Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Scott Feldman | 10478 | 67.43% | 19 | 9.84% |
Jesse Brandeburg | 505 | 3.25% | 16 | 8.29% |
Jeff Garzik | 497 | 3.20% | 10 | 5.18% |
Jaswinder Singh Rajput | 432 | 2.78% | 1 | 0.52% |
Andreas Mohr | 431 | 2.77% | 2 | 1.04% |
Joe Perches | 370 | 2.38% | 3 | 1.55% |
Bruce W Allan | 341 | 2.19% | 2 | 1.04% |
David Acker | 295 | 1.90% | 1 | 0.52% |
Ben Greear | 269 | 1.73% | 5 | 2.59% |
Mallikarjuna R Chilakala | 242 | 1.56% | 12 | 6.22% |
Ganesh Venkatesan | 226 | 1.45% | 8 | 4.15% |
Auke-Jan H Kok | 183 | 1.18% | 9 | 4.66% |
Stephen Hemminger | 108 | 0.69% | 7 | 3.63% |
ODonnell, Michael | 98 | 0.63% | 1 | 0.52% |
Christophe Jaillet | 92 | 0.59% | 1 | 0.52% |
Neil Horman | 79 | 0.51% | 1 | 0.52% |
Jeff Kirsher | 79 | 0.51% | 7 | 3.63% |
Thadeu Lima de Souza Cascardo | 77 | 0.50% | 2 | 1.04% |
Dave Graham | 54 | 0.35% | 2 | 1.04% |
Roger Oksanen | 50 | 0.32% | 1 | 0.52% |
Björn Mork | 47 | 0.30% | 1 | 0.52% |
Rafael J. Wysocki | 47 | 0.30% | 3 | 1.55% |
Al Viro | 42 | 0.27% | 4 | 2.07% |
Andrew Morton | 37 | 0.24% | 2 | 1.04% |
Vaibhav Gupta | 36 | 0.23% | 1 | 0.52% |
David S. Miller | 34 | 0.22% | 3 | 1.55% |
Jia-Ju Bai | 32 | 0.21% | 1 | 0.52% |
Jiri Pirko | 30 | 0.19% | 5 | 2.59% |
Kevin Hao | 19 | 0.12% | 1 | 0.52% |
Jacob E Keller | 19 | 0.12% | 2 | 1.04% |
David Howells | 18 | 0.12% | 1 | 0.52% |
David Decotigny | 18 | 0.12% | 2 | 1.04% |
Andre Detsch | 18 | 0.12% | 1 | 0.52% |
Philippe Reynes | 17 | 0.11% | 1 | 0.52% |
Krzysztof Hałasa | 17 | 0.11% | 1 | 0.52% |
Greg Kroah-Hartman | 14 | 0.09% | 2 | 1.04% |
Rick Jones | 14 | 0.09% | 1 | 0.52% |
Kees Cook | 13 | 0.08% | 1 | 0.52% |
John W. Linville | 11 | 0.07% | 1 | 0.52% |
Hao Chen | 10 | 0.06% | 1 | 0.52% |
Florian Fainelli | 10 | 0.06% | 1 | 0.52% |
Richard Cochran | 10 | 0.06% | 2 | 1.04% |
Alan Cox | 9 | 0.06% | 1 | 0.52% |
Domen Puncer | 8 | 0.05% | 2 | 1.04% |
Romain Perier | 8 | 0.05% | 1 | 0.52% |
Jakub Kiciński | 7 | 0.05% | 3 | 1.55% |
Andy Shevchenko | 6 | 0.04% | 1 | 0.52% |
Benoit Taine | 6 | 0.04% | 1 | 0.52% |
Divy Le Ray | 6 | 0.04% | 1 | 0.52% |
Jiri Slaby | 6 | 0.04% | 2 | 1.04% |
Eric Dumazet | 5 | 0.03% | 2 | 1.04% |
Catalin(ux aka Dino) M. Boie | 5 | 0.03% | 1 | 0.52% |
FUJITA Tomonori | 4 | 0.03% | 1 | 0.52% |
Yang Hongyang | 4 | 0.03% | 1 | 0.52% |
Michael S. Tsirkin | 4 | 0.03% | 1 | 0.52% |
Vaishali Thakkar | 3 | 0.02% | 1 | 0.52% |
Yan Burman | 3 | 0.02% | 1 | 0.52% |
Yuval Shaia | 3 | 0.02% | 1 | 0.52% |
Alexander Duyck | 3 | 0.02% | 1 | 0.52% |
Wilfried Klaebe | 3 | 0.02% | 1 | 0.52% |
Emil Tantilov | 2 | 0.01% | 1 | 0.52% |
Yue haibing | 2 | 0.01% | 1 | 0.52% |
Alejandro Martinez Ruiz | 2 | 0.01% | 1 | 0.52% |
Wolfram Sang | 2 | 0.01% | 1 | 0.52% |
Patrick McHardy | 2 | 0.01% | 2 | 1.04% |
Linus Torvalds (pre-git) | 2 | 0.01% | 1 | 0.52% |
Ben Hutchings | 2 | 0.01% | 1 | 0.52% |
Robert P. J. Day | 1 | 0.01% | 1 | 0.52% |
Alexey Dobriyan | 1 | 0.01% | 1 | 0.52% |
Sebastian Andrzej Siewior | 1 | 0.01% | 1 | 0.52% |
Matt LaPlante | 1 | 0.01% | 1 | 0.52% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.52% |
Luiz Fernando N. Capitulino | 1 | 0.01% | 1 | 0.52% |
Christoph Hellwig | 1 | 0.01% | 1 | 0.52% |
Arnaldo Carvalho de Melo | 1 | 0.01% | 1 | 0.52% |
Yijing Wang | 1 | 0.01% | 1 | 0.52% |
Harvey Harrison | 1 | 0.01% | 1 | 0.52% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.52% |
Pavel Machek | 1 | 0.01% | 1 | 0.52% |
Johannes Berg | 1 | 0.01% | 1 | 0.52% |
Serhey Popovych | 1 | 0.01% | 1 | 0.52% |
Total | 15540 | 193 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2006 Intel Corporation. */ /* * e100.c: Intel(R) PRO/100 ethernet driver * * (Re)written 2003 by scott.feldman@intel.com. Based loosely on * original e100 driver, but better described as a munging of * e100, e1000, eepro100, tg3, 8139cp, and other drivers. * * References: * Intel 8255x 10/100 Mbps Ethernet Controller Family, * Open Source Software Developers Manual, * http://sourceforge.net/projects/e1000 * * * Theory of Operation * * I. General * * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet * controller family, which includes the 82557, 82558, 82559, 82550, * 82551, and 82562 devices. 82558 and greater controllers * integrate the Intel 82555 PHY. The controllers are used in * server and client network interface cards, as well as in * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx * configurations. 8255x supports a 32-bit linear addressing * mode and operates at 33Mhz PCI clock rate. * * II. Driver Operation * * Memory-mapped mode is used exclusively to access the device's * shared-memory structure, the Control/Status Registers (CSR). All * setup, configuration, and control of the device, including queuing * of Tx, Rx, and configuration commands is through the CSR. * cmd_lock serializes accesses to the CSR command register. cb_lock * protects the shared Command Block List (CBL). * * 8255x is highly MII-compliant and all access to the PHY go * through the Management Data Interface (MDI). Consequently, the * driver leverages the mii.c library shared with other MII-compliant * devices. * * Big- and Little-Endian byte order as well as 32- and 64-bit * archs are supported. Weak-ordered memory and non-cache-coherent * archs are supported. * * III. Transmit * * A Tx skb is mapped and hangs off of a TCB. TCBs are linked * together in a fixed-size ring (CBL) thus forming the flexible mode * memory structure. A TCB marked with the suspend-bit indicates * the end of the ring. The last TCB processed suspends the * controller, and the controller can be restarted by issue a CU * resume command to continue from the suspend point, or a CU start * command to start at a given position in the ring. * * Non-Tx commands (config, multicast setup, etc) are linked * into the CBL ring along with Tx commands. The common structure * used for both Tx and non-Tx commands is the Command Block (CB). * * cb_to_use is the next CB to use for queuing a command; cb_to_clean * is the next CB to check for completion; cb_to_send is the first * CB to start on in case of a previous failure to resume. CB clean * up happens in interrupt context in response to a CU interrupt. * cbs_avail keeps track of number of free CB resources available. * * Hardware padding of short packets to minimum packet size is * enabled. 82557 pads with 7Eh, while the later controllers pad * with 00h. * * IV. Receive * * The Receive Frame Area (RFA) comprises a ring of Receive Frame * Descriptors (RFD) + data buffer, thus forming the simplified mode * memory structure. Rx skbs are allocated to contain both the RFD * and the data buffer, but the RFD is pulled off before the skb is * indicated. The data buffer is aligned such that encapsulated * protocol headers are u32-aligned. Since the RFD is part of the * mapped shared memory, and completion status is contained within * the RFD, the RFD must be dma_sync'ed to maintain a consistent * view from software and hardware. * * In order to keep updates to the RFD link field from colliding with * hardware writes to mark packets complete, we use the feature that * hardware will not write to a size 0 descriptor and mark the previous * packet as end-of-list (EL). After updating the link, we remove EL * and only then restore the size such that hardware may use the * previous-to-end RFD. * * Under typical operation, the receive unit (RU) is start once, * and the controller happily fills RFDs as frames arrive. If * replacement RFDs cannot be allocated, or the RU goes non-active, * the RU must be restarted. Frame arrival generates an interrupt, * and Rx indication and re-allocation happen in the same context, * therefore no locking is required. A software-generated interrupt * is generated from the watchdog to recover from a failed allocation * scenario where all Rx resources have been indicated and none re- * placed. * * V. Miscellaneous * * VLAN offloading of tagging, stripping and filtering is not * supported, but driver will accommodate the extra 4-byte VLAN tag * for processing by upper layers. Tx/Rx Checksum offloading is not * supported. Tx Scatter/Gather is not supported. Jumbo Frames is * not supported (hardware limitation). * * MagicPacket(tm) WoL support is enabled/disabled via ethtool. * * Thanks to JC (jchapman@katalix.com) for helping with * testing/troubleshooting the development driver. * * TODO: * o several entry points race with dev->close * o check for tx-no-resources/stop Q races with tx clean/wake Q * * FIXES: * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> * - Stratus87247: protect MDI control register manipulations * 2009/06/01 - Andreas Mohr <andi at lisas dot de> * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/hardirq.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/mii.h> #include <linux/if_vlan.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/string.h> #include <linux/firmware.h> #include <linux/rtnetlink.h> #include <asm/unaligned.h> #define DRV_NAME "e100" #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" #define E100_WATCHDOG_PERIOD (2 * HZ) #define E100_NAPI_WEIGHT 16 #define FIRMWARE_D101M "e100/d101m_ucode.bin" #define FIRMWARE_D101S "e100/d101s_ucode.bin" #define FIRMWARE_D102E "e100/d102e_ucode.bin" MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL v2"); MODULE_FIRMWARE(FIRMWARE_D101M); MODULE_FIRMWARE(FIRMWARE_D101S); MODULE_FIRMWARE(FIRMWARE_D102E); static int debug = 3; static int eeprom_bad_csum_allow = 0; static int use_io = 0; module_param(debug, int, 0); module_param(eeprom_bad_csum_allow, int, 0); module_param(use_io, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } static const struct pci_device_id e100_id_table[] = { INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), { 0, } }; MODULE_DEVICE_TABLE(pci, e100_id_table); enum mac { mac_82557_D100_A = 0, mac_82557_D100_B = 1, mac_82557_D100_C = 2, mac_82558_D101_A4 = 4, mac_82558_D101_B0 = 5, mac_82559_D101M = 8, mac_82559_D101S = 9, mac_82550_D102 = 12, mac_82550_D102_C = 13, mac_82551_E = 14, mac_82551_F = 15, mac_82551_10 = 16, mac_unknown = 0xFF, }; enum phy { phy_100a = 0x000003E0, phy_100c = 0x035002A8, phy_82555_tx = 0x015002A8, phy_nsc_tx = 0x5C002000, phy_82562_et = 0x033002A8, phy_82562_em = 0x032002A8, phy_82562_ek = 0x031002A8, phy_82562_eh = 0x017002A8, phy_82552_v = 0xd061004d, phy_unknown = 0xFFFFFFFF, }; /* CSR (Control/Status Registers) */ struct csr { struct { u8 status; u8 stat_ack; u8 cmd_lo; u8 cmd_hi; u32 gen_ptr; } scb; u32 port; u16 flash_ctrl; u8 eeprom_ctrl_lo; u8 eeprom_ctrl_hi; u32 mdi_ctrl; u32 rx_dma_count; }; enum scb_status { rus_no_res = 0x08, rus_ready = 0x10, rus_mask = 0x3C, }; enum ru_state { RU_SUSPENDED = 0, RU_RUNNING = 1, RU_UNINITIALIZED = -1, }; enum scb_stat_ack { stat_ack_not_ours = 0x00, stat_ack_sw_gen = 0x04, stat_ack_rnr = 0x10, stat_ack_cu_idle = 0x20, stat_ack_frame_rx = 0x40, stat_ack_cu_cmd_done = 0x80, stat_ack_not_present = 0xFF, stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), }; enum scb_cmd_hi { irq_mask_none = 0x00, irq_mask_all = 0x01, irq_sw_gen = 0x02, }; enum scb_cmd_lo { cuc_nop = 0x00, ruc_start = 0x01, ruc_load_base = 0x06, cuc_start = 0x10, cuc_resume = 0x20, cuc_dump_addr = 0x40, cuc_dump_stats = 0x50, cuc_load_base = 0x60, cuc_dump_reset = 0x70, }; enum cuc_dump { cuc_dump_complete = 0x0000A005, cuc_dump_reset_complete = 0x0000A007, }; enum port { software_reset = 0x0000, selftest = 0x0001, selective_reset = 0x0002, }; enum eeprom_ctrl_lo { eesk = 0x01, eecs = 0x02, eedi = 0x04, eedo = 0x08, }; enum mdi_ctrl { mdi_write = 0x04000000, mdi_read = 0x08000000, mdi_ready = 0x10000000, }; enum eeprom_op { op_write = 0x05, op_read = 0x06, op_ewds = 0x10, op_ewen = 0x13, }; enum eeprom_offsets { eeprom_cnfg_mdix = 0x03, eeprom_phy_iface = 0x06, eeprom_id = 0x0A, eeprom_config_asf = 0x0D, eeprom_smbus_addr = 0x90, }; enum eeprom_cnfg_mdix { eeprom_mdix_enabled = 0x0080, }; enum eeprom_phy_iface { NoSuchPhy = 0, I82553AB, I82553C, I82503, DP83840, S80C240, S80C24, I82555, DP83840A = 10, }; enum eeprom_id { eeprom_id_wol = 0x0020, }; enum eeprom_config_asf { eeprom_asf = 0x8000, eeprom_gcl = 0x4000, }; enum cb_status { cb_complete = 0x8000, cb_ok = 0x2000, }; /* * cb_command - Command Block flags * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory */ enum cb_command { cb_nop = 0x0000, cb_iaaddr = 0x0001, cb_config = 0x0002, cb_multi = 0x0003, cb_tx = 0x0004, cb_ucode = 0x0005, cb_dump = 0x0006, cb_tx_sf = 0x0008, cb_tx_nc = 0x0010, cb_cid = 0x1f00, cb_i = 0x2000, cb_s = 0x4000, cb_el = 0x8000, }; struct rfd { __le16 status; __le16 command; __le32 link; __le32 rbd; __le16 actual_size; __le16 size; }; struct rx { struct rx *next, *prev; struct sk_buff *skb; dma_addr_t dma_addr; }; #if defined(__BIG_ENDIAN_BITFIELD) #define X(a,b) b,a #else #define X(a,b) a,b #endif struct config { /*0*/ u8 X(byte_count:6, pad0:2); /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); /*2*/ u8 adaptive_ifs; /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), term_write_cache_line:1), pad3:4); /*4*/ u8 X(rx_dma_max_count:7, pad4:1); /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), rx_save_overruns : 1), rx_save_bad_frames : 1); /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), tx_dynamic_tbd:1); /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), link_status_wake:1), arp_wake:1), mcmatch_wake:1); /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), loopback:2); /*11*/ u8 X(linear_priority:3, pad11:5); /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); /*13*/ u8 ip_addr_lo; /*14*/ u8 ip_addr_hi; /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), pad15_2:1), crs_or_cdt:1); /*16*/ u8 fc_delay_lo; /*17*/ u8 fc_delay_hi; /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), rx_long_ok:1), fc_priority_threshold:3), pad18:1); /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), full_duplex_force:1), full_duplex_pin:1); /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); u8 pad_d102[9]; }; #define E100_MAX_MULTICAST_ADDRS 64 struct multi { __le16 count; u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; }; /* Important: keep total struct u32-aligned */ #define UCODE_SIZE 134 struct cb { __le16 status; __le16 command; __le32 link; union { u8 iaaddr[ETH_ALEN]; __le32 ucode[UCODE_SIZE]; struct config config; struct multi multi; struct { u32 tbd_array; u16 tcb_byte_count; u8 threshold; u8 tbd_count; struct { __le32 buf_addr; __le16 size; u16 eol; } tbd; } tcb; __le32 dump_buffer_addr; } u; struct cb *next, *prev; dma_addr_t dma_addr; struct sk_buff *skb; }; enum loopback { lb_none = 0, lb_mac = 1, lb_phy = 3, }; struct stats { __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, tx_multiple_collisions, tx_total_collisions; __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, rx_resource_errors, rx_overrun_errors, rx_cdt_errors, rx_short_frame_errors; __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; __le16 xmt_tco_frames, rcv_tco_frames; __le32 complete; }; struct mem { struct { u32 signature; u32 result; } selftest; struct stats stats; u8 dump_buf[596]; }; struct param_range { u32 min; u32 max; u32 count; }; struct params { struct param_range rfds; struct param_range cbs; }; struct nic { /* Begin: frequently used values: keep adjacent for cache effect */ u32 msg_enable ____cacheline_aligned; struct net_device *netdev; struct pci_dev *pdev; u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); struct rx *rxs ____cacheline_aligned; struct rx *rx_to_use; struct rx *rx_to_clean; struct rfd blank_rfd; enum ru_state ru_running; spinlock_t cb_lock ____cacheline_aligned; spinlock_t cmd_lock; struct csr __iomem *csr; enum scb_cmd_lo cuc_cmd; unsigned int cbs_avail; struct napi_struct napi; struct cb *cbs; struct cb *cb_to_use; struct cb *cb_to_send; struct cb *cb_to_clean; __le16 tx_command; /* End: frequently used values: keep adjacent for cache effect */ enum { ich = (1 << 0), promiscuous = (1 << 1), multicast_all = (1 << 2), wol_magic = (1 << 3), ich_10h_workaround = (1 << 4), } flags ____cacheline_aligned; enum mac mac; enum phy phy; struct params params; struct timer_list watchdog; struct mii_if_info mii; struct work_struct tx_timeout_task; enum loopback loopback; struct mem *mem; dma_addr_t dma_addr; struct dma_pool *cbs_pool; dma_addr_t cbs_dma_addr; u8 adaptive_ifs; u8 tx_threshold; u32 tx_frames; u32 tx_collisions; u32 tx_deferred; u32 tx_single_collisions; u32 tx_multiple_collisions; u32 tx_fc_pause; u32 tx_tco_frames; u32 rx_fc_pause; u32 rx_fc_unsupported; u32 rx_tco_frames; u32 rx_short_frame_errors; u32 rx_over_length_errors; u16 eeprom_wc; __le16 eeprom[256]; spinlock_t mdio_lock; const struct firmware *fw; }; static inline void e100_write_flush(struct nic *nic) { /* Flush previous PCI writes through intermediate bridges * by doing a benign read */ (void)ioread8(&nic->csr->scb.status); } static void e100_enable_irq(struct nic *nic) { unsigned long flags; spin_lock_irqsave(&nic->cmd_lock, flags); iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); e100_write_flush(nic); spin_unlock_irqrestore(&nic->cmd_lock, flags); } static void e100_disable_irq(struct nic *nic) { unsigned long flags; spin_lock_irqsave(&nic->cmd_lock, flags); iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); e100_write_flush(nic); spin_unlock_irqrestore(&nic->cmd_lock, flags); } static void e100_hw_reset(struct nic *nic) { /* Put CU and RU into idle with a selective reset to get * device off of PCI bus */ iowrite32(selective_reset, &nic->csr->port); e100_write_flush(nic); udelay(20); /* Now fully reset device */ iowrite32(software_reset, &nic->csr->port); e100_write_flush(nic); udelay(20); /* Mask off our interrupt line - it's unmasked after reset */ e100_disable_irq(nic); } static int e100_self_test(struct nic *nic) { u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); /* Passing the self-test is a pretty good indication * that the device can DMA to/from host memory */ nic->mem->selftest.signature = 0; nic->mem->selftest.result = 0xFFFFFFFF; iowrite32(selftest | dma_addr, &nic->csr->port); e100_write_flush(nic); /* Wait 10 msec for self-test to complete */ msleep(10); /* Interrupts are enabled after self-test */ e100_disable_irq(nic); /* Check results of self-test */ if (nic->mem->selftest.result != 0) { netif_err(nic, hw, nic->netdev, "Self-test failed: result=0x%08X\n", nic->mem->selftest.result); return -ETIMEDOUT; } if (nic->mem->selftest.signature == 0) { netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); return -ETIMEDOUT; } return 0; } static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) { u32 cmd_addr_data[3]; u8 ctrl; int i, j; /* Three cmds: write/erase enable, write data, write/erase disable */ cmd_addr_data[0] = op_ewen << (addr_len - 2); cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | le16_to_cpu(data); cmd_addr_data[2] = op_ewds << (addr_len - 2); /* Bit-bang cmds to write word to eeprom */ for (j = 0; j < 3; j++) { /* Chip select */ iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); for (i = 31; i >= 0; i--) { ctrl = (cmd_addr_data[j] & (1 << i)) ? eecs | eedi : eecs; iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); } /* Wait 10 msec for cmd to complete */ msleep(10); /* Chip deselect */ iowrite8(0, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); } }; /* General technique stolen from the eepro100 driver - very clever */ static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) { u32 cmd_addr_data; u16 data = 0; u8 ctrl; int i; cmd_addr_data = ((op_read << *addr_len) | addr) << 16; /* Chip select */ iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); /* Bit-bang to read word from eeprom */ for (i = 31; i >= 0; i--) { ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); /* Eeprom drives a dummy zero to EEDO after receiving * complete address. Use this to adjust addr_len. */ ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); if (!(ctrl & eedo) && i > 16) { *addr_len -= (i - 16); i = 17; } data = (data << 1) | (ctrl & eedo ? 1 : 0); } /* Chip deselect */ iowrite8(0, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); return cpu_to_le16(data); }; /* Load entire EEPROM image into driver cache and validate checksum */ static int e100_eeprom_load(struct nic *nic) { u16 addr, addr_len = 8, checksum = 0; /* Try reading with an 8-bit addr len to discover actual addr len */ e100_eeprom_read(nic, &addr_len, 0); nic->eeprom_wc = 1 << addr_len; for (addr = 0; addr < nic->eeprom_wc; addr++) { nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); if (addr < nic->eeprom_wc - 1) checksum += le16_to_cpu(nic->eeprom[addr]); } /* The checksum, stored in the last word, is calculated such that * the sum of words should be 0xBABA */ if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); if (!eeprom_bad_csum_allow) return -EAGAIN; } return 0; } /* Save (portion of) driver EEPROM cache to device and update checksum */ static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) { u16 addr, addr_len = 8, checksum = 0; /* Try reading with an 8-bit addr len to discover actual addr len */ e100_eeprom_read(nic, &addr_len, 0); nic->eeprom_wc = 1 << addr_len; if (start + count >= nic->eeprom_wc) return -EINVAL; for (addr = start; addr < start + count; addr++) e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); /* The checksum, stored in the last word, is calculated such that * the sum of words should be 0xBABA */ for (addr = 0; addr < nic->eeprom_wc - 1; addr++) checksum += le16_to_cpu(nic->eeprom[addr]); nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, nic->eeprom[nic->eeprom_wc - 1]); return 0; } #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) { unsigned long flags; unsigned int i; int err = 0; spin_lock_irqsave(&nic->cmd_lock, flags); /* Previous command is accepted when SCB clears */ for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { if (likely(!ioread8(&nic->csr->scb.cmd_lo))) break; cpu_relax(); if (unlikely(i > E100_WAIT_SCB_FAST)) udelay(5); } if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { err = -EAGAIN; goto err_unlock; } if (unlikely(cmd != cuc_resume)) iowrite32(dma_addr, &nic->csr->scb.gen_ptr); iowrite8(cmd, &nic->csr->scb.cmd_lo); err_unlock: spin_unlock_irqrestore(&nic->cmd_lock, flags); return err; } static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) { struct cb *cb; unsigned long flags; int err; spin_lock_irqsave(&nic->cb_lock, flags); if (unlikely(!nic->cbs_avail)) { err = -ENOMEM; goto err_unlock; } cb = nic->cb_to_use; nic->cb_to_use = cb->next; nic->cbs_avail--; cb->skb = skb; err = cb_prepare(nic, cb, skb); if (err) goto err_unlock; if (unlikely(!nic->cbs_avail)) err = -ENOSPC; /* Order is important otherwise we'll be in a race with h/w: * set S-bit in current first, then clear S-bit in previous. */ cb->command |= cpu_to_le16(cb_s); dma_wmb(); cb->prev->command &= cpu_to_le16(~cb_s); while (nic->cb_to_send != nic->cb_to_use) { if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, nic->cb_to_send->dma_addr))) { /* Ok, here's where things get sticky. It's * possible that we can't schedule the command * because the controller is too busy, so * let's just queue the command and try again * when another command is scheduled. */ if (err == -ENOSPC) { //request a reset schedule_work(&nic->tx_timeout_task); } break; } else { nic->cuc_cmd = cuc_resume; nic->cb_to_send = nic->cb_to_send->next; } } err_unlock: spin_unlock_irqrestore(&nic->cb_lock, flags); return err; } static int mdio_read(struct net_device *netdev, int addr, int reg) { struct nic *nic = netdev_priv(netdev); return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); } static void mdio_write(struct net_device *netdev, int addr, int reg, int data) { struct nic *nic = netdev_priv(netdev); nic->mdio_ctrl(nic, addr, mdi_write, reg, data); } /* the standard mdio_ctrl() function for usual MII-compliant hardware */ static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) { u32 data_out = 0; unsigned int i; unsigned long flags; /* * Stratus87247: we shouldn't be writing the MDI control * register until the Ready bit shows True. Also, since * manipulation of the MDI control registers is a multi-step * procedure it should be done under lock. */ spin_lock_irqsave(&nic->mdio_lock, flags); for (i = 100; i; --i) { if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) break; udelay(20); } if (unlikely(!i)) { netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); spin_unlock_irqrestore(&nic->mdio_lock, flags); return 0; /* No way to indicate timeout error */ } iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); for (i = 0; i < 100; i++) { udelay(20); if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) break; } spin_unlock_irqrestore(&nic->mdio_lock, flags); netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); return (u16)data_out; } /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ static u16 mdio_ctrl_phy_82552_v(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) { if ((reg == MII_BMCR) && (dir == mdi_write)) { if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, MII_ADVERTISE); /* * Workaround Si issue where sometimes the part will not * autoneg to 100Mbps even when advertised. */ if (advert & ADVERTISE_100FULL) data |= BMCR_SPEED100 | BMCR_FULLDPLX; else if (advert & ADVERTISE_100HALF) data |= BMCR_SPEED100; } } return mdio_ctrl_hw(nic, addr, dir, reg, data); } /* Fully software-emulated mdio_ctrl() function for cards without * MII-compliant PHYs. * For now, this is mainly geared towards 80c24 support; in case of further * requirements for other types (i82503, ...?) either extend this mechanism * or split it, whichever is cleaner. */ static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) { /* might need to allocate a netdev_priv'ed register array eventually * to be able to record state changes, but for now * some fully hardcoded register handling ought to be ok I guess. */ if (dir == mdi_read) { switch (reg) { case MII_BMCR: /* Auto-negotiation, right? */ return BMCR_ANENABLE | BMCR_FULLDPLX; case MII_BMSR: return BMSR_LSTATUS /* for mii_link_ok() */ | BMSR_ANEGCAPABLE | BMSR_10FULL; case MII_ADVERTISE: /* 80c24 is a "combo card" PHY, right? */ return ADVERTISE_10HALF | ADVERTISE_10FULL; default: netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", dir == mdi_read ? "READ" : "WRITE", addr, reg, data); return 0xFFFF; } } else { switch (reg) { default: netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", dir == mdi_read ? "READ" : "WRITE", addr, reg, data); return 0xFFFF; } } } static inline int e100_phy_supports_mii(struct nic *nic) { /* for now, just check it by comparing whether we are using MII software emulation. */ return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); } static void e100_get_defaults(struct nic *nic) { struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; if (nic->mac == mac_unknown) nic->mac = mac_82557_D100_A; nic->params.rfds = rfds; nic->params.cbs = cbs; /* Quadwords to DMA into FIFO before starting frame transmit */ nic->tx_threshold = 0xE0; /* no interrupt for every tx completion, delay = 256us if not 557 */ nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); /* Template for a freshly allocated RFD */ nic->blank_rfd.command = 0; nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); /* MII setup */ nic->mii.phy_id_mask = 0x1F; nic->mii.reg_num_mask = 0x1F; nic->mii.dev = nic->netdev; nic->mii.mdio_read = mdio_read; nic->mii.mdio_write = mdio_write; } static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) { struct config *config = &cb->u.config; u8 *c = (u8 *)config; struct net_device *netdev = nic->netdev; cb->command = cpu_to_le16(cb_config); memset(config, 0, sizeof(struct config)); config->byte_count = 0x16; /* bytes in this struct */ config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ config->direct_rx_dma = 0x1; /* reserved */ config->standard_tcb = 0x1; /* 1=standard, 0=extended */ config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ config->tx_underrun_retry = 0x3; /* # of underrun retries */ if (e100_phy_supports_mii(nic)) config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ config->pad10 = 0x6; config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ config->ifs = 0x6; /* x16 = inter frame spacing */ config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ config->pad15_1 = 0x1; config->pad15_2 = 0x1; config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ config->fc_delay_hi = 0x40; /* time delay for fc frame */ config->tx_padding = 0x1; /* 1=pad short frames */ config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ config->pad18 = 0x1; config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ config->pad20_1 = 0x1F; config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ config->pad21_1 = 0x5; config->adaptive_ifs = nic->adaptive_ifs; config->loopback = nic->loopback; if (nic->mii.force_media && nic->mii.full_duplex) config->full_duplex_force = 0x1; /* 1=force, 0=auto */ if (nic->flags & promiscuous || nic->loopback) { config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ config->promiscuous_mode = 0x1; /* 1=on, 0=off */ } if (unlikely(netdev->features & NETIF_F_RXFCS)) config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */ if (nic->flags & multicast_all) config->multicast_all = 0x1; /* 1=accept, 0=no */ /* disable WoL when up */ if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) config->magic_packet_disable = 0x1; /* 1=off, 0=on */ if (nic->mac >= mac_82558_D101_A4) { config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ config->mwi_enable = 0x1; /* 1=enable, 0=disable */ config->standard_tcb = 0x0; /* 1=standard, 0=extended */ config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ if (nic->mac >= mac_82559_D101M) { config->tno_intr = 0x1; /* TCO stats enable */ /* Enable TCO in extended config */ if (nic->mac >= mac_82551_10) { config->byte_count = 0x20; /* extended bytes */ config->rx_d102_mode = 0x1; /* GMRC for TCO */ } } else { config->standard_stat_counter = 0x0; } } if (netdev->features & NETIF_F_RXALL) { config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ } netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n", c + 0); netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n", c + 8); netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n", c + 16); return 0; } /************************************************************************* * CPUSaver parameters * * All CPUSaver parameters are 16-bit literals that are part of a * "move immediate value" instruction. By changing the value of * the literal in the instruction before the code is loaded, the * driver can change the algorithm. * * INTDELAY - This loads the dead-man timer with its initial value. * When this timer expires the interrupt is asserted, and the * timer is reset each time a new packet is received. (see * BUNDLEMAX below to set the limit on number of chained packets) * The current default is 0x600 or 1536. Experiments show that * the value should probably stay within the 0x200 - 0x1000. * * BUNDLEMAX - * This sets the maximum number of frames that will be bundled. In * some situations, such as the TCP windowing algorithm, it may be * better to limit the growth of the bundle size than let it go as * high as it can, because that could cause too much added latency. * The default is six, because this is the number of packets in the * default TCP window size. A value of 1 would make CPUSaver indicate * an interrupt for every frame received. If you do not want to put * a limit on the bundle size, set this value to xFFFF. * * BUNDLESMALL - * This contains a bit-mask describing the minimum size frame that * will be bundled. The default masks the lower 7 bits, which means * that any frame less than 128 bytes in length will not be bundled, * but will instead immediately generate an interrupt. This does * not affect the current bundle in any way. Any frame that is 128 * bytes or large will be bundled normally. This feature is meant * to provide immediate indication of ACK frames in a TCP environment. * Customers were seeing poor performance when a machine with CPUSaver * enabled was sending but not receiving. The delay introduced when * the ACKs were received was enough to reduce total throughput, because * the sender would sit idle until the ACK was finally seen. * * The current default is 0xFF80, which masks out the lower 7 bits. * This means that any frame which is x7F (127) bytes or smaller * will cause an immediate interrupt. Because this value must be a * bit mask, there are only a few valid values that can be used. To * turn this feature off, the driver can write the value xFFFF to the * lower word of this instruction (in the same way that the other * parameters are used). Likewise, a value of 0xF800 (2047) would * cause an interrupt to be generated for every frame, because all * standard Ethernet frames are <= 2047 bytes in length. *************************************************************************/ /* if you wish to disable the ucode functionality, while maintaining the * workarounds it provides, set the following defines to: * BUNDLESMALL 0 * BUNDLEMAX 1 * INTDELAY 1 */ #define BUNDLESMALL 1 #define BUNDLEMAX (u16)6 #define INTDELAY (u16)1536 /* 0x600 */ /* Initialize firmware */ static const struct firmware *e100_request_firmware(struct nic *nic) { const char *fw_name; const struct firmware *fw = nic->fw; u8 timer, bundle, min_size; int err = 0; bool required = false; /* do not load u-code for ICH devices */ if (nic->flags & ich) return NULL; /* Search for ucode match against h/w revision * * Based on comments in the source code for the FreeBSD fxp * driver, the FIRMWARE_D102E ucode includes both CPUSaver and * * "fixes for bugs in the B-step hardware (specifically, bugs * with Inline Receive)." * * So we must fail if it cannot be loaded. * * The other microcode files are only required for the optional * CPUSaver feature. Nice to have, but no reason to fail. */ if (nic->mac == mac_82559_D101M) { fw_name = FIRMWARE_D101M; } else if (nic->mac == mac_82559_D101S) { fw_name = FIRMWARE_D101S; } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { fw_name = FIRMWARE_D102E; required = true; } else { /* No ucode on other devices */ return NULL; } /* If the firmware has not previously been loaded, request a pointer * to it. If it was previously loaded, we are reinitializing the * adapter, possibly in a resume from hibernate, in which case * request_firmware() cannot be used. */ if (!fw) err = request_firmware(&fw, fw_name, &nic->pdev->dev); if (err) { if (required) { netif_err(nic, probe, nic->netdev, "Failed to load firmware \"%s\": %d\n", fw_name, err); return ERR_PTR(err); } else { netif_info(nic, probe, nic->netdev, "CPUSaver disabled. Needs \"%s\": %d\n", fw_name, err); return NULL; } } /* Firmware should be precisely UCODE_SIZE (words) plus three bytes indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ if (fw->size != UCODE_SIZE * 4 + 3) { netif_err(nic, probe, nic->netdev, "Firmware \"%s\" has wrong size %zu\n", fw_name, fw->size); release_firmware(fw); return ERR_PTR(-EINVAL); } /* Read timer, bundle and min_size from end of firmware blob */ timer = fw->data[UCODE_SIZE * 4]; bundle = fw->data[UCODE_SIZE * 4 + 1]; min_size = fw->data[UCODE_SIZE * 4 + 2]; if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || min_size >= UCODE_SIZE) { netif_err(nic, probe, nic->netdev, "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", fw_name, timer, bundle, min_size); release_firmware(fw); return ERR_PTR(-EINVAL); } /* OK, firmware is validated and ready to use. Save a pointer * to it in the nic */ nic->fw = fw; return fw; } static int e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) { const struct firmware *fw = (void *)skb; u8 timer, bundle, min_size; /* It's not a real skb; we just abused the fact that e100_exec_cb will pass it through to here... */ cb->skb = NULL; /* firmware is stored as little endian already */ memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); /* Read timer, bundle and min_size from end of firmware blob */ timer = fw->data[UCODE_SIZE * 4]; bundle = fw->data[UCODE_SIZE * 4 + 1]; min_size = fw->data[UCODE_SIZE * 4 + 2]; /* Insert user-tunable settings in cb->u.ucode */ cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); cb->command = cpu_to_le16(cb_ucode | cb_el); return 0; } static inline int e100_load_ucode_wait(struct nic *nic) { const struct firmware *fw; int err = 0, counter = 50; struct cb *cb = nic->cb_to_clean; fw = e100_request_firmware(nic); /* If it's NULL, then no ucode is required */ if (IS_ERR_OR_NULL(fw)) return PTR_ERR_OR_ZERO(fw); if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) netif_err(nic, probe, nic->netdev, "ucode cmd failed with error %d\n", err); /* must restart cuc */ nic->cuc_cmd = cuc_start; /* wait for completion */ e100_write_flush(nic); udelay(10); /* wait for possibly (ouch) 500ms */ while (!(cb->status & cpu_to_le16(cb_complete))) { msleep(10); if (!--counter) break; } /* ack any interrupts, something could have been set */ iowrite8(~0, &nic->csr->scb.stat_ack); /* if the command failed, or is not OK, notify and return */ if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { netif_err(nic, probe, nic->netdev, "ucode load failed\n"); err = -EPERM; } return err; } static int e100_setup_iaaddr(struct nic *nic, struct cb *cb, struct sk_buff *skb) { cb->command = cpu_to_le16(cb_iaaddr); memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); return 0; } static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) { cb->command = cpu_to_le16(cb_dump); cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + offsetof(struct mem, dump_buf)); return 0; } static int e100_phy_check_without_mii(struct nic *nic) { u8 phy_type; int without_mii; phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f; switch (phy_type) { case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ case I82503: /* Non-MII PHY; UNTESTED! */ case S80C24: /* Non-MII PHY; tested and working */ /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter * doesn't have a programming interface of any sort. The * media is sensed automatically based on how the link partner * is configured. This is, in essence, manual configuration. */ netif_info(nic, probe, nic->netdev, "found MII-less i82503 or 80c24 or other PHY\n"); nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ /* these might be needed for certain MII-less cards... * nic->flags |= ich; * nic->flags |= ich_10h_workaround; */ without_mii = 1; break; default: without_mii = 0; break; } return without_mii; } #define NCONFIG_AUTO_SWITCH 0x0080 #define MII_NSC_CONG MII_RESV1 #define NSC_CONG_ENABLE 0x0100 #define NSC_CONG_TXREADY 0x0400 static int e100_phy_init(struct nic *nic) { struct net_device *netdev = nic->netdev; u32 addr; u16 bmcr, stat, id_lo, id_hi, cong; /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ for (addr = 0; addr < 32; addr++) { nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) break; } if (addr == 32) { /* uhoh, no PHY detected: check whether we seem to be some * weird, rare variant which is *known* to not have any MII. * But do this AFTER MII checking only, since this does * lookup of EEPROM values which may easily be unreliable. */ if (e100_phy_check_without_mii(nic)) return 0; /* simply return and hope for the best */ else { /* for unknown cases log a fatal error */ netif_err(nic, hw, nic->netdev, "Failed to locate any known PHY, aborting\n"); return -EAGAIN; } } else netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "phy_addr = %d\n", nic->mii.phy_id); /* Get phy ID */ id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); nic->phy = (u32)id_hi << 16 | (u32)id_lo; netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "phy ID = 0x%08X\n", nic->phy); /* Select the phy and isolate the rest */ for (addr = 0; addr < 32; addr++) { if (addr != nic->mii.phy_id) { mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); } else if (nic->phy != phy_82552_v) { bmcr = mdio_read(netdev, addr, MII_BMCR); mdio_write(netdev, addr, MII_BMCR, bmcr & ~BMCR_ISOLATE); } } /* * Workaround for 82552: * Clear the ISOLATE bit on selected phy_id last (mirrored on all * other phy_id's) using bmcr value from addr discovery loop above. */ if (nic->phy == phy_82552_v) mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr & ~BMCR_ISOLATE); /* Handle National tx phys */ #define NCS_PHY_MODEL_MASK 0xFFF0FFFF if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { /* Disable congestion control */ cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); cong |= NSC_CONG_TXREADY; cong &= ~NSC_CONG_ENABLE; mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); } if (nic->phy == phy_82552_v) { u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); /* assign special tweaked mdio_ctrl() function */ nic->mdio_ctrl = mdio_ctrl_phy_82552_v; /* Workaround Si not advertising flow-control during autoneg */ advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); /* Reset for the above changes to take effect */ bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); bmcr |= BMCR_RESET; mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) { /* enable/disable MDI/MDI-X auto-switching. */ mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); } return 0; } static int e100_hw_init(struct nic *nic) { int err = 0; e100_hw_reset(nic); netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); if ((err = e100_self_test(nic))) return err; if ((err = e100_phy_init(nic))) return err; if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) return err; if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) return err; if ((err = e100_load_ucode_wait(nic))) return err; if ((err = e100_exec_cb(nic, NULL, e100_configure))) return err; if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) return err; if ((err = e100_exec_cmd(nic, cuc_dump_addr, nic->dma_addr + offsetof(struct mem, stats)))) return err; if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) return err; e100_disable_irq(nic); return 0; } static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) { struct net_device *netdev = nic->netdev; struct netdev_hw_addr *ha; u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); cb->command = cpu_to_le16(cb_multi); cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); i = 0; netdev_for_each_mc_addr(ha, netdev) { if (i == count) break; memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, ETH_ALEN); } return 0; } static void e100_set_multicast_list(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "mc_count=%d, flags=0x%04X\n", netdev_mc_count(netdev), netdev->flags); if (netdev->flags & IFF_PROMISC) nic->flags |= promiscuous; else nic->flags &= ~promiscuous; if (netdev->flags & IFF_ALLMULTI || netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) nic->flags |= multicast_all; else nic->flags &= ~multicast_all; e100_exec_cb(nic, NULL, e100_configure); e100_exec_cb(nic, NULL, e100_multi); } static void e100_update_stats(struct nic *nic) { struct net_device *dev = nic->netdev; struct net_device_stats *ns = &dev->stats; struct stats *s = &nic->mem->stats; __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : &s->complete; /* Device's stats reporting may take several microseconds to * complete, so we're always waiting for results of the * previous command. */ if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { *complete = 0; nic->tx_frames = le32_to_cpu(s->tx_good_frames); nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); ns->collisions += nic->tx_collisions; ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + le32_to_cpu(s->tx_lost_crs); nic->rx_short_frame_errors += le32_to_cpu(s->rx_short_frame_errors); ns->rx_length_errors = nic->rx_short_frame_errors + nic->rx_over_length_errors; ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + le32_to_cpu(s->rx_alignment_errors) + le32_to_cpu(s->rx_short_frame_errors) + le32_to_cpu(s->rx_cdt_errors); nic->tx_deferred += le32_to_cpu(s->tx_deferred); nic->tx_single_collisions += le32_to_cpu(s->tx_single_collisions); nic->tx_multiple_collisions += le32_to_cpu(s->tx_multiple_collisions); if (nic->mac >= mac_82558_D101_A4) { nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); nic->rx_fc_unsupported += le32_to_cpu(s->fc_rcv_unsupported); if (nic->mac >= mac_82559_D101M) { nic->tx_tco_frames += le16_to_cpu(s->xmt_tco_frames); nic->rx_tco_frames += le16_to_cpu(s->rcv_tco_frames); } } } if (e100_exec_cmd(nic, cuc_dump_reset, 0)) netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "exec cuc_dump_reset failed\n"); } static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) { /* Adjust inter-frame-spacing (IFS) between two transmits if * we're getting collisions on a half-duplex connection. */ if (duplex == DUPLEX_HALF) { u32 prev = nic->adaptive_ifs; u32 min_frames = (speed == SPEED_100) ? 1000 : 100; if ((nic->tx_frames / 32 < nic->tx_collisions) && (nic->tx_frames > min_frames)) { if (nic->adaptive_ifs < 60) nic->adaptive_ifs += 5; } else if (nic->tx_frames < min_frames) { if (nic->adaptive_ifs >= 5) nic->adaptive_ifs -= 5; } if (nic->adaptive_ifs != prev) e100_exec_cb(nic, NULL, e100_configure); } } static void e100_watchdog(struct timer_list *t) { struct nic *nic = from_timer(nic, t, watchdog); struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; u32 speed; netif_printk(nic, timer, KERN_DEBUG, nic->netdev, "right now = %ld\n", jiffies); /* mii library handles link maintenance tasks */ mii_ethtool_gset(&nic->mii, &cmd); speed = ethtool_cmd_speed(&cmd); if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", speed == SPEED_100 ? 100 : 10, cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { netdev_info(nic->netdev, "NIC Link is Down\n"); } mii_check_link(&nic->mii); /* Software generated interrupt to recover from (rare) Rx * allocation failure. * Unfortunately have to use a spinlock to not re-enable interrupts * accidentally, due to hardware that shares a register between the * interrupt mask bit and the SW Interrupt generation bit */ spin_lock_irq(&nic->cmd_lock); iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); e100_write_flush(nic); spin_unlock_irq(&nic->cmd_lock); e100_update_stats(nic); e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); if (nic->mac <= mac_82557_D100_C) /* Issue a multicast command to workaround a 557 lock up */ e100_set_multicast_list(nic->netdev); if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ nic->flags |= ich_10h_workaround; else nic->flags &= ~ich_10h_workaround; mod_timer(&nic->watchdog, round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); } static int e100_xmit_prepare(struct nic *nic, struct cb *cb, struct sk_buff *skb) { dma_addr_t dma_addr; cb->command = nic->tx_command; dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); /* If we can't map the skb, have the upper layer try later */ if (dma_mapping_error(&nic->pdev->dev, dma_addr)) return -ENOMEM; /* * Use the last 4 bytes of the SKB payload packet as the CRC, used for * testing, ie sending frames with bad CRC. */ if (unlikely(skb->no_fcs)) cb->command |= cpu_to_le16(cb_tx_nc); else cb->command &= ~cpu_to_le16(cb_tx_nc); /* interrupt every 16 packets regardless of delay */ if ((nic->cbs_avail & ~15) == nic->cbs_avail) cb->command |= cpu_to_le16(cb_i); cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); cb->u.tcb.tcb_byte_count = 0; cb->u.tcb.threshold = nic->tx_threshold; cb->u.tcb.tbd_count = 1; cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); cb->u.tcb.tbd.size = cpu_to_le16(skb->len); skb_tx_timestamp(skb); return 0; } static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); int err; if (nic->flags & ich_10h_workaround) { /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. Issue a NOP command followed by a 1us delay before issuing the Tx command. */ if (e100_exec_cmd(nic, cuc_nop, 0)) netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "exec cuc_nop failed\n"); udelay(1); } err = e100_exec_cb(nic, skb, e100_xmit_prepare); switch (err) { case -ENOSPC: /* We queued the skb, but now we're out of space. */ netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "No space for CB\n"); netif_stop_queue(netdev); break; case -ENOMEM: /* This is a hard error - log it. */ netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "Out of Tx resources, returning skb\n"); netif_stop_queue(netdev); return NETDEV_TX_BUSY; } return NETDEV_TX_OK; } static int e100_tx_clean(struct nic *nic) { struct net_device *dev = nic->netdev; struct cb *cb; int tx_cleaned = 0; spin_lock(&nic->cb_lock); /* Clean CBs marked complete */ for (cb = nic->cb_to_clean; cb->status & cpu_to_le16(cb_complete); cb = nic->cb_to_clean = cb->next) { dma_rmb(); /* read skb after status */ netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, "cb[%d]->status = 0x%04X\n", (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), cb->status); if (likely(cb->skb != NULL)) { dev->stats.tx_packets++; dev->stats.tx_bytes += cb->skb->len; dma_unmap_single(&nic->pdev->dev, le32_to_cpu(cb->u.tcb.tbd.buf_addr), le16_to_cpu(cb->u.tcb.tbd.size), DMA_TO_DEVICE); dev_kfree_skb_any(cb->skb); cb->skb = NULL; tx_cleaned = 1; } cb->status = 0; nic->cbs_avail++; } spin_unlock(&nic->cb_lock); /* Recover from running out of Tx resources in xmit_frame */ if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) netif_wake_queue(nic->netdev); return tx_cleaned; } static void e100_clean_cbs(struct nic *nic) { if (nic->cbs) { while (nic->cbs_avail != nic->params.cbs.count) { struct cb *cb = nic->cb_to_clean; if (cb->skb) { dma_unmap_single(&nic->pdev->dev, le32_to_cpu(cb->u.tcb.tbd.buf_addr), le16_to_cpu(cb->u.tcb.tbd.size), DMA_TO_DEVICE); dev_kfree_skb(cb->skb); } nic->cb_to_clean = nic->cb_to_clean->next; nic->cbs_avail++; } dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); nic->cbs = NULL; nic->cbs_avail = 0; } nic->cuc_cmd = cuc_start; nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; } static int e100_alloc_cbs(struct nic *nic) { struct cb *cb; unsigned int i, count = nic->params.cbs.count; nic->cuc_cmd = cuc_start; nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; nic->cbs_avail = 0; nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL, &nic->cbs_dma_addr); if (!nic->cbs) return -ENOMEM; for (cb = nic->cbs, i = 0; i < count; cb++, i++) { cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); cb->link = cpu_to_le32(nic->cbs_dma_addr + ((i+1) % count) * sizeof(struct cb)); } nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; nic->cbs_avail = count; return 0; } static inline void e100_start_receiver(struct nic *nic, struct rx *rx) { if (!nic->rxs) return; if (RU_SUSPENDED != nic->ru_running) return; /* handle init time starts */ if (!rx) rx = nic->rxs; /* (Re)start RU if suspended or idle and RFA is non-NULL */ if (rx->skb) { e100_exec_cmd(nic, ruc_start, rx->dma_addr); nic->ru_running = RU_RUNNING; } } #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) { if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) return -ENOMEM; /* Init, and map the RFD. */ skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data, RFD_BUF_LEN, DMA_BIDIRECTIONAL); if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) { dev_kfree_skb_any(rx->skb); rx->skb = NULL; rx->dma_addr = 0; return -ENOMEM; } /* Link the RFD to end of RFA by linking previous RFD to * this one. We are safe to touch the previous RFD because * it is protected by the before last buffer's el bit being set */ if (rx->prev->skb) { struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; put_unaligned_le32(rx->dma_addr, &prev_rfd->link); dma_sync_single_for_device(&nic->pdev->dev, rx->prev->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); } return 0; } static int e100_rx_indicate(struct nic *nic, struct rx *rx, unsigned int *work_done, unsigned int work_to_do) { struct net_device *dev = nic->netdev; struct sk_buff *skb = rx->skb; struct rfd *rfd = (struct rfd *)skb->data; u16 rfd_status, actual_size; u16 fcs_pad = 0; if (unlikely(work_done && *work_done >= work_to_do)) return -EAGAIN; /* Need to sync before taking a peek at cb_complete bit */ dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); rfd_status = le16_to_cpu(rfd->status); netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, "status=0x%04X\n", rfd_status); dma_rmb(); /* read size after status bit */ /* If data isn't ready, nothing to indicate */ if (unlikely(!(rfd_status & cb_complete))) { /* If the next buffer has the el bit, but we think the receiver * is still running, check to see if it really stopped while * we had interrupts off. * This allows for a fast restart without re-enabling * interrupts */ if ((le16_to_cpu(rfd->command) & cb_el) && (RU_RUNNING == nic->ru_running)) if (ioread8(&nic->csr->scb.status) & rus_no_res) nic->ru_running = RU_SUSPENDED; dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr, sizeof(struct rfd), DMA_FROM_DEVICE); return -ENODATA; } /* Get actual data size */ if (unlikely(dev->features & NETIF_F_RXFCS)) fcs_pad = 4; actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) actual_size = RFD_BUF_LEN - sizeof(struct rfd); /* Get data */ dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN, DMA_BIDIRECTIONAL); /* If this buffer has the el bit, but we think the receiver * is still running, check to see if it really stopped while * we had interrupts off. * This allows for a fast restart without re-enabling interrupts. * This can happen when the RU sees the size change but also sees * the el bit set. */ if ((le16_to_cpu(rfd->command) & cb_el) && (RU_RUNNING == nic->ru_running)) { if (ioread8(&nic->csr->scb.status) & rus_no_res) nic->ru_running = RU_SUSPENDED; } /* Pull off the RFD and put the actual data (minus eth hdr) */ skb_reserve(skb, sizeof(struct rfd)); skb_put(skb, actual_size); skb->protocol = eth_type_trans(skb, nic->netdev); /* If we are receiving all frames, then don't bother * checking for errors. */ if (unlikely(dev->features & NETIF_F_RXALL)) { if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) /* Received oversized frame, but keep it. */ nic->rx_over_length_errors++; goto process_skb; } if (unlikely(!(rfd_status & cb_ok))) { /* Don't indicate if hardware indicates errors */ dev_kfree_skb_any(skb); } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { /* Don't indicate oversized frames */ nic->rx_over_length_errors++; dev_kfree_skb_any(skb); } else { process_skb: dev->stats.rx_packets++; dev->stats.rx_bytes += (actual_size - fcs_pad); netif_receive_skb(skb); if (work_done) (*work_done)++; } rx->skb = NULL; return 0; } static void e100_rx_clean(struct nic *nic, unsigned int *work_done, unsigned int work_to_do) { struct rx *rx; int restart_required = 0, err = 0; struct rx *old_before_last_rx, *new_before_last_rx; struct rfd *old_before_last_rfd, *new_before_last_rfd; /* Indicate newly arrived packets */ for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { err = e100_rx_indicate(nic, rx, work_done, work_to_do); /* Hit quota or no more to clean */ if (-EAGAIN == err || -ENODATA == err) break; } /* On EAGAIN, hit quota so have more work to do, restart once * cleanup is complete. * Else, are we already rnr? then pay attention!!! this ensures that * the state machine progression never allows a start with a * partially cleaned list, avoiding a race between hardware * and rx_to_clean when in NAPI mode */ if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) restart_required = 1; old_before_last_rx = nic->rx_to_use->prev->prev; old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; /* Alloc new skbs to refill list */ for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { if (unlikely(e100_rx_alloc_skb(nic, rx))) break; /* Better luck next time (see watchdog) */ } new_before_last_rx = nic->rx_to_use->prev->prev; if (new_before_last_rx != old_before_last_rx) { /* Set the el-bit on the buffer that is before the last buffer. * This lets us update the next pointer on the last buffer * without worrying about hardware touching it. * We set the size to 0 to prevent hardware from touching this * buffer. * When the hardware hits the before last buffer with el-bit * and size of 0, it will RNR interrupt, the RUS will go into * the No Resources state. It will not complete nor write to * this buffer. */ new_before_last_rfd = (struct rfd *)new_before_last_rx->skb->data; new_before_last_rfd->size = 0; new_before_last_rfd->command |= cpu_to_le16(cb_el); dma_sync_single_for_device(&nic->pdev->dev, new_before_last_rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); /* Now that we have a new stopping point, we can clear the old * stopping point. We must sync twice to get the proper * ordering on the hardware side of things. */ old_before_last_rfd->command &= ~cpu_to_le16(cb_el); dma_sync_single_for_device(&nic->pdev->dev, old_before_last_rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); dma_sync_single_for_device(&nic->pdev->dev, old_before_last_rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); } if (restart_required) { // ack the rnr? iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); e100_start_receiver(nic, nic->rx_to_clean); if (work_done) (*work_done)++; } } static void e100_rx_clean_list(struct nic *nic) { struct rx *rx; unsigned int i, count = nic->params.rfds.count; nic->ru_running = RU_UNINITIALIZED; if (nic->rxs) { for (rx = nic->rxs, i = 0; i < count; rx++, i++) { if (rx->skb) { dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN, DMA_BIDIRECTIONAL); dev_kfree_skb(rx->skb); } } kfree(nic->rxs); nic->rxs = NULL; } nic->rx_to_use = nic->rx_to_clean = NULL; } static int e100_rx_alloc_list(struct nic *nic) { struct rx *rx; unsigned int i, count = nic->params.rfds.count; struct rfd *before_last; nic->rx_to_use = nic->rx_to_clean = NULL; nic->ru_running = RU_UNINITIALIZED; if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL))) return -ENOMEM; for (rx = nic->rxs, i = 0; i < count; rx++, i++) { rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; if (e100_rx_alloc_skb(nic, rx)) { e100_rx_clean_list(nic); return -ENOMEM; } } /* Set the el-bit on the buffer that is before the last buffer. * This lets us update the next pointer on the last buffer without * worrying about hardware touching it. * We set the size to 0 to prevent hardware from touching this buffer. * When the hardware hits the before last buffer with el-bit and size * of 0, it will RNR interrupt, the RU will go into the No Resources * state. It will not complete nor write to this buffer. */ rx = nic->rxs->prev->prev; before_last = (struct rfd *)rx->skb->data; before_last->command |= cpu_to_le16(cb_el); before_last->size = 0; dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr, sizeof(struct rfd), DMA_BIDIRECTIONAL); nic->rx_to_use = nic->rx_to_clean = nic->rxs; nic->ru_running = RU_SUSPENDED; return 0; } static irqreturn_t e100_intr(int irq, void *dev_id) { struct net_device *netdev = dev_id; struct nic *nic = netdev_priv(netdev); u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); netif_printk(nic, intr, KERN_DEBUG, nic->netdev, "stat_ack = 0x%02X\n", stat_ack); if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ stat_ack == stat_ack_not_present) /* Hardware is ejected */ return IRQ_NONE; /* Ack interrupt(s) */ iowrite8(stat_ack, &nic->csr->scb.stat_ack); /* We hit Receive No Resource (RNR); restart RU after cleaning */ if (stat_ack & stat_ack_rnr) nic->ru_running = RU_SUSPENDED; if (likely(napi_schedule_prep(&nic->napi))) { e100_disable_irq(nic); __napi_schedule(&nic->napi); } return IRQ_HANDLED; } static int e100_poll(struct napi_struct *napi, int budget) { struct nic *nic = container_of(napi, struct nic, napi); unsigned int work_done = 0; e100_rx_clean(nic, &work_done, budget); e100_tx_clean(nic); /* If budget fully consumed, continue polling */ if (work_done == budget) return budget; /* only re-enable interrupt if stack agrees polling is really done */ if (likely(napi_complete_done(napi, work_done))) e100_enable_irq(nic); return work_done; } #ifdef CONFIG_NET_POLL_CONTROLLER static void e100_netpoll(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); e100_disable_irq(nic); e100_intr(nic->pdev->irq, netdev); e100_tx_clean(nic); e100_enable_irq(nic); } #endif static int e100_set_mac_address(struct net_device *netdev, void *p) { struct nic *nic = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(netdev, addr->sa_data); e100_exec_cb(nic, NULL, e100_setup_iaaddr); return 0; } static int e100_asf(struct nic *nic) { /* ASF can be enabled from eeprom */ return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) && !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) && ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE); } static int e100_up(struct nic *nic) { int err; if ((err = e100_rx_alloc_list(nic))) return err; if ((err = e100_alloc_cbs(nic))) goto err_rx_clean_list; if ((err = e100_hw_init(nic))) goto err_clean_cbs; e100_set_multicast_list(nic->netdev); e100_start_receiver(nic, NULL); mod_timer(&nic->watchdog, jiffies); if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, nic->netdev->name, nic->netdev))) goto err_no_irq; netif_wake_queue(nic->netdev); napi_enable(&nic->napi); /* enable ints _after_ enabling poll, preventing a race between * disable ints+schedule */ e100_enable_irq(nic); return 0; err_no_irq: del_timer_sync(&nic->watchdog); err_clean_cbs: e100_clean_cbs(nic); err_rx_clean_list: e100_rx_clean_list(nic); return err; } static void e100_down(struct nic *nic) { /* wait here for poll to complete */ napi_disable(&nic->napi); netif_stop_queue(nic->netdev); e100_hw_reset(nic); free_irq(nic->pdev->irq, nic->netdev); del_timer_sync(&nic->watchdog); netif_carrier_off(nic->netdev); e100_clean_cbs(nic); e100_rx_clean_list(nic); } static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct nic *nic = netdev_priv(netdev); /* Reset outside of interrupt context, to avoid request_irq * in interrupt context */ schedule_work(&nic->tx_timeout_task); } static void e100_tx_timeout_task(struct work_struct *work) { struct nic *nic = container_of(work, struct nic, tx_timeout_task); struct net_device *netdev = nic->netdev; netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); rtnl_lock(); if (netif_running(netdev)) { e100_down(netdev_priv(netdev)); e100_up(netdev_priv(netdev)); } rtnl_unlock(); } static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) { int err; struct sk_buff *skb; /* Use driver resources to perform internal MAC or PHY * loopback test. A single packet is prepared and transmitted * in loopback mode, and the test passes if the received * packet compares byte-for-byte to the transmitted packet. */ if ((err = e100_rx_alloc_list(nic))) return err; if ((err = e100_alloc_cbs(nic))) goto err_clean_rx; /* ICH PHY loopback is broken so do MAC loopback instead */ if (nic->flags & ich && loopback_mode == lb_phy) loopback_mode = lb_mac; nic->loopback = loopback_mode; if ((err = e100_hw_init(nic))) goto err_loopback_none; if (loopback_mode == lb_phy) mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, BMCR_LOOPBACK); e100_start_receiver(nic, NULL); if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { err = -ENOMEM; goto err_loopback_none; } skb_put(skb, ETH_DATA_LEN); memset(skb->data, 0xFF, ETH_DATA_LEN); e100_xmit_frame(skb, nic->netdev); msleep(10); dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr, RFD_BUF_LEN, DMA_BIDIRECTIONAL); if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), skb->data, ETH_DATA_LEN)) err = -EAGAIN; err_loopback_none: mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); nic->loopback = lb_none; e100_clean_cbs(nic); e100_hw_reset(nic); err_clean_rx: e100_rx_clean_list(nic); return err; } #define MII_LED_CONTROL 0x1B #define E100_82552_LED_OVERRIDE 0x19 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ static int e100_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct nic *nic = netdev_priv(netdev); mii_ethtool_get_link_ksettings(&nic->mii, cmd); return 0; } static int e100_set_link_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd) { struct nic *nic = netdev_priv(netdev); int err; mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); err = mii_ethtool_set_link_ksettings(&nic->mii, cmd); e100_exec_cb(nic, NULL, e100_configure); return err; } static void e100_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct nic *nic = netdev_priv(netdev); strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->bus_info, pci_name(nic->pdev), sizeof(info->bus_info)); } #define E100_PHY_REGS 0x1D static int e100_get_regs_len(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); /* We know the number of registers, and the size of the dump buffer. * Calculate the total size in bytes. */ return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf); } static void e100_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct nic *nic = netdev_priv(netdev); u32 *buff = p; int i; regs->version = (1 << 24) | nic->pdev->revision; buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | ioread8(&nic->csr->scb.cmd_lo) << 16 | ioread16(&nic->csr->scb.status); for (i = 0; i < E100_PHY_REGS; i++) /* Note that we read the registers in reverse order. This * ordering is the ABI apparently used by ethtool and other * applications. */ buff[1 + i] = mdio_read(netdev, nic->mii.phy_id, E100_PHY_REGS - 1 - i); memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); e100_exec_cb(nic, NULL, e100_dump); msleep(10); memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf, sizeof(nic->mem->dump_buf)); } static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct nic *nic = netdev_priv(netdev); wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; } static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct nic *nic = netdev_priv(netdev); if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || !device_can_wakeup(&nic->pdev->dev)) return -EOPNOTSUPP; if (wol->wolopts) nic->flags |= wol_magic; else nic->flags &= ~wol_magic; device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); e100_exec_cb(nic, NULL, e100_configure); return 0; } static u32 e100_get_msglevel(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return nic->msg_enable; } static void e100_set_msglevel(struct net_device *netdev, u32 value) { struct nic *nic = netdev_priv(netdev); nic->msg_enable = value; } static int e100_nway_reset(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return mii_nway_restart(&nic->mii); } static u32 e100_get_link(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return mii_link_ok(&nic->mii); } static int e100_get_eeprom_len(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return nic->eeprom_wc << 1; } #define E100_EEPROM_MAGIC 0x1234 static int e100_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct nic *nic = netdev_priv(netdev); eeprom->magic = E100_EEPROM_MAGIC; memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); return 0; } static int e100_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct nic *nic = netdev_priv(netdev); if (eeprom->magic != E100_EEPROM_MAGIC) return -EINVAL; memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); return e100_eeprom_save(nic, eeprom->offset >> 1, (eeprom->len >> 1) + 1); } static void e100_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct nic *nic = netdev_priv(netdev); struct param_range *rfds = &nic->params.rfds; struct param_range *cbs = &nic->params.cbs; ring->rx_max_pending = rfds->max; ring->tx_max_pending = cbs->max; ring->rx_pending = rfds->count; ring->tx_pending = cbs->count; } static int e100_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct nic *nic = netdev_priv(netdev); struct param_range *rfds = &nic->params.rfds; struct param_range *cbs = &nic->params.cbs; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; if (netif_running(netdev)) e100_down(nic); rfds->count = max(ring->rx_pending, rfds->min); rfds->count = min(rfds->count, rfds->max); cbs->count = max(ring->tx_pending, cbs->min); cbs->count = min(cbs->count, cbs->max); netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", rfds->count, cbs->count); if (netif_running(netdev)) e100_up(nic); return 0; } static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { "Link test (on/offline)", "Eeprom test (on/offline)", "Self test (offline)", "Mac loopback (offline)", "Phy loopback (offline)", }; #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) static void e100_diag_test(struct net_device *netdev, struct ethtool_test *test, u64 *data) { struct ethtool_cmd cmd; struct nic *nic = netdev_priv(netdev); int i; memset(data, 0, E100_TEST_LEN * sizeof(u64)); data[0] = !mii_link_ok(&nic->mii); data[1] = e100_eeprom_load(nic); if (test->flags & ETH_TEST_FL_OFFLINE) { /* save speed, duplex & autoneg settings */ mii_ethtool_gset(&nic->mii, &cmd); if (netif_running(netdev)) e100_down(nic); data[2] = e100_self_test(nic); data[3] = e100_loopback_test(nic, lb_mac); data[4] = e100_loopback_test(nic, lb_phy); /* restore speed, duplex & autoneg settings */ mii_ethtool_sset(&nic->mii, &cmd); if (netif_running(netdev)) e100_up(nic); } for (i = 0; i < E100_TEST_LEN; i++) test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; msleep_interruptible(4 * 1000); } static int e100_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) { struct nic *nic = netdev_priv(netdev); enum led_state { led_on = 0x01, led_off = 0x04, led_on_559 = 0x05, led_on_557 = 0x07, }; u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : MII_LED_CONTROL; u16 leds = 0; switch (state) { case ETHTOOL_ID_ACTIVE: return 2; case ETHTOOL_ID_ON: leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; break; case ETHTOOL_ID_OFF: leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; break; case ETHTOOL_ID_INACTIVE: break; } mdio_write(netdev, nic->mii.phy_id, led_reg, leds); return 0; } static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", "rx_length_errors", "rx_over_errors", "rx_crc_errors", "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", "tx_heartbeat_errors", "tx_window_errors", /* device-specific stats */ "tx_deferred", "tx_single_collisions", "tx_multi_collisions", "tx_flow_control_pause", "rx_flow_control_pause", "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", "rx_short_frame_errors", "rx_over_length_errors", }; #define E100_NET_STATS_LEN 21 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) static int e100_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_TEST: return E100_TEST_LEN; case ETH_SS_STATS: return E100_STATS_LEN; default: return -EOPNOTSUPP; } } static void e100_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct nic *nic = netdev_priv(netdev); int i; for (i = 0; i < E100_NET_STATS_LEN; i++) data[i] = ((unsigned long *)&netdev->stats)[i]; data[i++] = nic->tx_deferred; data[i++] = nic->tx_single_collisions; data[i++] = nic->tx_multiple_collisions; data[i++] = nic->tx_fc_pause; data[i++] = nic->rx_fc_pause; data[i++] = nic->rx_fc_unsupported; data[i++] = nic->tx_tco_frames; data[i++] = nic->rx_tco_frames; data[i++] = nic->rx_short_frame_errors; data[i++] = nic->rx_over_length_errors; } static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { switch (stringset) { case ETH_SS_TEST: memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test)); break; case ETH_SS_STATS: memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats)); break; } } static const struct ethtool_ops e100_ethtool_ops = { .get_drvinfo = e100_get_drvinfo, .get_regs_len = e100_get_regs_len, .get_regs = e100_get_regs, .get_wol = e100_get_wol, .set_wol = e100_set_wol, .get_msglevel = e100_get_msglevel, .set_msglevel = e100_set_msglevel, .nway_reset = e100_nway_reset, .get_link = e100_get_link, .get_eeprom_len = e100_get_eeprom_len, .get_eeprom = e100_get_eeprom, .set_eeprom = e100_set_eeprom, .get_ringparam = e100_get_ringparam, .set_ringparam = e100_set_ringparam, .self_test = e100_diag_test, .get_strings = e100_get_strings, .set_phys_id = e100_set_phys_id, .get_ethtool_stats = e100_get_ethtool_stats, .get_sset_count = e100_get_sset_count, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = e100_get_link_ksettings, .set_link_ksettings = e100_set_link_ksettings, }; static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct nic *nic = netdev_priv(netdev); return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); } static int e100_alloc(struct nic *nic) { nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem), &nic->dma_addr, GFP_KERNEL); return nic->mem ? 0 : -ENOMEM; } static void e100_free(struct nic *nic) { if (nic->mem) { dma_free_coherent(&nic->pdev->dev, sizeof(struct mem), nic->mem, nic->dma_addr); nic->mem = NULL; } } static int e100_open(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); int err = 0; netif_carrier_off(netdev); if ((err = e100_up(nic))) netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); return err; } static int e100_close(struct net_device *netdev) { e100_down(netdev_priv(netdev)); return 0; } static int e100_set_features(struct net_device *netdev, netdev_features_t features) { struct nic *nic = netdev_priv(netdev); netdev_features_t changed = features ^ netdev->features; if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) return 0; netdev->features = features; e100_exec_cb(nic, NULL, e100_configure); return 1; } static const struct net_device_ops e100_netdev_ops = { .ndo_open = e100_open, .ndo_stop = e100_close, .ndo_start_xmit = e100_xmit_frame, .ndo_validate_addr = eth_validate_addr, .ndo_set_rx_mode = e100_set_multicast_list, .ndo_set_mac_address = e100_set_mac_address, .ndo_eth_ioctl = e100_do_ioctl, .ndo_tx_timeout = e100_tx_timeout, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = e100_netpoll, #endif .ndo_set_features = e100_set_features, }; static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct nic *nic; int err; if (!(netdev = alloc_etherdev(sizeof(struct nic)))) return -ENOMEM; netdev->hw_features |= NETIF_F_RXFCS; netdev->priv_flags |= IFF_SUPP_NOFCS; netdev->hw_features |= NETIF_F_RXALL; netdev->netdev_ops = &e100_netdev_ops; netdev->ethtool_ops = &e100_ethtool_ops; netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); nic = netdev_priv(netdev); netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); nic->netdev = netdev; nic->pdev = pdev; nic->msg_enable = (1 << debug) - 1; nic->mdio_ctrl = mdio_ctrl_hw; pci_set_drvdata(pdev, netdev); if ((err = pci_enable_device(pdev))) { netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); goto err_out_free_dev; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); err = -ENODEV; goto err_out_disable_pdev; } if ((err = pci_request_regions(pdev, DRV_NAME))) { netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); goto err_out_disable_pdev; } if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) { netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); goto err_out_free_res; } SET_NETDEV_DEV(netdev, &pdev->dev); if (use_io) netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); if (!nic->csr) { netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); err = -ENOMEM; goto err_out_free_res; } if (ent->driver_data) nic->flags |= ich; else nic->flags &= ~ich; e100_get_defaults(nic); /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ if (nic->mac < mac_82558_D101_A4) netdev->features |= NETIF_F_VLAN_CHALLENGED; /* locks must be initialized before calling hw_reset */ spin_lock_init(&nic->cb_lock); spin_lock_init(&nic->cmd_lock); spin_lock_init(&nic->mdio_lock); /* Reset the device before pci_set_master() in case device is in some * funky state and has an interrupt pending - hint: we don't have the * interrupt handler registered yet. */ e100_hw_reset(nic); pci_set_master(pdev); timer_setup(&nic->watchdog, e100_watchdog, 0); INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); if ((err = e100_alloc(nic))) { netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); goto err_out_iounmap; } if ((err = e100_eeprom_load(nic))) goto err_out_free; e100_phy_init(nic); eth_hw_addr_set(netdev, (u8 *)nic->eeprom); if (!is_valid_ether_addr(netdev->dev_addr)) { if (!eeprom_bad_csum_allow) { netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); err = -EAGAIN; goto err_out_free; } else { netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); } } /* Wol magic packet can be enabled from eeprom */ if ((nic->mac >= mac_82558_D101_A4) && (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) { nic->flags |= wol_magic; device_set_wakeup_enable(&pdev->dev, true); } /* ack any pending wake events, disable PME */ pci_pme_active(pdev, false); strcpy(netdev->name, "eth%d"); if ((err = register_netdev(netdev))) { netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); goto err_out_free; } nic->cbs_pool = dma_pool_create(netdev->name, &nic->pdev->dev, nic->params.cbs.max * sizeof(struct cb), sizeof(u32), 0); if (!nic->cbs_pool) { netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n"); err = -ENOMEM; goto err_out_pool; } netif_info(nic, probe, nic->netdev, "addr 0x%llx, irq %d, MAC addr %pM\n", (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), pdev->irq, netdev->dev_addr); return 0; err_out_pool: unregister_netdev(netdev); err_out_free: e100_free(nic); err_out_iounmap: pci_iounmap(pdev, nic->csr); err_out_free_res: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); err_out_free_dev: free_netdev(netdev); return err; } static void e100_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); if (netdev) { struct nic *nic = netdev_priv(netdev); unregister_netdev(netdev); e100_free(nic); pci_iounmap(pdev, nic->csr); dma_pool_destroy(nic->cbs_pool); free_netdev(netdev); pci_release_regions(pdev); pci_disable_device(pdev); } } #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); netif_device_detach(netdev); if (netif_running(netdev)) e100_down(nic); if ((nic->flags & wol_magic) | e100_asf(nic)) { /* enable reverse auto-negotiation */ if (nic->phy == phy_82552_v) { u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, E100_82552_SMARTSPEED); mdio_write(netdev, nic->mii.phy_id, E100_82552_SMARTSPEED, smartspeed | E100_82552_REV_ANEG | E100_82552_ANEG_NOW); } *enable_wake = true; } else { *enable_wake = false; } pci_disable_device(pdev); } static int __e100_power_off(struct pci_dev *pdev, bool wake) { if (wake) return pci_prepare_to_sleep(pdev); pci_wake_from_d3(pdev, false); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int __maybe_unused e100_suspend(struct device *dev_d) { bool wake; __e100_shutdown(to_pci_dev(dev_d), &wake); return 0; } static int __maybe_unused e100_resume(struct device *dev_d) { struct net_device *netdev = dev_get_drvdata(dev_d); struct nic *nic = netdev_priv(netdev); int err; err = pci_enable_device(to_pci_dev(dev_d)); if (err) { netdev_err(netdev, "Resume cannot enable PCI device, aborting\n"); return err; } pci_set_master(to_pci_dev(dev_d)); /* disable reverse auto-negotiation */ if (nic->phy == phy_82552_v) { u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, E100_82552_SMARTSPEED); mdio_write(netdev, nic->mii.phy_id, E100_82552_SMARTSPEED, smartspeed & ~(E100_82552_REV_ANEG)); } if (netif_running(netdev)) e100_up(nic); netif_device_attach(netdev); return 0; } static void e100_shutdown(struct pci_dev *pdev) { bool wake; __e100_shutdown(pdev, &wake); if (system_state == SYSTEM_POWER_OFF) __e100_power_off(pdev, wake); } /* ------------------ PCI Error Recovery infrastructure -------------- */ /** * e100_io_error_detected - called when PCI error is detected. * @pdev: Pointer to PCI device * @state: The current pci connection state */ static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) e100_down(nic); pci_disable_device(pdev); /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * e100_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch. */ static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); if (pci_enable_device(pdev)) { pr_err("Cannot re-enable PCI device after reset\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); /* Only one device per card can do a reset */ if (0 != PCI_FUNC(pdev->devfn)) return PCI_ERS_RESULT_RECOVERED; e100_hw_reset(nic); e100_phy_init(nic); return PCI_ERS_RESULT_RECOVERED; } /** * e100_io_resume - resume normal operations * @pdev: Pointer to PCI device * * Resume normal operations after an error recovery * sequence has been completed. */ static void e100_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); /* ack any pending wake events, disable PME */ pci_enable_wake(pdev, PCI_D0, 0); netif_device_attach(netdev); if (netif_running(netdev)) { e100_open(netdev); mod_timer(&nic->watchdog, jiffies); } } static const struct pci_error_handlers e100_err_handler = { .error_detected = e100_io_error_detected, .slot_reset = e100_io_slot_reset, .resume = e100_io_resume, }; static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume); static struct pci_driver e100_driver = { .name = DRV_NAME, .id_table = e100_id_table, .probe = e100_probe, .remove = e100_remove, /* Power Management hooks */ .driver.pm = &e100_pm_ops, .shutdown = e100_shutdown, .err_handler = &e100_err_handler, }; static int __init e100_init_module(void) { if (((1 << debug) - 1) & NETIF_MSG_DRV) { pr_info("%s\n", DRV_DESCRIPTION); pr_info("%s\n", DRV_COPYRIGHT); } return pci_register_driver(&e100_driver); } static void __exit e100_cleanup_module(void) { pci_unregister_driver(&e100_driver); } module_init(e100_init_module); module_exit(e100_cleanup_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1