 vport_id,
					u16 vlan_id, bool is_kill)
{
	/* vlan 0 may be added twice when 8021q module is enabled */
	if (!is_kill && !vlan_id &&
	    test_bit(vport_id, hdev->vlan_table[vlan_id]))
		return false;

	if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) {
		dev_warn(&hdev->pdev->dev,
			 "Add port vlan failed, vport %u is already in vlan %u\n",
			 vport_id, vlan_id);
		return false;
	}

	if (is_kill &&
	    !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) {
		dev_warn(&hdev->pdev->dev,
			 "Delete port vlan failed, vport %u is not in vlan %u\n",
			 vport_id, vlan_id);
		return false;
	}

	return true;
}

static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto,
				    u16 vport_id, u16 vlan_id,
				    bool is_kill)
{
	u16 vport_idx, vport_num = 0;
	int ret;

	if (is_kill && !vlan_id)
		return 0;

	if (vlan_id >= VLAN_N_VID)
		return -EINVAL;

	ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set %u vport vlan filter config fail, ret =%d.\n",
			vport_id, ret);
		return ret;
	}

	if (!hclge_need_update_port_vlan(hdev, vport_id, vlan_id, is_kill))
		return 0;

	for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM)
		vport_num++;

	if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1))
		ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id,
						 is_kill);

	return ret;
}

static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport)
{
	struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg;
	struct hclge_vport_vtag_tx_cfg_cmd *req;
	struct hclge_dev *hdev = vport->back;
	struct hclge_desc desc;
	u16 bmap_index;
	int status;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false);

	req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data;
	req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1);
	req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B,
		      vcfg->accept_tag1 ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B,
		      vcfg->accept_untag1 ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B,
		      vcfg->accept_tag2 ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B,
		      vcfg->accept_untag2 ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B,
		      vcfg->insert_tag1_en ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B,
		      vcfg->insert_tag2_en ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_TAG_SHIFT_MODE_EN_B,
		      vcfg->tag_shift_mode_en ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0);

	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
			HCLGE_VF_NUM_PER_BYTE;
	req->vf_bitmap[bmap_index] =
		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);

	status = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"Send port txvlan cfg command fail, ret =%d\n",
			status);

	return status;
}

static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport)
{
	struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg;
	struct hclge_vport_vtag_rx_cfg_cmd *req;
	struct hclge_dev *hdev = vport->back;
	struct hclge_desc desc;
	u16 bmap_index;
	int status;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false);

	req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data;
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B,
		      vcfg->strip_tag1_en ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B,
		      vcfg->strip_tag2_en ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B,
		      vcfg->vlan1_vlan_prionly ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B,
		      vcfg->vlan2_vlan_prionly ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG1_EN_B,
		      vcfg->strip_tag1_discard_en ? 1 : 0);
	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG2_EN_B,
		      vcfg->strip_tag2_discard_en ? 1 : 0);

	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
			HCLGE_VF_NUM_PER_BYTE;
	req->vf_bitmap[bmap_index] =
		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);

	status = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"Send port rxvlan cfg command fail, ret =%d\n",
			status);

	return status;
}

static int hclge_vlan_offload_cfg(struct hclge_vport *vport,
				  u16 port_base_vlan_state,
				  u16 vlan_tag, u8 qos)
{
	int ret;

	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
		vport->txvlan_cfg.accept_tag1 = true;
		vport->txvlan_cfg.insert_tag1_en = false;
		vport->txvlan_cfg.default_tag1 = 0;
	} else {
		struct hnae3_ae_dev *ae_dev = pci_get_drvdata(vport->nic.pdev);

		vport->txvlan_cfg.accept_tag1 =
			ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3;
		vport->txvlan_cfg.insert_tag1_en = true;
		vport->txvlan_cfg.default_tag1 = (qos << VLAN_PRIO_SHIFT) |
						 vlan_tag;
	}

	vport->txvlan_cfg.accept_untag1 = true;

	/* accept_tag2 and accept_untag2 are not supported on
	 * pdev revision(0x20), new revision support them,
	 * this two fields can not be configured by user.
	 */
	vport->txvlan_cfg.accept_tag2 = true;
	vport->txvlan_cfg.accept_untag2 = true;
	vport->txvlan_cfg.insert_tag2_en = false;
	vport->txvlan_cfg.default_tag2 = 0;
	vport->txvlan_cfg.tag_shift_mode_en = true;

	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
		vport->rxvlan_cfg.strip_tag1_en = false;
		vport->rxvlan_cfg.strip_tag2_en =
				vport->rxvlan_cfg.rx_vlan_offload_en;
		vport->rxvlan_cfg.strip_tag2_discard_en = false;
	} else {
		vport->rxvlan_cfg.strip_tag1_en =
				vport->rxvlan_cfg.rx_vlan_offload_en;
		vport->rxvlan_cfg.strip_tag2_en = true;
		vport->rxvlan_cfg.strip_tag2_discard_en = true;
	}

	vport->rxvlan_cfg.strip_tag1_discard_en = false;
	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
	vport->rxvlan_cfg.vlan2_vlan_prionly = false;

	ret = hclge_set_vlan_tx_offload_cfg(vport);
	if (ret)
		return ret;

	return hclge_set_vlan_rx_offload_cfg(vport);
}

static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev)
{
	struct hclge_rx_vlan_type_cfg_cmd *rx_req;
	struct hclge_tx_vlan_type_cfg_cmd *tx_req;
	struct hclge_desc desc;
	int status;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false);
	rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data;
	rx_req->ot_fst_vlan_type =
		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type);
	rx_req->ot_sec_vlan_type =
		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type);
	rx_req->in_fst_vlan_type =
		cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type);
	rx_req->in_sec_vlan_type =
		cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type);

	status = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"Send rxvlan protocol type command fail, ret =%d\n",
			status);
		return status;
	}

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false);

	tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data;
	tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type);
	tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type);

	status = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"Send txvlan protocol type command fail, ret =%d\n",
			status);

	return status;
}

static int hclge_init_vlan_filter(struct hclge_dev *hdev)
{
	struct hclge_vport *vport;
	int ret;
	int i;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
						  HCLGE_FILTER_FE_EGRESS_V1_B,
						  true, 0);

	/* for revision 0x21, vf vlan filter is per function */
	for (i = 0; i < hdev->num_alloc_vport; i++) {
		vport = &hdev->vport[i];
		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
						 HCLGE_FILTER_FE_EGRESS, true,
						 vport->vport_id);
		if (ret)
			return ret;
		vport->cur_vlan_fltr_en = true;
	}

	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
					  HCLGE_FILTER_FE_INGRESS, true, 0);
}

static int hclge_init_vlan_type(struct hclge_dev *hdev)
{
	hdev->vlan_type_cfg.rx_in_fst_vlan_type = ETH_P_8021Q;
	hdev->vlan_type_cfg.rx_in_sec_vlan_type = ETH_P_8021Q;
	hdev->vlan_type_cfg.rx_ot_fst_vlan_type = ETH_P_8021Q;
	hdev->vlan_type_cfg.rx_ot_sec_vlan_type = ETH_P_8021Q;
	hdev->vlan_type_cfg.tx_ot_vlan_type = ETH_P_8021Q;
	hdev->vlan_type_cfg.tx_in_vlan_type = ETH_P_8021Q;

	return hclge_set_vlan_protocol_type(hdev);
}

static int hclge_init_vport_vlan_offload(struct hclge_dev *hdev)
{
	struct hclge_port_base_vlan_config *cfg;
	struct hclge_vport *vport;
	int ret;
	int i;

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		vport = &hdev->vport[i];
		cfg = &vport->port_base_vlan_cfg;

		ret = hclge_vlan_offload_cfg(vport, cfg->state,
					     cfg->vlan_info.vlan_tag,
					     cfg->vlan_info.qos);
		if (ret)
			return ret;
	}
	return 0;
}

static int hclge_init_vlan_config(struct hclge_dev *hdev)
{
	struct hnae3_handle *handle = &hdev->vport[0].nic;
	int ret;

	ret = hclge_init_vlan_filter(hdev);
	if (ret)
		return ret;

	ret = hclge_init_vlan_type(hdev);
	if (ret)
		return ret;

	ret = hclge_init_vport_vlan_offload(hdev);
	if (ret)
		return ret;

	return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false);
}

static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
				       bool writen_to_tbl)
{
	struct hclge_vport_vlan_cfg *vlan, *tmp;
	struct hclge_dev *hdev = vport->back;

	mutex_lock(&hdev->vport_lock);

	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
		if (vlan->vlan_id == vlan_id) {
			mutex_unlock(&hdev->vport_lock);
			return;
		}
	}

	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
	if (!vlan) {
		mutex_unlock(&hdev->vport_lock);
		return;
	}

	vlan->hd_tbl_status = writen_to_tbl;
	vlan->vlan_id = vlan_id;

	list_add_tail(&vlan->node, &vport->vlan_list);
	mutex_unlock(&hdev->vport_lock);
}

static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport)
{
	struct hclge_vport_vlan_cfg *vlan, *tmp;
	struct hclge_dev *hdev = vport->back;
	int ret;

	mutex_lock(&hdev->vport_lock);

	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
		if (!vlan->hd_tbl_status) {
			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
						       vport->vport_id,
						       vlan->vlan_id, false);
			if (ret) {
				dev_err(&hdev->pdev->dev,
					"restore vport vlan list failed, ret=%d\n",
					ret);

				mutex_unlock(&hdev->vport_lock);
				return ret;
			}
		}
		vlan->hd_tbl_status = true;
	}

	mutex_unlock(&hdev->vport_lock);

	return 0;
}

static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
				      bool is_write_tbl)
{
	struct hclge_vport_vlan_cfg *vlan, *tmp;
	struct hclge_dev *hdev = vport->back;

	mutex_lock(&hdev->vport_lock);

	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
		if (vlan->vlan_id == vlan_id) {
			if (is_write_tbl && vlan->hd_tbl_status)
				hclge_set_vlan_filter_hw(hdev,
							 htons(ETH_P_8021Q),
							 vport->vport_id,
							 vlan_id,
							 true);

			list_del(&vlan->node);
			kfree(vlan);
			break;
		}
	}

	mutex_unlock(&hdev->vport_lock);
}

void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list)
{
	struct hclge_vport_vlan_cfg *vlan, *tmp;
	struct hclge_dev *hdev = vport->back;

	mutex_lock(&hdev->vport_lock);

	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
		if (vlan->hd_tbl_status)
			hclge_set_vlan_filter_hw(hdev,
						 htons(ETH_P_8021Q),
						 vport->vport_id,
						 vlan->vlan_id,
						 true);

		vlan->hd_tbl_status = false;
		if (is_del_list) {
			list_del(&vlan->node);
			kfree(vlan);
		}
	}
	clear_bit(vport->vport_id, hdev->vf_vlan_full);
	mutex_unlock(&hdev->vport_lock);
}

void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev)
{
	struct hclge_vport_vlan_cfg *vlan, *tmp;
	struct hclge_vport *vport;
	int i;

	mutex_lock(&hdev->vport_lock);

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		vport = &hdev->vport[i];
		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
			list_del(&vlan->node);
			kfree(vlan);
		}
	}

	mutex_unlock(&hdev->vport_lock);
}

void hclge_restore_vport_port_base_vlan_config(struct hclge_dev *hdev)
{
	struct hclge_vlan_info *vlan_info;
	struct hclge_vport *vport;
	u16 vlan_proto;
	u16 vlan_id;
	u16 state;
	int vf_id;
	int ret;

	/* PF should restore all vfs port base vlan */
	for (vf_id = 0; vf_id < hdev->num_alloc_vfs; vf_id++) {
		vport = &hdev->vport[vf_id + HCLGE_VF_VPORT_START_NUM];
		vlan_info = vport->port_base_vlan_cfg.tbl_sta ?
			    &vport->port_base_vlan_cfg.vlan_info :
			    &vport->port_base_vlan_cfg.old_vlan_info;

		vlan_id = vlan_info->vlan_tag;
		vlan_proto = vlan_info->vlan_proto;
		state = vport->port_base_vlan_cfg.state;

		if (state != HNAE3_PORT_BASE_VLAN_DISABLE) {
			clear_bit(vport->vport_id, hdev->vlan_table[vlan_id]);
			ret = hclge_set_vlan_filter_hw(hdev, htons(vlan_proto),
						       vport->vport_id,
						       vlan_id, false);
			vport->port_base_vlan_cfg.tbl_sta = ret == 0;
		}
	}
}

void hclge_restore_vport_vlan_table(struct hclge_vport *vport)
{
	struct hclge_vport_vlan_cfg *vlan, *tmp;
	struct hclge_dev *hdev = vport->back;
	int ret;

	mutex_lock(&hdev->vport_lock);

	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
						       vport->vport_id,
						       vlan->vlan_id, false);
			if (ret)
				break;
			vlan->hd_tbl_status = true;
		}
	}

	mutex_unlock(&hdev->vport_lock);
}

/* For global reset and imp reset, hardware will clear the mac table,
 * so we change the mac address state from ACTIVE to TO_ADD, then they
 * can be restored in the service task after reset complete. Furtherly,
 * the mac addresses with state TO_DEL or DEL_FAIL are unnecessary to
 * be restored after reset, so just remove these mac nodes from mac_list.
 */
static void hclge_mac_node_convert_for_reset(struct list_head *list)
{
	struct hclge_mac_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		if (mac_node->state == HCLGE_MAC_ACTIVE) {
			mac_node->state = HCLGE_MAC_TO_ADD;
		} else if (mac_node->state == HCLGE_MAC_TO_DEL) {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

void hclge_restore_mac_table_common(struct hclge_vport *vport)
{
	spin_lock_bh(&vport->mac_list_lock);

	hclge_mac_node_convert_for_reset(&vport->uc_mac_list);
	hclge_mac_node_convert_for_reset(&vport->mc_mac_list);
	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);

	spin_unlock_bh(&vport->mac_list_lock);
}

static void hclge_restore_hw_table(struct hclge_dev *hdev)
{
	struct hclge_vport *vport = &hdev->vport[0];
	struct hnae3_handle *handle = &vport->nic;

	hclge_restore_mac_table_common(vport);
	hclge_restore_vport_port_base_vlan_config(hdev);
	hclge_restore_vport_vlan_table(vport);
	set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
	hclge_restore_fd_entries(handle);
}

int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
		vport->rxvlan_cfg.strip_tag1_en = false;
		vport->rxvlan_cfg.strip_tag2_en = enable;
		vport->rxvlan_cfg.strip_tag2_discard_en = false;
	} else {
		vport->rxvlan_cfg.strip_tag1_en = enable;
		vport->rxvlan_cfg.strip_tag2_en = true;
		vport->rxvlan_cfg.strip_tag2_discard_en = true;
	}

	vport->rxvlan_cfg.strip_tag1_discard_en = false;
	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
	vport->rxvlan_cfg.rx_vlan_offload_en = enable;

	return hclge_set_vlan_rx_offload_cfg(vport);
}

static void hclge_set_vport_vlan_fltr_change(struct hclge_vport *vport)
{
	struct hclge_dev *hdev = vport->back;

	if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
		set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, &vport->state);
}

static int hclge_update_vlan_filter_entries(struct hclge_vport *vport,
					    u16 port_base_vlan_state,
					    struct hclge_vlan_info *new_info,
					    struct hclge_vlan_info *old_info)
{
	struct hclge_dev *hdev = vport->back;
	int ret;

	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) {
		hclge_rm_vport_all_vlan_table(vport, false);
		/* force clear VLAN 0 */
		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, true, 0);
		if (ret)
			return ret;
		return hclge_set_vlan_filter_hw(hdev,
						 htons(new_info->vlan_proto),
						 vport->vport_id,
						 new_info->vlan_tag,
						 false);
	}

	vport->port_base_vlan_cfg.tbl_sta = false;

	/* force add VLAN 0 */
	ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, false, 0);
	if (ret)
		return ret;

	ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto),
				       vport->vport_id, old_info->vlan_tag,
				       true);
	if (ret)
		return ret;

	return hclge_add_vport_all_vlan_table(vport);
}

static bool hclge_need_update_vlan_filter(const struct hclge_vlan_info *new_cfg,
					  const struct hclge_vlan_info *old_cfg)
{
	if (new_cfg->vlan_tag != old_cfg->vlan_tag)
		return true;

	if (new_cfg->vlan_tag == 0 && (new_cfg->qos == 0 || old_cfg->qos == 0))
		return true;

	return false;
}

static int hclge_modify_port_base_vlan_tag(struct hclge_vport *vport,
					   struct hclge_vlan_info *new_info,
					   struct hclge_vlan_info *old_info)
{
	struct hclge_dev *hdev = vport->back;
	int ret;

	/* add new VLAN tag */
	ret = hclge_set_vlan_filter_hw(hdev, htons(new_info->vlan_proto),
				       vport->vport_id, new_info->vlan_tag,
				       false);
	if (ret)
		return ret;

	vport->port_base_vlan_cfg.tbl_sta = false;
	/* remove old VLAN tag */
	if (old_info->vlan_tag == 0)
		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id,
					       true, 0);
	else
		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
					       vport->vport_id,
					       old_info->vlan_tag, true);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to clear vport%u port base vlan %u, ret = %d.\n",
			vport->vport_id, old_info->vlan_tag, ret);

	return ret;
}

int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state,
				    struct hclge_vlan_info *vlan_info)
{
	struct hnae3_handle *nic = &vport->nic;
	struct hclge_vlan_info *old_vlan_info;
	int ret;

	old_vlan_info = &vport->port_base_vlan_cfg.vlan_info;

	ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag,
				     vlan_info->qos);
	if (ret)
		return ret;

	if (!hclge_need_update_vlan_filter(vlan_info, old_vlan_info))
		goto out;

	if (state == HNAE3_PORT_BASE_VLAN_MODIFY)
		ret = hclge_modify_port_base_vlan_tag(vport, vlan_info,
						      old_vlan_info);
	else
		ret = hclge_update_vlan_filter_entries(vport, state, vlan_info,
						       old_vlan_info);
	if (ret)
		return ret;

out:
	vport->port_base_vlan_cfg.state = state;
	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
	else
		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;

	vport->port_base_vlan_cfg.old_vlan_info = *old_vlan_info;
	vport->port_base_vlan_cfg.vlan_info = *vlan_info;
	vport->port_base_vlan_cfg.tbl_sta = true;
	hclge_set_vport_vlan_fltr_change(vport);

	return 0;
}

static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport,
					  enum hnae3_port_base_vlan_state state,
					  u16 vlan, u8 qos)
{
	if (state == HNAE3_PORT_BASE_VLAN_DISABLE) {
		if (!vlan && !qos)
			return HNAE3_PORT_BASE_VLAN_NOCHANGE;

		return HNAE3_PORT_BASE_VLAN_ENABLE;
	}

	if (!vlan && !qos)
		return HNAE3_PORT_BASE_VLAN_DISABLE;

	if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan &&
	    vport->port_base_vlan_cfg.vlan_info.qos == qos)
		return HNAE3_PORT_BASE_VLAN_NOCHANGE;

	return HNAE3_PORT_BASE_VLAN_MODIFY;
}

static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid,
				    u16 vlan, u8 qos, __be16 proto)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_vlan_info vlan_info;
	u16 state;
	int ret;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return -EOPNOTSUPP;

	vport = hclge_get_vf_vport(hdev, vfid);
	if (!vport)
		return -EINVAL;

	/* qos is a 3 bits value, so can not be bigger than 7 */
	if (vlan > VLAN_N_VID - 1 || qos > 7)
		return -EINVAL;
	if (proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

	state = hclge_get_port_base_vlan_state(vport,
					       vport->port_base_vlan_cfg.state,
					       vlan, qos);
	if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE)
		return 0;

	vlan_info.vlan_tag = vlan;
	vlan_info.qos = qos;
	vlan_info.vlan_proto = ntohs(proto);

	ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to update port base vlan for vf %d, ret = %d\n",
			vfid, ret);
		return ret;
	}

	/* there is a timewindow for PF to know VF unalive, it may
	 * cause send mailbox fail, but it doesn't matter, VF will
	 * query it when reinit.
	 * for DEVICE_VERSION_V3, vf doesn't need to know about the port based
	 * VLAN state.
	 */
	if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
		if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
			(void)hclge_push_vf_port_base_vlan_info(&hdev->vport[0],
								vport->vport_id,
								state,
								&vlan_info);
		else
			set_bit(HCLGE_VPORT_NEED_NOTIFY_VF_VLAN,
				&vport->need_notify);
	}
	return 0;
}

static void hclge_clear_vf_vlan(struct hclge_dev *hdev)
{
	struct hclge_vlan_info *vlan_info;
	struct hclge_vport *vport;
	int ret;
	int vf;

	/* clear port base vlan for all vf */
	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
		vport = &hdev->vport[vf];
		vlan_info = &vport->port_base_vlan_cfg.vlan_info;

		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
					       vport->vport_id,
					       vlan_info->vlan_tag, true);
		if (ret)
			dev_err(&hdev->pdev->dev,
				"failed to clear vf vlan for vf%d, ret = %d\n",
				vf - HCLGE_VF_VPORT_START_NUM, ret);
	}
}

int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto,
			  u16 vlan_id, bool is_kill)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	bool writen_to_tbl = false;
	int ret = 0;

	/* When device is resetting or reset failed, firmware is unable to
	 * handle mailbox. Just record the vlan id, and remove it after
	 * reset finished.
	 */
	if ((test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
	     test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) && is_kill) {
		set_bit(vlan_id, vport->vlan_del_fail_bmap);
		return -EBUSY;
	}

	/* when port base vlan enabled, we use port base vlan as the vlan
	 * filter entry. In this case, we don't update vlan filter table
	 * when user add new vlan or remove exist vlan, just update the vport
	 * vlan list. The vlan id in vlan list will be writen in vlan filter
	 * table until port base vlan disabled
	 */
	if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
		ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id,
					       vlan_id, is_kill);
		writen_to_tbl = true;
	}

	if (!ret) {
		if (!is_kill)
			hclge_add_vport_vlan_table(vport, vlan_id,
						   writen_to_tbl);
		else if (is_kill && vlan_id != 0)
			hclge_rm_vport_vlan_table(vport, vlan_id, false);
	} else if (is_kill) {
		/* when remove hw vlan filter failed, record the vlan id,
		 * and try to remove it from hw later, to be consistence
		 * with stack
		 */
		set_bit(vlan_id, vport->vlan_del_fail_bmap);
	}

	hclge_set_vport_vlan_fltr_change(vport);

	return ret;
}

static void hclge_sync_vlan_fltr_state(struct hclge_dev *hdev)
{
	struct hclge_vport *vport;
	int ret;
	u16 i;

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		vport = &hdev->vport[i];
		if (!test_and_clear_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
					&vport->state))
			continue;

		ret = hclge_enable_vport_vlan_filter(vport,
						     vport->req_vlan_fltr_en);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to sync vlan filter state for vport%u, ret = %d\n",
				vport->vport_id, ret);
			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
				&vport->state);
			return;
		}
	}
}

static void hclge_sync_vlan_filter(struct hclge_dev *hdev)
{
#define HCLGE_MAX_SYNC_COUNT	60

	int i, ret, sync_cnt = 0;
	u16 vlan_id;

	/* start from vport 1 for PF is always alive */
	for (i = 0; i < hdev->num_alloc_vport; i++) {
		struct hclge_vport *vport = &hdev->vport[i];

		vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
					 VLAN_N_VID);
		while (vlan_id != VLAN_N_VID) {
			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
						       vport->vport_id, vlan_id,
						       true);
			if (ret && ret != -EINVAL)
				return;

			clear_bit(vlan_id, vport->vlan_del_fail_bmap);
			hclge_rm_vport_vlan_table(vport, vlan_id, false);
			hclge_set_vport_vlan_fltr_change(vport);

			sync_cnt++;
			if (sync_cnt >= HCLGE_MAX_SYNC_COUNT)
				return;

			vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
						 VLAN_N_VID);
		}
	}

	hclge_sync_vlan_fltr_state(hdev);
}

static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps)
{
	struct hclge_config_max_frm_size_cmd *req;
	struct hclge_desc desc;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false);

	req = (struct hclge_config_max_frm_size_cmd *)desc.data;
	req->max_frm_size = cpu_to_le16(new_mps);
	req->min_frm_size = HCLGE_MAC_MIN_FRAME;

	return hclge_cmd_send(&hdev->hw, &desc, 1);
}

static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	return hclge_set_vport_mtu(vport, new_mtu);
}

int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu)
{
	struct hclge_dev *hdev = vport->back;
	int i, max_frm_size, ret;

	/* HW supprt 2 layer vlan */
	max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
	if (max_frm_size < HCLGE_MAC_MIN_FRAME ||
	    max_frm_size > hdev->ae_dev->dev_specs.max_frm_size)
		return -EINVAL;

	max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME);
	mutex_lock(&hdev->vport_lock);
	/* VF's mps must fit within hdev->mps */
	if (vport->vport_id && max_frm_size > hdev->mps) {
		mutex_unlock(&hdev->vport_lock);
		return -EINVAL;
	} else if (vport->vport_id) {
		vport->mps = max_frm_size;
		mutex_unlock(&hdev->vport_lock);
		return 0;
	}

	/* PF's mps must be greater then VF's mps */
	for (i = 1; i < hdev->num_alloc_vport; i++)
		if (max_frm_size < hdev->vport[i].mps) {
			dev_err(&hdev->pdev->dev,
				"failed to set pf mtu for less than vport %d, mps = %u.\n",
				i, hdev->vport[i].mps);
			mutex_unlock(&hdev->vport_lock);
			return -EINVAL;
		}

	hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);

	ret = hclge_set_mac_mtu(hdev, max_frm_size);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Change mtu fail, ret =%d\n", ret);
		goto out;
	}

	hdev->mps = max_frm_size;
	vport->mps = max_frm_size;

	ret = hclge_buffer_alloc(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Allocate buffer fail, ret =%d\n", ret);

out:
	hclge_notify_client(hdev, HNAE3_UP_CLIENT);
	mutex_unlock(&hdev->vport_lock);
	return ret;
}

static int hclge_reset_tqp_cmd_send(struct hclge_dev *hdev, u16 queue_id,
				    bool enable)
{
	struct hclge_reset_tqp_queue_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false);

	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
	req->tqp_id = cpu_to_le16(queue_id);
	if (enable)
		hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Send tqp reset cmd error, status =%d\n", ret);
		return ret;
	}

	return 0;
}

static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id,
				  u8 *reset_status)
{
	struct hclge_reset_tqp_queue_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true);

	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
	req->tqp_id = cpu_to_le16(queue_id);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get reset status error, status =%d\n", ret);
		return ret;
	}

	*reset_status = hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B);

	return 0;
}

u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclge_comm_tqp *tqp;
	struct hnae3_queue *queue;

	queue = handle->kinfo.tqp[queue_id];
	tqp = container_of(queue, struct hclge_comm_tqp, q);

	return tqp->index;
}

static int hclge_reset_tqp_cmd(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u16 reset_try_times = 0;
	u8 reset_status;
	u16 queue_gid;
	int ret;
	u16 i;

	for (i = 0; i < handle->kinfo.num_tqps; i++) {
		queue_gid = hclge_covert_handle_qid_global(handle, i);
		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, true);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to send reset tqp cmd, ret = %d\n",
				ret);
			return ret;
		}

		while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) {
			ret = hclge_get_reset_status(hdev, queue_gid,
						     &reset_status);
			if (ret)
				return ret;

			if (reset_status)
				break;

			/* Wait for tqp hw reset */
			usleep_range(1000, 1200);
		}

		if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) {
			dev_err(&hdev->pdev->dev,
				"wait for tqp hw reset timeout\n");
			return -ETIME;
		}

		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, false);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to deassert soft reset, ret = %d\n",
				ret);
			return ret;
		}
		reset_try_times = 0;
	}
	return 0;
}

static int hclge_reset_rcb(struct hnae3_handle *handle)
{
#define HCLGE_RESET_RCB_NOT_SUPPORT	0U
#define HCLGE_RESET_RCB_SUCCESS		1U

	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_reset_cmd *req;
	struct hclge_desc desc;
	u8 return_status;
	u16 queue_gid;
	int ret;

	queue_gid = hclge_covert_handle_qid_global(handle, 0);

	req = (struct hclge_reset_cmd *)desc.data;
	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
	hnae3_set_bit(req->fun_reset_rcb, HCLGE_CFG_RESET_RCB_B, 1);
	req->fun_reset_rcb_vqid_start = cpu_to_le16(queue_gid);
	req->fun_reset_rcb_vqid_num = cpu_to_le16(handle->kinfo.num_tqps);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to send rcb reset cmd, ret = %d\n", ret);
		return ret;
	}

	return_status = req->fun_reset_rcb_return_status;
	if (return_status == HCLGE_RESET_RCB_SUCCESS)
		return 0;

	if (return_status != HCLGE_RESET_RCB_NOT_SUPPORT) {
		dev_err(&hdev->pdev->dev, "failed to reset rcb, ret = %u\n",
			return_status);
		return -EIO;
	}

	/* if reset rcb cmd is unsupported, we need to send reset tqp cmd
	 * again to reset all tqps
	 */
	return hclge_reset_tqp_cmd(handle);
}

int hclge_reset_tqp(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int ret;

	/* only need to disable PF's tqp */
	if (!vport->vport_id) {
		ret = hclge_tqp_enable(handle, false);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to disable tqp, ret = %d\n", ret);
			return ret;
		}
	}

	return hclge_reset_rcb(handle);
}

static u32 hclge_get_fw_version(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return hdev->fw_version;
}

static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
{
	struct phy_device *phydev = hdev->hw.mac.phydev;

	if (!phydev)
		return;

	phy_set_asym_pause(phydev, rx_en, tx_en);
}

static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
{
	int ret;

	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC)
		return 0;

	ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"configure pauseparam error, ret = %d.\n", ret);

	return ret;
}

int hclge_cfg_flowctrl(struct hclge_dev *hdev)
{
	struct phy_device *phydev = hdev->hw.mac.phydev;
	u16 remote_advertising = 0;
	u16 local_advertising;
	u32 rx_pause, tx_pause;
	u8 flowctl;

	if (!phydev->link)
		return 0;

	if (!phydev->autoneg)
		return hclge_mac_pause_setup_hw(hdev);

	local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising);

	if (phydev->pause)
		remote_advertising = LPA_PAUSE_CAP;

	if (phydev->asym_pause)
		remote_advertising |= LPA_PAUSE_ASYM;

	flowctl = mii_resolve_flowctrl_fdx(local_advertising,
					   remote_advertising);
	tx_pause = flowctl & FLOW_CTRL_TX;
	rx_pause = flowctl & FLOW_CTRL_RX;

	if (phydev->duplex == HCLGE_MAC_HALF) {
		tx_pause = 0;
		rx_pause = 0;
	}

	return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause);
}

static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg,
				 u32 *rx_en, u32 *tx_en)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u8 media_type = hdev->hw.mac.media_type;

	*auto_neg = (media_type == HNAE3_MEDIA_TYPE_COPPER) ?
		    hclge_get_autoneg(handle) : 0;

	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
		*rx_en = 0;
		*tx_en = 0;
		return;
	}

	if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) {
		*rx_en = 1;
		*tx_en = 0;
	} else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) {
		*tx_en = 1;
		*rx_en = 0;
	} else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) {
		*rx_en = 1;
		*tx_en = 1;
	} else {
		*rx_en = 0;
		*tx_en = 0;
	}
}

static void hclge_record_user_pauseparam(struct hclge_dev *hdev,
					 u32 rx_en, u32 tx_en)
{
	if (rx_en && tx_en)
		hdev->fc_mode_last_time = HCLGE_FC_FULL;
	else if (rx_en && !tx_en)
		hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE;
	else if (!rx_en && tx_en)
		hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE;
	else
		hdev->fc_mode_last_time = HCLGE_FC_NONE;

	hdev->tm_info.fc_mode = hdev->fc_mode_last_time;
}

static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg,
				u32 rx_en, u32 tx_en)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct phy_device *phydev = hdev->hw.mac.phydev;
	u32 fc_autoneg;

	if (phydev || hnae3_dev_phy_imp_supported(hdev)) {
		fc_autoneg = hclge_get_autoneg(handle);
		if (auto_neg != fc_autoneg) {
			dev_info(&hdev->pdev->dev,
				 "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
			return -EOPNOTSUPP;
		}
	}

	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
		dev_info(&hdev->pdev->dev,
			 "Priority flow control enabled. Cannot set link flow control.\n");
		return -EOPNOTSUPP;
	}

	hclge_set_flowctrl_adv(hdev, rx_en, tx_en);

	hclge_record_user_pauseparam(hdev, rx_en, tx_en);

	if (!auto_neg || hnae3_dev_phy_imp_supported(hdev))
		return hclge_cfg_pauseparam(hdev, rx_en, tx_en);

	if (phydev)
		return phy_start_aneg(phydev);

	return -EOPNOTSUPP;
}

static void hclge_get_ksettings_an_result(struct hnae3_handle *handle,
					  u8 *auto_neg, u32 *speed, u8 *duplex, u32 *lane_num)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	if (speed)
		*speed = hdev->hw.mac.speed;
	if (duplex)
		*duplex = hdev->hw.mac.duplex;
	if (auto_neg)
		*auto_neg = hdev->hw.mac.autoneg;
	if (lane_num)
		*lane_num = hdev->hw.mac.lane_num;
}

static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type,
				 u8 *module_type)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	/* When nic is down, the service task is not running, doesn't update
	 * the port information per second. Query the port information before
	 * return the media type, ensure getting the correct media information.
	 */
	hclge_update_port_info(hdev);

	if (media_type)
		*media_type = hdev->hw.mac.media_type;

	if (module_type)
		*module_type = hdev->hw.mac.module_type;
}

static void hclge_get_mdix_mode(struct hnae3_handle *handle,
				u8 *tp_mdix_ctrl, u8 *tp_mdix)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct phy_device *phydev = hdev->hw.mac.phydev;
	int mdix_ctrl, mdix, is_resolved;
	unsigned int retval;

	if (!phydev) {
		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
		*tp_mdix = ETH_TP_MDI_INVALID;
		return;
	}

	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX);

	retval = phy_read(phydev, HCLGE_PHY_CSC_REG);
	mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M,
				    HCLGE_PHY_MDIX_CTRL_S);

	retval = phy_read(phydev, HCLGE_PHY_CSS_REG);
	mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B);
	is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B);

	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER);

	switch (mdix_ctrl) {
	case 0x0:
		*tp_mdix_ctrl = ETH_TP_MDI;
		break;
	case 0x1:
		*tp_mdix_ctrl = ETH_TP_MDI_X;
		break;
	case 0x3:
		*tp_mdix_ctrl = ETH_TP_MDI_AUTO;
		break;
	default:
		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
		break;
	}

	if (!is_resolved)
		*tp_mdix = ETH_TP_MDI_INVALID;
	else if (mdix)
		*tp_mdix = ETH_TP_MDI_X;
	else
		*tp_mdix = ETH_TP_MDI;
}

static void hclge_info_show(struct hclge_dev *hdev)
{
	struct device *dev = &hdev->pdev->dev;

	dev_info(dev, "PF info begin:\n");

	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
	dev_info(dev, "Numbers of VF for this PF: %u\n", hdev->num_req_vfs);
	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
	dev_info(dev, "Total buffer size for TX/RX: %u\n", hdev->pkt_buf_size);
	dev_info(dev, "TX buffer size for each TC: %u\n", hdev->tx_buf_size);
	dev_info(dev, "DV buffer size for each TC: %u\n", hdev->dv_buf_size);
	dev_info(dev, "This is %s PF\n",
		 hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main");
	dev_info(dev, "DCB %s\n",
		 hdev->flag & HCLGE_FLAG_DCB_ENABLE ? "enable" : "disable");
	dev_info(dev, "MQPRIO %s\n",
		 hdev->flag & HCLGE_FLAG_MQPRIO_ENABLE ? "enable" : "disable");
	dev_info(dev, "Default tx spare buffer size: %u\n",
		 hdev->tx_spare_buf_size);

	dev_info(dev, "PF info end.\n");
}

static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
					  struct hclge_vport *vport)
{
	struct hnae3_client *client = vport->nic.client;
	struct hclge_dev *hdev = ae_dev->priv;
	int rst_cnt = hdev->rst_stats.reset_cnt;
	int ret;

	ret = client->ops->init_instance(&vport->nic);
	if (ret)
		return ret;

	set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
	    rst_cnt != hdev->rst_stats.reset_cnt) {
		ret = -EBUSY;
		goto init_nic_err;
	}

	/* Enable nic hw error interrupts */
	ret = hclge_config_nic_hw_error(hdev, true);
	if (ret) {
		dev_err(&ae_dev->pdev->dev,
			"fail(%d) to enable hw error interrupts\n", ret);
		goto init_nic_err;
	}

	hnae3_set_client_init_flag(client, ae_dev, 1);

	if (netif_msg_drv(&hdev->vport->nic))
		hclge_info_show(hdev);

	return ret;

init_nic_err:
	clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
		msleep(HCLGE_WAIT_RESET_DONE);

	client->ops->uninit_instance(&vport->nic, 0);

	return ret;
}

static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
					   struct hclge_vport *vport)
{
	struct hclge_dev *hdev = ae_dev->priv;
	struct hnae3_client *client;
	int rst_cnt;
	int ret;

	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
	    !hdev->nic_client)
		return 0;

	client = hdev->roce_client;
	ret = hclge_init_roce_base_info(vport);
	if (ret)
		return ret;

	rst_cnt = hdev->rst_stats.reset_cnt;
	ret = client->ops->init_instance(&vport->roce);
	if (ret)
		return ret;

	set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
	    rst_cnt != hdev->rst_stats.reset_cnt) {
		ret = -EBUSY;
		goto init_roce_err;
	}

	/* Enable roce ras interrupts */
	ret = hclge_config_rocee_ras_interrupt(hdev, true);
	if (ret) {
		dev_err(&ae_dev->pdev->dev,
			"fail(%d) to enable roce ras interrupts\n", ret);
		goto init_roce_err;
	}

	hnae3_set_client_init_flag(client, ae_dev, 1);

	return 0;

init_roce_err:
	clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
		msleep(HCLGE_WAIT_RESET_DONE);

	hdev->roce_client->ops->uninit_instance(&vport->roce, 0);

	return ret;
}

static int hclge_init_client_instance(struct hnae3_client *client,
				      struct hnae3_ae_dev *ae_dev)
{
	struct hclge_dev *hdev = ae_dev->priv;
	struct hclge_vport *vport = &hdev->vport[0];
	int ret;

	switch (client->type) {
	case HNAE3_CLIENT_KNIC:
		hdev->nic_client = client;
		vport->nic.client = client;
		ret = hclge_init_nic_client_instance(ae_dev, vport);
		if (ret)
			goto clear_nic;

		ret = hclge_init_roce_client_instance(ae_dev, vport);
		if (ret)
			goto clear_roce;

		break;
	case HNAE3_CLIENT_ROCE:
		if (hnae3_dev_roce_supported(hdev)) {
			hdev->roce_client = client;
			vport->roce.client = client;
		}

		ret = hclge_init_roce_client_instance(ae_dev, vport);
		if (ret)
			goto clear_roce;

		break;
	default:
		return -EINVAL;
	}

	return 0;

clear_nic:
	hdev->nic_client = NULL;
	vport->nic.client = NULL;
	return ret;
clear_roce:
	hdev->roce_client = NULL;
	vport->roce.client = NULL;
	return ret;
}

static void hclge_uninit_client_instance(struct hnae3_client *client,
					 struct hnae3_ae_dev *ae_dev)
{
	struct hclge_dev *hdev = ae_dev->priv;
	struct hclge_vport *vport = &hdev->vport[0];

	if (hdev->roce_client) {
		clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
			msleep(HCLGE_WAIT_RESET_DONE);

		hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
		hdev->roce_client = NULL;
		vport->roce.client = NULL;
	}
	if (client->type == HNAE3_CLIENT_ROCE)
		return;
	if (hdev->nic_client && client->ops->uninit_instance) {
		clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
			msleep(HCLGE_WAIT_RESET_DONE);

		client->ops->uninit_instance(&vport->nic, 0);
		hdev->nic_client = NULL;
		vport->nic.client = NULL;
	}
}

static int hclge_dev_mem_map(struct hclge_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclge_hw *hw = &hdev->hw;

	/* for device does not have device memory, return directly */
	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGE_MEM_BAR)))
		return 0;

	hw->hw.mem_base =
		devm_ioremap_wc(&pdev->dev,
				pci_resource_start(pdev, HCLGE_MEM_BAR),
				pci_resource_len(pdev, HCLGE_MEM_BAR));
	if (!hw->hw.mem_base) {
		dev_err(&pdev->dev, "failed to map device memory\n");
		return -EFAULT;
	}

	return 0;
}

static int hclge_pci_init(struct hclge_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclge_hw *hw;
	int ret;

	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable PCI device\n");
		return ret;
	}

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret) {
		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
		if (ret) {
			dev_err(&pdev->dev,
				"can't set consistent PCI DMA");
			goto err_disable_device;
		}
		dev_warn(&pdev->dev, "set DMA mask to 32 bits\n");
	}

	ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME);
	if (ret) {
		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
		goto err_disable_device;
	}

	pci_set_master(pdev);
	hw = &hdev->hw;
	hw->hw.io_base = pcim_iomap(pdev, 2, 0);
	if (!hw->hw.io_base) {
		dev_err(&pdev->dev, "Can't map configuration register space\n");
		ret = -ENOMEM;
		goto err_release_regions;
	}

	ret = hclge_dev_mem_map(hdev);
	if (ret)
		goto err_unmap_io_base;

	hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev);

	return 0;

err_unmap_io_base:
	pcim_iounmap(pdev, hdev->hw.hw.io_base);
err_release_regions:
	pci_release_regions(pdev);
err_disable_device:
	pci_disable_device(pdev);

	return ret;
}

static void hclge_pci_uninit(struct hclge_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

	if (hdev->hw.hw.mem_base)
		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);

	pcim_iounmap(pdev, hdev->hw.hw.io_base);
	pci_free_irq_vectors(pdev);
	pci_release_mem_regions(pdev);
	pci_disable_device(pdev);
}

static void hclge_state_init(struct hclge_dev *hdev)
{
	set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state);
	set_bit(HCLGE_STATE_DOWN, &hdev->state);
	clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
	clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
}

static void hclge_state_uninit(struct hclge_dev *hdev)
{
	set_bit(HCLGE_STATE_DOWN, &hdev->state);
	set_bit(HCLGE_STATE_REMOVING, &hdev->state);

	if (hdev->reset_timer.function)
		del_timer_sync(&hdev->reset_timer);
	if (hdev->service_task.work.func)
		cancel_delayed_work_sync(&hdev->service_task);
}

static void hclge_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
					enum hnae3_reset_type rst_type)
{
#define HCLGE_RESET_RETRY_WAIT_MS	500
#define HCLGE_RESET_RETRY_CNT	5

	struct hclge_dev *hdev = ae_dev->priv;
	int retry_cnt = 0;
	int ret;

	while (retry_cnt++ < HCLGE_RESET_RETRY_CNT) {
		down(&hdev->reset_sem);
		set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
		hdev->reset_type = rst_type;
		ret = hclge_reset_prepare(hdev);
		if (!ret && !hdev->reset_pending)
			break;

		dev_err(&hdev->pdev->dev,
			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
			ret, hdev->reset_pending, retry_cnt);
		clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
		up(&hdev->reset_sem);
		msleep(HCLGE_RESET_RETRY_WAIT_MS);
	}

	/* disable misc vector before reset done */
	hclge_enable_vector(&hdev->misc_vector, false);
	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);

	if (hdev->reset_type == HNAE3_FLR_RESET)
		hdev->rst_stats.flr_rst_cnt++;
}

static void hclge_reset_done(struct hnae3_ae_dev *ae_dev)
{
	struct hclge_dev *hdev = ae_dev->priv;
	int ret;

	hclge_enable_vector(&hdev->misc_vector, true);

	ret = hclge_reset_rebuild(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret);

	hdev->reset_type = HNAE3_NONE_RESET;
	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
	up(&hdev->reset_sem);
}

static void hclge_clear_resetting_state(struct hclge_dev *hdev)
{
	u16 i;

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		struct hclge_vport *vport = &hdev->vport[i];
		int ret;

		 /* Send cmd to clear vport's FUNC_RST_ING */
		ret = hclge_set_vf_rst(hdev, vport->vport_id, false);
		if (ret)
			dev_warn(&hdev->pdev->dev,
				 "clear vport(%u) rst failed %d!\n",
				 vport->vport_id, ret);
	}
}

static int hclge_clear_hw_resource(struct hclge_dev *hdev)
{
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_HW_RESOURCE, false);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	/* This new command is only supported by new firmware, it will
	 * fail with older firmware. Error value -EOPNOSUPP can only be
	 * returned by older firmware running this command, to keep code
	 * backward compatible we will override this value and return
	 * success.
	 */
	if (ret && ret != -EOPNOTSUPP) {
		dev_err(&hdev->pdev->dev,
			"failed to clear hw resource, ret = %d\n", ret);
		return ret;
	}
	return 0;
}

static void hclge_init_rxd_adv_layout(struct hclge_dev *hdev)
{
	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 1);
}

static void hclge_uninit_rxd_adv_layout(struct hclge_dev *hdev)
{
	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 0);
}

static struct hclge_wol_info *hclge_get_wol_info(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);

	return &vport->back->hw.mac.wol;
}

static int hclge_get_wol_supported_mode(struct hclge_dev *hdev,
					u32 *wol_supported)
{
	struct hclge_query_wol_supported_cmd *wol_supported_cmd;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_WOL_GET_SUPPORTED_MODE,
				   true);
	wol_supported_cmd = (struct hclge_query_wol_supported_cmd *)desc.data;

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to query wol supported, ret = %d\n", ret);
		return ret;
	}

	*wol_supported = le32_to_cpu(wol_supported_cmd->supported_wake_mode);

	return 0;
}

static int hclge_set_wol_cfg(struct hclge_dev *hdev,
			     struct hclge_wol_info *wol_info)
{
	struct hclge_wol_cfg_cmd *wol_cfg_cmd;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_WOL_CFG, false);
	wol_cfg_cmd = (struct hclge_wol_cfg_cmd *)desc.data;
	wol_cfg_cmd->wake_on_lan_mode = cpu_to_le32(wol_info->wol_current_mode);
	wol_cfg_cmd->sopass_size = wol_info->wol_sopass_size;
	memcpy(wol_cfg_cmd->sopass, wol_info->wol_sopass, SOPASS_MAX);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to set wol config, ret = %d\n", ret);

	return ret;
}

static int hclge_update_wol(struct hclge_dev *hdev)
{
	struct hclge_wol_info *wol_info = &hdev->hw.mac.wol;

	if (!hnae3_ae_dev_wol_supported(hdev->ae_dev))
		return 0;

	return hclge_set_wol_cfg(hdev, wol_info);
}

static int hclge_init_wol(struct hclge_dev *hdev)
{
	struct hclge_wol_info *wol_info = &hdev->hw.mac.wol;
	int ret;

	if (!hnae3_ae_dev_wol_supported(hdev->ae_dev))
		return 0;

	memset(wol_info, 0, sizeof(struct hclge_wol_info));
	ret = hclge_get_wol_supported_mode(hdev,
					   &wol_info->wol_support_mode);
	if (ret) {
		wol_info->wol_support_mode = 0;
		return ret;
	}

	return hclge_update_wol(hdev);
}

static void hclge_get_wol(struct hnae3_handle *handle,
			  struct ethtool_wolinfo *wol)
{
	struct hclge_wol_info *wol_info = hclge_get_wol_info(handle);

	wol->supported = wol_info->wol_support_mode;
	wol->wolopts = wol_info->wol_current_mode;
	if (wol_info->wol_current_mode & WAKE_MAGICSECURE)
		memcpy(wol->sopass, wol_info->wol_sopass, SOPASS_MAX);
}

static int hclge_set_wol(struct hnae3_handle *handle,
			 struct ethtool_wolinfo *wol)
{
	struct hclge_wol_info *wol_info = hclge_get_wol_info(handle);
	struct hclge_vport *vport = hclge_get_vport(handle);
	u32 wol_mode;
	int ret;

	wol_mode = wol->wolopts;
	if (wol_mode & ~wol_info->wol_support_mode)
		return -EINVAL;

	wol_info->wol_current_mode = wol_mode;
	if (wol_mode & WAKE_MAGICSECURE) {
		memcpy(wol_info->wol_sopass, wol->sopass, SOPASS_MAX);
		wol_info->wol_sopass_size = SOPASS_MAX;
	} else {
		wol_info->wol_sopass_size = 0;
	}

	ret = hclge_set_wol_cfg(vport->back, wol_info);
	if (ret)
		wol_info->wol_current_mode = 0;

	return ret;
}

static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	struct hclge_dev *hdev;
	int ret;

	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
	if (!hdev)
		return -ENOMEM;

	hdev->pdev = pdev;
	hdev->ae_dev = ae_dev;
	hdev->reset_type = HNAE3_NONE_RESET;
	hdev->reset_level = HNAE3_FUNC_RESET;
	ae_dev->priv = hdev;

	/* HW supprt 2 layer vlan */
	hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN;

	mutex_init(&hdev->vport_lock);
	spin_lock_init(&hdev->fd_rule_lock);
	sema_init(&hdev->reset_sem, 1);

	ret = hclge_pci_init(hdev);
	if (ret)
		goto out;

	ret = hclge_devlink_init(hdev);
	if (ret)
		goto err_pci_uninit;

	/* Firmware command queue initialize */
	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
	if (ret)
		goto err_devlink_uninit;

	/* Firmware command initialize */
	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
				  true, hdev->reset_pending);
	if (ret)
		goto err_cmd_uninit;

	ret  = hclge_clear_hw_resource(hdev);
	if (ret)
		goto err_cmd_uninit;

	ret = hclge_get_cap(hdev);
	if (ret)
		goto err_cmd_uninit;

	ret = hclge_query_dev_specs(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to query dev specifications, ret = %d.\n",
			ret);
		goto err_cmd_uninit;
	}

	ret = hclge_configure(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret);
		goto err_cmd_uninit;
	}

	ret = hclge_init_msi(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret);
		goto err_cmd_uninit;
	}

	ret = hclge_misc_irq_init(hdev);
	if (ret)
		goto err_msi_uninit;

	ret = hclge_alloc_tqps(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret);
		goto err_msi_irq_uninit;
	}

	ret = hclge_alloc_vport(hdev);
	if (ret)
		goto err_msi_irq_uninit;

	ret = hclge_map_tqp(hdev);
	if (ret)
		goto err_msi_irq_uninit;

	if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER) {
		if (hnae3_dev_phy_imp_supported(hdev))
			ret = hclge_update_tp_port_info(hdev);
		else
			ret = hclge_mac_mdio_config(hdev);

		if (ret)
			goto err_msi_irq_uninit;
	}

	ret = hclge_init_umv_space(hdev);
	if (ret)
		goto err_mdiobus_unreg;

	ret = hclge_mac_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
		goto err_mdiobus_unreg;
	}

	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
	if (ret) {
		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
		goto err_mdiobus_unreg;
	}

	ret = hclge_config_gro(hdev);
	if (ret)
		goto err_mdiobus_unreg;

	ret = hclge_init_vlan_config(hdev);
	if (ret) {
		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
		goto err_mdiobus_unreg;
	}

	ret = hclge_tm_schd_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret);
		goto err_mdiobus_unreg;
	}

	ret = hclge_comm_rss_init_cfg(&hdev->vport->nic, hdev->ae_dev,
				      &hdev->rss_cfg);
	if (ret) {
		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
		goto err_mdiobus_unreg;
	}

	ret = hclge_rss_init_hw(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
		goto err_mdiobus_unreg;
	}

	ret = init_mgr_tbl(hdev);
	if (ret) {
		dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret);
		goto err_mdiobus_unreg;
	}

	ret = hclge_init_fd_config(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"fd table init fail, ret=%d\n", ret);
		goto err_mdiobus_unreg;
	}

	ret = hclge_ptp_init(hdev);
	if (ret)
		goto err_mdiobus_unreg;

	ret = hclge_update_port_info(hdev);
	if (ret)
		goto err_mdiobus_unreg;

	INIT_KFIFO(hdev->mac_tnl_log);

	hclge_dcb_ops_set(hdev);

	timer_setup(&hdev->reset_timer, hclge_reset_timer, 0);
	INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task);

	hclge_clear_all_event_cause(hdev);
	hclge_clear_resetting_state(hdev);

	/* Log and clear the hw errors those already occurred */
	if (hnae3_dev_ras_imp_supported(hdev))
		hclge_handle_occurred_error(hdev);
	else
		hclge_handle_all_hns_hw_errors(ae_dev);

	/* request delayed reset for the error recovery because an immediate
	 * global reset on a PF affecting pending initialization of other PFs
	 */
	if (ae_dev->hw_err_reset_req) {
		enum hnae3_reset_type reset_level;

		reset_level = hclge_get_reset_level(ae_dev,
						    &ae_dev->hw_err_reset_req);
		hclge_set_def_reset_request(ae_dev, reset_level);
		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
	}

	hclge_init_rxd_adv_layout(hdev);

	/* Enable MISC vector(vector0) */
	hclge_enable_vector(&hdev->misc_vector, true);

	ret = hclge_init_wol(hdev);
	if (ret)
		dev_warn(&pdev->dev,
			 "failed to wake on lan init, ret = %d\n", ret);

	hclge_state_init(hdev);
	hdev->last_reset_time = jiffies;

	dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n",
		 HCLGE_DRIVER_NAME);

	hclge_task_schedule(hdev, round_jiffies_relative(HZ));

	return 0;

err_mdiobus_unreg:
	if (hdev->hw.mac.phydev)
		mdiobus_unregister(hdev->hw.mac.mdio_bus);
err_msi_irq_uninit:
	hclge_misc_irq_uninit(hdev);
err_msi_uninit:
	pci_free_irq_vectors(pdev);
err_cmd_uninit:
	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
err_devlink_uninit:
	hclge_devlink_uninit(hdev);
err_pci_uninit:
	pcim_iounmap(pdev, hdev->hw.hw.io_base);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
out:
	mutex_destroy(&hdev->vport_lock);
	return ret;
}

static void hclge_stats_clear(struct hclge_dev *hdev)
{
	memset(&hdev->mac_stats, 0, sizeof(hdev->mac_stats));
	memset(&hdev->fec_stats, 0, sizeof(hdev->fec_stats));
}

static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
{
	return hclge_config_switch_param(hdev, vf, enable,
					 HCLGE_SWITCH_ANTI_SPOOF_MASK);
}

static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
{
	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
					  HCLGE_FILTER_FE_NIC_INGRESS_B,
					  enable, vf);
}

static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable)
{
	int ret;

	ret = hclge_set_mac_spoofchk(hdev, vf, enable);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set vf %d mac spoof check %s failed, ret=%d\n",
			vf, enable ? "on" : "off", ret);
		return ret;
	}

	ret = hclge_set_vlan_spoofchk(hdev, vf, enable);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Set vf %d vlan spoof check %s failed, ret=%d\n",
			vf, enable ? "on" : "off", ret);

	return ret;
}

static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf,
				 bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u32 new_spoofchk = enable ? 1 : 0;
	int ret;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return -EOPNOTSUPP;

	vport = hclge_get_vf_vport(hdev, vf);
	if (!vport)
		return -EINVAL;

	if (vport->vf_info.spoofchk == new_spoofchk)
		return 0;

	if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full))
		dev_warn(&hdev->pdev->dev,
			 "vf %d vlan table is full, enable spoof check may cause its packet send fail\n",
			 vf);
	else if (enable && hclge_is_umv_space_full(vport, true))
		dev_warn(&hdev->pdev->dev,
			 "vf %d mac table is full, enable spoof check may cause its packet send fail\n",
			 vf);

	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable);
	if (ret)
		return ret;

	vport->vf_info.spoofchk = new_spoofchk;
	return 0;
}

static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev)
{
	struct hclge_vport *vport = hdev->vport;
	int ret;
	int i;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return 0;

	/* resume the vf spoof check state after reset */
	for (i = 0; i < hdev->num_alloc_vport; i++) {
		ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id,
					       vport->vf_info.spoofchk);
		if (ret)
			return ret;

		vport++;
	}

	return 0;
}

static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u32 new_trusted = enable ? 1 : 0;

	vport = hclge_get_vf_vport(hdev, vf);
	if (!vport)
		return -EINVAL;

	if (vport->vf_info.trusted == new_trusted)
		return 0;

	vport->vf_info.trusted = new_trusted;
	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
	hclge_task_schedule(hdev, 0);

	return 0;
}

static void hclge_reset_vf_rate(struct hclge_dev *hdev)
{
	int ret;
	int vf;

	/* reset vf rate to default value */
	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
		struct hclge_vport *vport = &hdev->vport[vf];

		vport->vf_info.max_tx_rate = 0;
		ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate);
		if (ret)
			dev_err(&hdev->pdev->dev,
				"vf%d failed to reset to default, ret=%d\n",
				vf - HCLGE_VF_VPORT_START_NUM, ret);
	}
}

static int hclge_vf_rate_param_check(struct hclge_dev *hdev,
				     int min_tx_rate, int max_tx_rate)
{
	if (min_tx_rate != 0 ||
	    max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) {
		dev_err(&hdev->pdev->dev,
			"min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n",
			min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed);
		return -EINVAL;
	}

	return 0;
}

static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf,
			     int min_tx_rate, int max_tx_rate, bool force)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int ret;

	ret = hclge_vf_rate_param_check(hdev, min_tx_rate, max_tx_rate);
	if (ret)
		return ret;

	vport = hclge_get_vf_vport(hdev, vf);
	if (!vport)
		return -EINVAL;

	if (!force && max_tx_rate == vport->vf_info.max_tx_rate)
		return 0;

	ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate);
	if (ret)
		return ret;

	vport->vf_info.max_tx_rate = max_tx_rate;

	return 0;
}

static int hclge_resume_vf_rate(struct hclge_dev *hdev)
{
	struct hnae3_handle *handle = &hdev->vport->nic;
	struct hclge_vport *vport;
	int ret;
	int vf;

	/* resume the vf max_tx_rate after reset */
	for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) {
		vport = hclge_get_vf_vport(hdev, vf);
		if (!vport)
			return -EINVAL;

		/* zero means max rate, after reset, firmware already set it to
		 * max rate, so just continue.
		 */
		if (!vport->vf_info.max_tx_rate)
			continue;

		ret = hclge_set_vf_rate(handle, vf, 0,
					vport->vf_info.max_tx_rate, true);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"vf%d failed to resume tx_rate:%u, ret=%d\n",
				vf, vport->vf_info.max_tx_rate, ret);
			return ret;
		}
	}

	return 0;
}

static void hclge_reset_vport_state(struct hclge_dev *hdev)
{
	struct hclge_vport *vport = hdev->vport;
	int i;

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
		vport++;
	}
}

static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclge_dev *hdev = ae_dev->priv;
	struct pci_dev *pdev = ae_dev->pdev;
	int ret;

	set_bit(HCLGE_STATE_DOWN, &hdev->state);

	hclge_stats_clear(hdev);
	/* NOTE: pf reset needn't to clear or restore pf and vf table entry.
	 * so here should not clean table in memory.
	 */
	if (hdev->reset_type == HNAE3_IMP_RESET ||
	    hdev->reset_type == HNAE3_GLOBAL_RESET) {
		memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table));
		memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full));
		bitmap_set(hdev->vport_config_block, 0, hdev->num_alloc_vport);
		hclge_reset_umv_space(hdev);
	}

	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
				  true, hdev->reset_pending);
	if (ret) {
		dev_err(&pdev->dev, "Cmd queue init failed\n");
		return ret;
	}

	ret = hclge_map_tqp(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret);
		return ret;
	}

	ret = hclge_mac_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
		return ret;
	}

	ret = hclge_tp_port_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to init tp port, ret = %d\n",
			ret);
		return ret;
	}

	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
	if (ret) {
		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
		return ret;
	}

	ret = hclge_config_gro(hdev);
	if (ret)
		return ret;

	ret = hclge_init_vlan_config(hdev);
	if (ret) {
		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
		return ret;
	}

	ret = hclge_tm_init_hw(hdev, true);
	if (ret) {
		dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret);
		return ret;
	}

	ret = hclge_rss_init_hw(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
		return ret;
	}

	ret = init_mgr_tbl(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to reinit manager table, ret = %d\n", ret);
		return ret;
	}

	ret = hclge_init_fd_config(hdev);
	if (ret) {
		dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret);
		return ret;
	}

	ret = hclge_ptp_init(hdev);
	if (ret)
		return ret;

	/* Log and clear the hw errors those already occurred */
	if (hnae3_dev_ras_imp_supported(hdev))
		hclge_handle_occurred_error(hdev);
	else
		hclge_handle_all_hns_hw_errors(ae_dev);

	/* Re-enable the hw error interrupts because
	 * the interrupts get disabled on global reset.
	 */
	ret = hclge_config_nic_hw_error(hdev, true);
	if (ret) {
		dev_err(&pdev->dev,
			"fail(%d) to re-enable NIC hw error interrupts\n",
			ret);
		return ret;
	}

	if (hdev->roce_client) {
		ret = hclge_config_rocee_ras_interrupt(hdev, true);
		if (ret) {
			dev_err(&pdev->dev,
				"fail(%d) to re-enable roce ras interrupts\n",
				ret);
			return ret;
		}
	}

	hclge_reset_vport_state(hdev);
	ret = hclge_reset_vport_spoofchk(hdev);
	if (ret)
		return ret;

	ret = hclge_resume_vf_rate(hdev);
	if (ret)
		return ret;

	hclge_init_rxd_adv_layout(hdev);

	ret = hclge_update_wol(hdev);
	if (ret)
		dev_warn(&pdev->dev,
			 "failed to update wol config, ret = %d\n", ret);

	dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n",
		 HCLGE_DRIVER_NAME);

	return 0;
}

static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclge_dev *hdev = ae_dev->priv;
	struct hclge_mac *mac = &hdev->hw.mac;

	hclge_reset_vf_rate(hdev);
	hclge_clear_vf_vlan(hdev);
	hclge_state_uninit(hdev);
	hclge_ptp_uninit(hdev);
	hclge_uninit_rxd_adv_layout(hdev);
	hclge_uninit_mac_table(hdev);
	hclge_del_all_fd_entries(hdev);

	if (mac->phydev)
		mdiobus_unregister(mac->mdio_bus);

	/* Disable MISC vector(vector0) */
	hclge_enable_vector(&hdev->misc_vector, false);
	synchronize_irq(hdev->misc_vector.vector_irq);

	/* Disable all hw interrupts */
	hclge_config_mac_tnl_int(hdev, false);
	hclge_config_nic_hw_error(hdev, false);
	hclge_config_rocee_ras_interrupt(hdev, false);

	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
	hclge_misc_irq_uninit(hdev);
	hclge_devlink_uninit(hdev);
	hclge_pci_uninit(hdev);
	hclge_uninit_vport_vlan_table(hdev);
	mutex_destroy(&hdev->vport_lock);
	ae_dev->priv = NULL;
}

static u32 hclge_get_max_channels(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	return min_t(u32, hdev->pf_rss_size_max, vport->alloc_tqps);
}

static void hclge_get_channels(struct hnae3_handle *handle,
			       struct ethtool_channels *ch)
{
	ch->max_combined = hclge_get_max_channels(handle);
	ch->other_count = 1;
	ch->max_other = 1;
	ch->combined_count = handle->kinfo.rss_size;
}

static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle,
					u16 *alloc_tqps, u16 *max_rss_size)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	*alloc_tqps = vport->alloc_tqps;
	*max_rss_size = hdev->pf_rss_size_max;
}

static int hclge_set_rss_tc_mode_cfg(struct hnae3_handle *handle)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
	struct hclge_dev *hdev = vport->back;
	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
	u16 tc_valid[HCLGE_MAX_TC_NUM];
	u16 roundup_size;
	unsigned int i;

	roundup_size = roundup_pow_of_two(vport->nic.kinfo.rss_size);
	roundup_size = ilog2(roundup_size);
	/* Set the RSS TC mode according to the new RSS size */
	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
		tc_valid[i] = 0;

		if (!(hdev->hw_tc_map & BIT(i)))
			continue;

		tc_valid[i] = 1;
		tc_size[i] = roundup_size;
		tc_offset[i] = vport->nic.kinfo.rss_size * i;
	}

	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
					  tc_size);
}

static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
			      bool rxfh_configured)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
	struct hclge_dev *hdev = vport->back;
	u16 cur_rss_size = kinfo->rss_size;
	u16 cur_tqps = kinfo->num_tqps;
	u32 *rss_indir;
	unsigned int i;
	int ret;

	kinfo->req_rss_size = new_tqps_num;

	ret = hclge_tm_vport_map_update(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret);
		return ret;
	}

	ret = hclge_set_rss_tc_mode_cfg(handle);
	if (ret)
		return ret;

	/* RSS indirection table has been configured by user */
	if (rxfh_configured)
		goto out;

	/* Reinitializes the rss indirect table according to the new RSS size */
	rss_indir = kcalloc(ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32),
			    GFP_KERNEL);
	if (!rss_indir)
		return -ENOMEM;

	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
		rss_indir[i] = i % kinfo->rss_size;

	ret = hclge_set_rss(handle, rss_indir, NULL, 0);
	if (ret)
		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
			ret);

	kfree(rss_indir);

out:
	if (!ret)
		dev_info(&hdev->pdev->dev,
			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
			 cur_rss_size, kinfo->rss_size,
			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);

	return ret;
}

static int hclge_get_regs_num(struct hclge_dev *hdev, u32 *regs_num_32_bit,
			      u32 *regs_num_64_bit)
{
	struct hclge_desc desc;
	u32 total_num;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_REG_NUM, true);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Query register number cmd failed, ret = %d.\n", ret);
		return ret;
	}

	*regs_num_32_bit = le32_to_cpu(desc.data[0]);
	*regs_num_64_bit = le32_to_cpu(desc.data[1]);

	total_num = *regs_num_32_bit + *regs_num_64_bit;
	if (!total_num)
		return -EINVAL;

	return 0;
}

static int hclge_get_32_bit_regs(struct hclge_dev *hdev, u32 regs_num,
				 void *data)
{
#define HCLGE_32_BIT_REG_RTN_DATANUM 8
#define HCLGE_32_BIT_DESC_NODATA_LEN 2

	struct hclge_desc *desc;
	u32 *reg_val = data;
	__le32 *desc_data;
	int nodata_num;
	int cmd_num;
	int i, k, n;
	int ret;

	if (regs_num == 0)
		return 0;

	nodata_num = HCLGE_32_BIT_DESC_NODATA_LEN;
	cmd_num = DIV_ROUND_UP(regs_num + nodata_num,
			       HCLGE_32_BIT_REG_RTN_DATANUM);
	desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
	if (!desc)
		return -ENOMEM;

	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_32_BIT_REG, true);
	ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Query 32 bit register cmd failed, ret = %d.\n", ret);
		kfree(desc);
		return ret;
	}

	for (i = 0; i < cmd_num; i++) {
		if (i == 0) {
			desc_data = (__le32 *)(&desc[i].data[0]);
			n = HCLGE_32_BIT_REG_RTN_DATANUM - nodata_num;
		} else {
			desc_data = (__le32 *)(&desc[i]);
			n = HCLGE_32_BIT_REG_RTN_DATANUM;
		}
		for (k = 0; k < n; k++) {
			*reg_val++ = le32_to_cpu(*desc_data++);

			regs_num--;
			if (!regs_num)
				break;
		}
	}

	kfree(desc);
	return 0;
}

static int hclge_get_64_bit_regs(struct hclge_dev *hdev, u32 regs_num,
				 void *data)
{
#define HCLGE_64_BIT_REG_RTN_DATANUM 4
#define HCLGE_64_BIT_DESC_NODATA_LEN 1

	struct hclge_desc *desc;
	u64 *reg_val = data;
	__le64 *desc_data;
	int nodata_len;
	int cmd_num;
	int i, k, n;
	int ret;

	if (regs_num == 0)
		return 0;

	nodata_len = HCLGE_64_BIT_DESC_NODATA_LEN;
	cmd_num = DIV_ROUND_UP(regs_num + nodata_len,
			       HCLGE_64_BIT_REG_RTN_DATANUM);
	desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
	if (!desc)
		return -ENOMEM;

	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_64_BIT_REG, true);
	ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Query 64 bit register cmd failed, ret = %d.\n", ret);
		kfree(desc);
		return ret;
	}

	for (i = 0; i < cmd_num; i++) {
		if (i == 0) {
			desc_data = (__le64 *)(&desc[i].data[0]);
			n = HCLGE_64_BIT_REG_RTN_DATANUM - nodata_len;
		} else {
			desc_data = (__le64 *)(&desc[i]);
			n = HCLGE_64_BIT_REG_RTN_DATANUM;
		}
		for (k = 0; k < n; k++) {
			*reg_val++ = le64_to_cpu(*desc_data++);

			regs_num--;
			if (!regs_num)
				break;
		}
	}

	kfree(desc);
	return 0;
}

#define MAX_SEPARATE_NUM	4
#define SEPARATOR_VALUE		0xFDFCFBFA
#define REG_NUM_PER_LINE	4
#define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
#define REG_SEPARATOR_LINE	1
#define REG_NUM_REMAIN_MASK	3

int hclge_query_bd_num_cmd_send(struct hclge_dev *hdev, struct hclge_desc *desc)
{
	int i;

	/* initialize command BD except the last one */
	for (i = 0; i < HCLGE_GET_DFX_REG_TYPE_CNT - 1; i++) {
		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM,
					   true);
		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
	}

	/* initialize the last command BD */
	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM, true);

	return hclge_cmd_send(&hdev->hw, desc, HCLGE_GET_DFX_REG_TYPE_CNT);
}

static int hclge_get_dfx_reg_bd_num(struct hclge_dev *hdev,
				    int *bd_num_list,
				    u32 type_num)
{
	u32 entries_per_desc, desc_index, index, offset, i;
	struct hclge_desc desc[HCLGE_GET_DFX_REG_TYPE_CNT];
	int ret;

	ret = hclge_query_bd_num_cmd_send(hdev, desc);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get dfx bd num fail, status is %d.\n", ret);
		return ret;
	}

	entries_per_desc = ARRAY_SIZE(desc[0].data);
	for (i = 0; i < type_num; i++) {
		offset = hclge_dfx_bd_offset_list[i];
		index = offset % entries_per_desc;
		desc_index = offset / entries_per_desc;
		bd_num_list[i] = le32_to_cpu(desc[desc_index].data[index]);
	}

	return ret;
}

static int hclge_dfx_reg_cmd_send(struct hclge_dev *hdev,
				  struct hclge_desc *desc_src, int bd_num,
				  enum hclge_opcode_type cmd)
{
	struct hclge_desc *desc = desc_src;
	int i, ret;

	hclge_cmd_setup_basic_desc(desc, cmd, true);
	for (i = 0; i < bd_num - 1; i++) {
		desc->flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
		desc++;
		hclge_cmd_setup_basic_desc(desc, cmd, true);
	}

	desc = desc_src;
	ret = hclge_cmd_send(&hdev->hw, desc, bd_num);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Query dfx reg cmd(0x%x) send fail, status is %d.\n",
			cmd, ret);

	return ret;
}

static int hclge_dfx_reg_fetch_data(struct hclge_desc *desc_src, int bd_num,
				    void *data)
{
	int entries_per_desc, reg_num, separator_num, desc_index, index, i;
	struct hclge_desc *desc = desc_src;
	u32 *reg = data;

	entries_per_desc = ARRAY_SIZE(desc->data);
	reg_num = entries_per_desc * bd_num;
	separator_num = REG_NUM_PER_LINE - (reg_num & REG_NUM_REMAIN_MASK);
	for (i = 0; i < reg_num; i++) {
		index = i % entries_per_desc;
		desc_index = i / entries_per_desc;
		*reg++ = le32_to_cpu(desc[desc_index].data[index]);
	}
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	return reg_num + separator_num;
}

static int hclge_get_dfx_reg_len(struct hclge_dev *hdev, int *len)
{
	u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
	int data_len_per_desc, bd_num, i;
	int *bd_num_list;
	u32 data_len;
	int ret;

	bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL);
	if (!bd_num_list)
		return -ENOMEM;

	ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get dfx reg bd num fail, status is %d.\n", ret);
		goto out;
	}

	data_len_per_desc = sizeof_field(struct hclge_desc, data);
	*len = 0;
	for (i = 0; i < dfx_reg_type_num; i++) {
		bd_num = bd_num_list[i];
		data_len = data_len_per_desc * bd_num;
		*len += (data_len / REG_LEN_PER_LINE + 1) * REG_LEN_PER_LINE;
	}

out:
	kfree(bd_num_list);
	return ret;
}

static int hclge_get_dfx_reg(struct hclge_dev *hdev, void *data)
{
	u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
	int bd_num, bd_num_max, buf_len, i;
	struct hclge_desc *desc_src;
	int *bd_num_list;
	u32 *reg = data;
	int ret;

	bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL);
	if (!bd_num_list)
		return -ENOMEM;

	ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get dfx reg bd num fail, status is %d.\n", ret);
		goto out;
	}

	bd_num_max = bd_num_list[0];
	for (i = 1; i < dfx_reg_type_num; i++)
		bd_num_max = max_t(int, bd_num_max, bd_num_list[i]);

	buf_len = sizeof(*desc_src) * bd_num_max;
	desc_src = kzalloc(buf_len, GFP_KERNEL);
	if (!desc_src) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < dfx_reg_type_num; i++) {
		bd_num = bd_num_list[i];
		ret = hclge_dfx_reg_cmd_send(hdev, desc_src, bd_num,
					     hclge_dfx_reg_opcode_list[i]);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"Get dfx reg fail, status is %d.\n", ret);
			break;
		}

		reg += hclge_dfx_reg_fetch_data(desc_src, bd_num, reg);
	}

	kfree(desc_src);
out:
	kfree(bd_num_list);
	return ret;
}

static int hclge_fetch_pf_reg(struct hclge_dev *hdev, void *data,
			      struct hnae3_knic_private_info *kinfo)
{
#define HCLGE_RING_REG_OFFSET		0x200
#define HCLGE_RING_INT_REG_OFFSET	0x4

	int i, j, reg_num, separator_num;
	int data_num_sum;
	u32 *reg = data;

	/* fetching per-PF registers valus from PF PCIe register space */
	reg_num = ARRAY_SIZE(cmdq_reg_addr_list);
	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
	for (i = 0; i < reg_num; i++)
		*reg++ = hclge_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;
	data_num_sum = reg_num + separator_num;

	reg_num = ARRAY_SIZE(common_reg_addr_list);
	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
	for (i = 0; i < reg_num; i++)
		*reg++ = hclge_read_dev(&hdev->hw, common_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;
	data_num_sum += reg_num + separator_num;

	reg_num = ARRAY_SIZE(ring_reg_addr_list);
	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
	for (j = 0; j < kinfo->num_tqps; j++) {
		for (i = 0; i < reg_num; i++)
			*reg++ = hclge_read_dev(&hdev->hw,
						ring_reg_addr_list[i] +
						HCLGE_RING_REG_OFFSET * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
	data_num_sum += (reg_num + separator_num) * kinfo->num_tqps;

	reg_num = ARRAY_SIZE(tqp_intr_reg_addr_list);
	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
	for (j = 0; j < hdev->num_msi_used - 1; j++) {
		for (i = 0; i < reg_num; i++)
			*reg++ = hclge_read_dev(&hdev->hw,
						tqp_intr_reg_addr_list[i] +
						HCLGE_RING_INT_REG_OFFSET * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
	data_num_sum += (reg_num + separator_num) * (hdev->num_msi_used - 1);

	return data_num_sum;
}

static int hclge_get_regs_len(struct hnae3_handle *handle)
{
	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	int regs_num_32_bit, regs_num_64_bit, dfx_regs_len;
	int regs_lines_32_bit, regs_lines_64_bit;
	int ret;

	ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get register number failed, ret = %d.\n", ret);
		return ret;
	}

	ret = hclge_get_dfx_reg_len(hdev, &dfx_regs_len);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get dfx reg len failed, ret = %d.\n", ret);
		return ret;
	}

	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE +
		REG_SEPARATOR_LINE;
	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE +
		REG_SEPARATOR_LINE;
	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE +
		REG_SEPARATOR_LINE;
	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE +
		REG_SEPARATOR_LINE;
	regs_lines_32_bit = regs_num_32_bit * sizeof(u32) / REG_LEN_PER_LINE +
		REG_SEPARATOR_LINE;
	regs_lines_64_bit = regs_num_64_bit * sizeof(u64) / REG_LEN_PER_LINE +
		REG_SEPARATOR_LINE;

	return (cmdq_lines + common_lines + ring_lines * kinfo->num_tqps +
		tqp_intr_lines * (hdev->num_msi_used - 1) + regs_lines_32_bit +
		regs_lines_64_bit) * REG_LEN_PER_LINE + dfx_regs_len;
}

static void hclge_get_regs(struct hnae3_handle *handle, u32 *version,
			   void *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u32 regs_num_32_bit, regs_num_64_bit;
	int i, reg_num, separator_num, ret;
	u32 *reg = data;

	*version = hdev->fw_version;

	ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get register number failed, ret = %d.\n", ret);
		return;
	}

	reg += hclge_fetch_pf_reg(hdev, reg, kinfo);

	ret = hclge_get_32_bit_regs(hdev, regs_num_32_bit, reg);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get 32 bit register failed, ret = %d.\n", ret);
		return;
	}
	reg_num = regs_num_32_bit;
	reg += reg_num;
	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	ret = hclge_get_64_bit_regs(hdev, regs_num_64_bit, reg);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Get 64 bit register failed, ret = %d.\n", ret);
		return;
	}
	reg_num = regs_num_64_bit * 2;
	reg += reg_num;
	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	ret = hclge_get_dfx_reg(hdev, reg);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Get dfx register failed, ret = %d.\n", ret);
}

static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status)
{
	struct hclge_set_led_state_cmd *req;
	struct hclge_desc desc;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false);

	req = (struct hclge_set_led_state_cmd *)desc.data;
	hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M,
			HCLGE_LED_LOCATE_STATE_S, locate_led_status);

	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Send set led state cmd error, ret =%d\n", ret);

	return ret;
}

enum hclge_led_status {
	HCLGE_LED_OFF,
	HCLGE_LED_ON,
	HCLGE_LED_NO_CHANGE = 0xFF,
};

static int hclge_set_led_id(struct hnae3_handle *handle,
			    enum ethtool_phys_id_state status)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;

	switch (status) {
	case ETHTOOL_ID_ACTIVE:
		return hclge_set_led_status(hdev, HCLGE_LED_ON);
	case ETHTOOL_ID_INACTIVE:
		return hclge_set_led_status(hdev, HCLGE_LED_OFF);
	default:
		return -EINVAL;
	}
}

static void hclge_get_link_mode(struct hnae3_handle *handle,
				unsigned long *supported,
				unsigned long *advertising)
{
	unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS);
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	unsigned int idx = 0;

	for (; idx < size; idx++) {
		supported[idx] = hdev->hw.mac.supported[idx];
		advertising[idx] = hdev->hw.mac.advertising[idx];
	}
}

static int hclge_gro_en(struct hnae3_handle *handle, bool enable)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	bool gro_en_old = hdev->gro_en;
	int ret;

	hdev->gro_en = enable;
	ret = hclge_config_gro(hdev);
	if (ret)
		hdev->gro_en = gro_en_old;

	return ret;
}

static int hclge_sync_vport_promisc_mode(struct hclge_vport *vport)
{
	struct hnae3_handle *handle = &vport->nic;
	struct hclge_dev *hdev = vport->back;
	bool uc_en = false;
	bool mc_en = false;
	u8 tmp_flags;
	bool bc_en;
	int ret;

	if (vport->last_promisc_flags != vport->overflow_promisc_flags) {
		set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
		vport->last_promisc_flags = vport->overflow_promisc_flags;
	}

	if (!test_and_clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
				&vport->state))
		return 0;

	/* for PF */
	if (!vport->vport_id) {
		tmp_flags = handle->netdev_flags | vport->last_promisc_flags;
		ret = hclge_set_promisc_mode(handle, tmp_flags & HNAE3_UPE,
					     tmp_flags & HNAE3_MPE);
		if (!ret)
			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
				&vport->state);
		else
			set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
				&vport->state);
		return ret;
	}

	/* for VF */
	if (vport->vf_info.trusted) {
		uc_en = vport->vf_info.request_uc_en > 0 ||
			vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE;
		mc_en = vport->vf_info.request_mc_en > 0 ||
			vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE;
	}
	bc_en = vport->vf_info.request_bc_en > 0;

	ret = hclge_cmd_set_promisc_mode(hdev, vport->vport_id, uc_en,
					 mc_en, bc_en);
	if (ret) {
		set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
		return ret;
	}
	hclge_set_vport_vlan_fltr_change(vport);

	return 0;
}

static void hclge_sync_promisc_mode(struct hclge_dev *hdev)
{
	struct hclge_vport *vport;
	int ret;
	u16 i;

	for (i = 0; i < hdev->num_alloc_vport; i++) {
		vport = &hdev->vport[i];

		ret = hclge_sync_vport_promisc_mode(vport);
		if (ret)
			return;
	}
}

static bool hclge_module_existed(struct hclge_dev *hdev)
{
	struct hclge_desc desc;
	u32 existed;
	int ret;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_EXIST, true);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to get SFP exist state, ret = %d\n", ret);
		return false;
	}

	existed = le32_to_cpu(desc.data[0]);

	return existed != 0;
}

/* need 6 bds(total 140 bytes) in one reading
 * return the number of bytes actually read, 0 means read failed.
 */
static u16 hclge_get_sfp_eeprom_info(struct hclge_dev *hdev, u32 offset,
				     u32 len, u8 *data)
{
	struct hclge_desc desc[HCLGE_SFP_INFO_CMD_NUM];
	struct hclge_sfp_info_bd0_cmd *sfp_info_bd0;
	u16 read_len;
	u16 copy_len;
	int ret;
	int i;

	/* setup all 6 bds to read module eeprom info. */
	for (i = 0; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_SFP_EEPROM,
					   true);

		/* bd0~bd4 need next flag */
		if (i < HCLGE_SFP_INFO_CMD_NUM - 1)
			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
	}

	/* setup bd0, this bd contains offset and read length. */
	sfp_info_bd0 = (struct hclge_sfp_info_bd0_cmd *)desc[0].data;
	sfp_info_bd0->offset = cpu_to_le16((u16)offset);
	read_len = min_t(u16, len, HCLGE_SFP_INFO_MAX_LEN);
	sfp_info_bd0->read_len = cpu_to_le16(read_len);

	ret = hclge_cmd_send(&hdev->hw, desc, i);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to get SFP eeprom info, ret = %d\n", ret);
		return 0;
	}

	/* copy sfp info from bd0 to out buffer. */
	copy_len = min_t(u16, len, HCLGE_SFP_INFO_BD0_LEN);
	memcpy(data, sfp_info_bd0->data, copy_len);
	read_len = copy_len;

	/* copy sfp info from bd1~bd5 to out buffer if needed. */
	for (i = 1; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
		if (read_len >= len)
			return read_len;

		copy_len = min_t(u16, len - read_len, HCLGE_SFP_INFO_BDX_LEN);
		memcpy(data + read_len, desc[i].data, copy_len);
		read_len += copy_len;
	}

	return read_len;
}

static int hclge_get_module_eeprom(struct hnae3_handle *handle, u32 offset,
				   u32 len, u8 *data)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	u32 read_len = 0;
	u16 data_len;

	if (hdev->hw.mac.media_type != HNAE3_MEDIA_TYPE_FIBER)
		return -EOPNOTSUPP;

	if (!hclge_module_existed(hdev))
		return -ENXIO;

	while (read_len < len) {
		data_len = hclge_get_sfp_eeprom_info(hdev,
						     offset + read_len,
						     len - read_len,
						     data + read_len);
		if (!data_len)
			return -EIO;

		read_len += data_len;
	}

	return 0;
}

static int hclge_get_link_diagnosis_info(struct hnae3_handle *handle,
					 u32 *status_code)
{
	struct hclge_vport *vport = hclge_get_vport(handle);
	struct hclge_dev *hdev = vport->back;
	struct hclge_desc desc;
	int ret;

	if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2)
		return -EOPNOTSUPP;

	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_DIAGNOSIS, true);
	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to query link diagnosis info, ret = %d\n", ret);
		return ret;
	}

	*status_code = le32_to_cpu(desc.data[0]);
	return 0;
}

/* After disable sriov, VF still has some config and info need clean,
 * which configed by PF.
 */
static void hclge_clear_vport_vf_info(struct hclge_vport *vport, int vfid)
{
	struct hclge_dev *hdev = vport->back;
	struct hclge_vlan_info vlan_info;
	int ret;

	clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
	clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
	vport->need_notify = 0;
	vport->mps = 0;

	/* after disable sriov, clean VF rate configured by PF */
	ret = hclge_tm_qs_shaper_cfg(vport, 0);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to clean vf%d rate config, ret = %d\n",
			vfid, ret);

	vlan_info.vlan_tag = 0;
	vlan_info.qos = 0;
	vlan_info.vlan_proto = ETH_P_8021Q;
	ret = hclge_update_port_base_vlan_cfg(vport,
					      HNAE3_PORT_BASE_VLAN_DISABLE,
					      &vlan_info);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to clean vf%d port base vlan, ret = %d\n",
			vfid, ret);

	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, false);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"failed to clean vf%d spoof config, ret = %d\n",
			vfid, ret);

	memset(&vport->vf_info, 0, sizeof(vport->vf_info));
}

static void hclge_clean_vport_config(struct hnae3_ae_dev *ae_dev, int num_vfs)
{
	struct hclge_dev *hdev = ae_dev->priv;
	struct hclge_vport *vport;
	int i;

	for (i = 0; i < num_vfs; i++) {
		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];

		hclge_clear_vport_vf_info(vport, i);
	}
}

static int hclge_get_dscp_prio(struct hnae3_handle *h, u8 dscp, u8 *tc_mode,
			       u8 *priority)
{
	struct hclge_vport *vport = hclge_get_vport(h);

	if (dscp >= HNAE3_MAX_DSCP)
		return -EINVAL;

	if (tc_mode)
		*tc_mode = vport->nic.kinfo.tc_map_mode;
	if (priority)
		*priority = vport->nic.kinfo.dscp_prio[dscp] == HNAE3_PRIO_ID_INVALID ? 0 :
			    vport->nic.kinfo.dscp_prio[dscp];

	return 0;
}

static const struct hnae3_ae_ops hclge_ops = {
	.init_ae_dev = hclge_init_ae_dev,
	.uninit_ae_dev = hclge_uninit_ae_dev,
	.reset_prepare = hclge_reset_prepare_general,
	.reset_done = hclge_reset_done,
	.init_client_instance = hclge_init_client_instance,
	.uninit_client_instance = hclge_uninit_client_instance,
	.map_ring_to_vector = hclge_map_ring_to_vector,
	.unmap_ring_from_vector = hclge_unmap_ring_frm_vector,
	.get_vector = hclge_get_vector,
	.put_vector = hclge_put_vector,
	.set_promisc_mode = hclge_set_promisc_mode,
	.request_update_promisc_mode = hclge_request_update_promisc_mode,
	.set_loopback = hclge_set_loopback,
	.start = hclge_ae_start,
	.stop = hclge_ae_stop,
	.client_start = hclge_client_start,
	.client_stop = hclge_client_stop,
	.get_status = hclge_get_status,
	.get_ksettings_an_result = hclge_get_ksettings_an_result,
	.cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h,
	.get_media_type = hclge_get_media_type,
	.check_port_speed = hclge_check_port_speed,
	.get_fec_stats = hclge_get_fec_stats,
	.get_fec = hclge_get_fec,
	.set_fec = hclge_set_fec,
	.get_rss_key_size = hclge_comm_get_rss_key_size,
	.get_rss = hclge_get_rss,
	.set_rss = hclge_set_rss,
	.set_rss_tuple = hclge_set_rss_tuple,
	.get_rss_tuple = hclge_get_rss_tuple,
	.get_tc_size = hclge_get_tc_size,
	.get_mac_addr = hclge_get_mac_addr,
	.set_mac_addr = hclge_set_mac_addr,
	.do_ioctl = hclge_do_ioctl,
	.add_uc_addr = hclge_add_uc_addr,
	.rm_uc_addr = hclge_rm_uc_addr,
	.add_mc_addr = hclge_add_mc_addr,
	.rm_mc_addr = hclge_rm_mc_addr,
	.set_autoneg = hclge_set_autoneg,
	.get_autoneg = hclge_get_autoneg,
	.restart_autoneg = hclge_restart_autoneg,
	.halt_autoneg = hclge_halt_autoneg,
	.get_pauseparam = hclge_get_pauseparam,
	.set_pauseparam = hclge_set_pauseparam,
	.set_mtu = hclge_set_mtu,
	.reset_queue = hclge_reset_tqp,
	.get_stats = hclge_get_stats,
	.get_mac_stats = hclge_get_mac_stat,
	.update_stats = hclge_update_stats,
	.get_strings = hclge_get_strings,
	.get_sset_count = hclge_get_sset_count,
	.get_fw_version = hclge_get_fw_version,
	.get_mdix_mode = hclge_get_mdix_mode,
	.enable_vlan_filter = hclge_enable_vlan_filter,
	.set_vlan_filter = hclge_set_vlan_filter,
	.set_vf_vlan_filter = hclge_set_vf_vlan_filter,
	.enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag,
	.reset_event = hclge_reset_event,
	.get_reset_level = hclge_get_reset_level,
	.set_default_reset_request = hclge_set_def_reset_request,
	.get_tqps_and_rss_info = hclge_get_tqps_and_rss_info,
	.set_channels = hclge_set_channels,
	.get_channels = hclge_get_channels,
	.get_regs_len = hclge_get_regs_len,
	.get_regs = hclge_get_regs,
	.set_led_id = hclge_set_led_id,
	.get_link_mode = hclge_get_link_mode,
	.add_fd_entry = hclge_add_fd_entry,
	.del_fd_entry = hclge_del_fd_entry,
	.get_fd_rule_cnt = hclge_get_fd_rule_cnt,
	.get_fd_rule_info = hclge_get_fd_rule_info,
	.get_fd_all_rules = hclge_get_all_rules,
	.enable_fd = hclge_enable_fd,
	.add_arfs_entry = hclge_add_fd_entry_by_arfs,
	.dbg_read_cmd = hclge_dbg_read_cmd,
	.handle_hw_ras_error = hclge_handle_hw_ras_error,
	.get_hw_reset_stat = hclge_get_hw_reset_stat,
	.ae_dev_resetting = hclge_ae_dev_resetting,
	.ae_dev_reset_cnt = hclge_ae_dev_reset_cnt,
	.set_gro_en = hclge_gro_en,
	.get_global_queue_id = hclge_covert_handle_qid_global,
	.set_timer_task = hclge_set_timer_task,
	.mac_connect_phy = hclge_mac_connect_phy,
	.mac_disconnect_phy = hclge_mac_disconnect_phy,
	.get_vf_config = hclge_get_vf_config,
	.set_vf_link_state = hclge_set_vf_link_state,
	.set_vf_spoofchk = hclge_set_vf_spoofchk,
	.set_vf_trust = hclge_set_vf_trust,
	.set_vf_rate = hclge_set_vf_rate,
	.set_vf_mac = hclge_set_vf_mac,
	.get_module_eeprom = hclge_get_module_eeprom,
	.get_cmdq_stat = hclge_get_cmdq_stat,
	.add_cls_flower = hclge_add_cls_flower,
	.del_cls_flower = hclge_del_cls_flower,
	.cls_flower_active = hclge_is_cls_flower_active,
	.get_phy_link_ksettings = hclge_get_phy_link_ksettings,
	.set_phy_link_ksettings = hclge_set_phy_link_ksettings,
	.set_tx_hwts_info = hclge_ptp_set_tx_info,
	.get_rx_hwts = hclge_ptp_get_rx_hwts,
	.get_ts_info = hclge_ptp_get_ts_info,
	.get_link_diagnosis_info = hclge_get_link_diagnosis_info,
	.clean_vf_config = hclge_clean_vport_config,
	.get_dscp_prio = hclge_get_dscp_prio,
	.get_wol = hclge_get_wol,
	.set_wol = hclge_set_wol,
};

static struct hnae3_ae_algo ae_algo = {
	.ops = &hclge_ops,
	.pdev_id_table = ae_algo_pci_tbl,
};

static int __init hclge_init(void)
{
	pr_info("%s is initializing\n", HCLGE_NAME);

	hclge_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGE_NAME);
	if (!hclge_wq) {
		pr_err("%s: failed to create workqueue\n", HCLGE_NAME);
		return -ENOMEM;
	}

	hnae3_register_ae_algo(&ae_algo);

	return 0;
}

static void __exit hclge_exit(void)
{
	hnae3_unregister_ae_algo_prepare(&ae_algo);
	hnae3_unregister_ae_algo(&ae_algo);
	destroy_workqueue(hclge_wq);
}
module_init(hclge_init);
module_exit(hclge_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGE Driver");
MODULE_VERSION(HCLGE_MOD_VERSION);