Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vinicius Costa Gomes | 2604 | 55.06% | 14 | 34.15% |
Ederson de Souza | 1483 | 31.36% | 2 | 4.88% |
Sasha Neftin | 285 | 6.03% | 11 | 26.83% |
Andre Guedes | 252 | 5.33% | 8 | 19.51% |
Aravindhan Gunasekaran | 67 | 1.42% | 1 | 2.44% |
Tom Rix | 13 | 0.27% | 1 | 2.44% |
Aaron Ma | 9 | 0.19% | 1 | 2.44% |
Christopher S. Hall | 8 | 0.17% | 1 | 2.44% |
Randy Dunlap | 6 | 0.13% | 1 | 2.44% |
Jesse Brandeburg | 2 | 0.04% | 1 | 2.44% |
Total | 4729 | 41 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 Intel Corporation */ #include "igc.h" #include <linux/module.h> #include <linux/device.h> #include <linux/pci.h> #include <linux/ptp_classify.h> #include <linux/clocksource.h> #include <linux/ktime.h> #include <linux/delay.h> #include <linux/iopoll.h> #define INCVALUE_MASK 0x7fffffff #define ISGN 0x80000000 #define IGC_PTP_TX_TIMEOUT (HZ * 15) #define IGC_PTM_STAT_SLEEP 2 #define IGC_PTM_STAT_TIMEOUT 100 /* SYSTIM read access for I225 */ void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts) { struct igc_hw *hw = &adapter->hw; u32 sec, nsec; /* The timestamp is latched when SYSTIML is read. */ nsec = rd32(IGC_SYSTIML); sec = rd32(IGC_SYSTIMH); ts->tv_sec = sec; ts->tv_nsec = nsec; } static void igc_ptp_write_i225(struct igc_adapter *adapter, const struct timespec64 *ts) { struct igc_hw *hw = &adapter->hw; wr32(IGC_SYSTIML, ts->tv_nsec); wr32(IGC_SYSTIMH, ts->tv_sec); } static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm) { struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps); struct igc_hw *hw = &igc->hw; int neg_adj = 0; u64 rate; u32 inca; if (scaled_ppm < 0) { neg_adj = 1; scaled_ppm = -scaled_ppm; } rate = scaled_ppm; rate <<= 14; rate = div_u64(rate, 78125); inca = rate & INCVALUE_MASK; if (neg_adj) inca |= ISGN; wr32(IGC_TIMINCA, inca); return 0; } static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta) { struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps); struct timespec64 now, then = ns_to_timespec64(delta); unsigned long flags; spin_lock_irqsave(&igc->tmreg_lock, flags); igc_ptp_read(igc, &now); now = timespec64_add(now, then); igc_ptp_write_i225(igc, (const struct timespec64 *)&now); spin_unlock_irqrestore(&igc->tmreg_lock, flags); return 0; } static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps); struct igc_hw *hw = &igc->hw; unsigned long flags; spin_lock_irqsave(&igc->tmreg_lock, flags); ptp_read_system_prets(sts); ts->tv_nsec = rd32(IGC_SYSTIML); ts->tv_sec = rd32(IGC_SYSTIMH); ptp_read_system_postts(sts); spin_unlock_irqrestore(&igc->tmreg_lock, flags); return 0; } static int igc_ptp_settime_i225(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps); unsigned long flags; spin_lock_irqsave(&igc->tmreg_lock, flags); igc_ptp_write_i225(igc, ts); spin_unlock_irqrestore(&igc->tmreg_lock, flags); return 0; } static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) { u32 *ptr = pin < 2 ? ctrl : ctrl_ext; static const u32 mask[IGC_N_SDP] = { IGC_CTRL_SDP0_DIR, IGC_CTRL_SDP1_DIR, IGC_CTRL_EXT_SDP2_DIR, IGC_CTRL_EXT_SDP3_DIR, }; if (input) *ptr &= ~mask[pin]; else *ptr |= mask[pin]; } static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq) { static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = { IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3, }; static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = { IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3, }; static const u32 igc_ts_sdp_en[IGC_N_SDP] = { IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN, }; static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = { IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0, IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0, }; static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = { IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1, IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1, }; static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = { IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0, IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0, }; static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = { IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1, IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1, }; static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = { IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1, IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1, }; struct igc_hw *hw = &igc->hw; u32 ctrl, ctrl_ext, tssdp = 0; ctrl = rd32(IGC_CTRL); ctrl_ext = rd32(IGC_CTRL_EXT); tssdp = rd32(IGC_TSSDP); igc_pin_direction(pin, 0, &ctrl, &ctrl_ext); /* Make sure this pin is not enabled as an input. */ if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin]) tssdp &= ~IGC_AUX0_TS_SDP_EN; if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin]) tssdp &= ~IGC_AUX1_TS_SDP_EN; tssdp &= ~igc_ts_sdp_sel_clr[pin]; if (freq) { if (chan == 1) tssdp |= igc_ts_sdp_sel_fc1[pin]; else tssdp |= igc_ts_sdp_sel_fc0[pin]; } else { if (chan == 1) tssdp |= igc_ts_sdp_sel_tt1[pin]; else tssdp |= igc_ts_sdp_sel_tt0[pin]; } tssdp |= igc_ts_sdp_en[pin]; wr32(IGC_TSSDP, tssdp); wr32(IGC_CTRL, ctrl); wr32(IGC_CTRL_EXT, ctrl_ext); } static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin) { static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = { IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3, }; static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = { IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3, }; static const u32 igc_ts_sdp_en[IGC_N_SDP] = { IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN, }; struct igc_hw *hw = &igc->hw; u32 ctrl, ctrl_ext, tssdp = 0; ctrl = rd32(IGC_CTRL); ctrl_ext = rd32(IGC_CTRL_EXT); tssdp = rd32(IGC_TSSDP); igc_pin_direction(pin, 1, &ctrl, &ctrl_ext); /* Make sure this pin is not enabled as an output. */ tssdp &= ~igc_ts_sdp_en[pin]; if (chan == 1) { tssdp &= ~IGC_AUX1_SEL_SDP3; tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN; } else { tssdp &= ~IGC_AUX0_SEL_SDP3; tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN; } wr32(IGC_TSSDP, tssdp); wr32(IGC_CTRL, ctrl); wr32(IGC_CTRL_EXT, ctrl_ext); } static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps); struct igc_hw *hw = &igc->hw; unsigned long flags; struct timespec64 ts; int use_freq = 0, pin = -1; u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; s64 ns; switch (rq->type) { case PTP_CLK_REQ_EXTTS: /* Reject requests with unsupported flags */ if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; /* Reject requests failing to enable both edges. */ if ((rq->extts.flags & PTP_STRICT_FLAGS) && (rq->extts.flags & PTP_ENABLE_FEATURE) && (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES) return -EOPNOTSUPP; if (on) { pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS, rq->extts.index); if (pin < 0) return -EBUSY; } if (rq->extts.index == 1) { tsauxc_mask = IGC_TSAUXC_EN_TS1; tsim_mask = IGC_TSICR_AUTT1; } else { tsauxc_mask = IGC_TSAUXC_EN_TS0; tsim_mask = IGC_TSICR_AUTT0; } spin_lock_irqsave(&igc->tmreg_lock, flags); tsauxc = rd32(IGC_TSAUXC); tsim = rd32(IGC_TSIM); if (on) { igc_pin_extts(igc, rq->extts.index, pin); tsauxc |= tsauxc_mask; tsim |= tsim_mask; } else { tsauxc &= ~tsauxc_mask; tsim &= ~tsim_mask; } wr32(IGC_TSAUXC, tsauxc); wr32(IGC_TSIM, tsim); spin_unlock_irqrestore(&igc->tmreg_lock, flags); return 0; case PTP_CLK_REQ_PEROUT: /* Reject requests with unsupported flags */ if (rq->perout.flags) return -EOPNOTSUPP; if (on) { pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT, rq->perout.index); if (pin < 0) return -EBUSY; } ts.tv_sec = rq->perout.period.sec; ts.tv_nsec = rq->perout.period.nsec; ns = timespec64_to_ns(&ts); ns = ns >> 1; if (on && (ns <= 70000000LL || ns == 125000000LL || ns == 250000000LL || ns == 500000000LL)) { if (ns < 8LL) return -EINVAL; use_freq = 1; } ts = ns_to_timespec64(ns); if (rq->perout.index == 1) { if (use_freq) { tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1; tsim_mask = 0; } else { tsauxc_mask = IGC_TSAUXC_EN_TT1; tsim_mask = IGC_TSICR_TT1; } trgttiml = IGC_TRGTTIML1; trgttimh = IGC_TRGTTIMH1; freqout = IGC_FREQOUT1; } else { if (use_freq) { tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0; tsim_mask = 0; } else { tsauxc_mask = IGC_TSAUXC_EN_TT0; tsim_mask = IGC_TSICR_TT0; } trgttiml = IGC_TRGTTIML0; trgttimh = IGC_TRGTTIMH0; freqout = IGC_FREQOUT0; } spin_lock_irqsave(&igc->tmreg_lock, flags); tsauxc = rd32(IGC_TSAUXC); tsim = rd32(IGC_TSIM); if (rq->perout.index == 1) { tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1); tsim &= ~IGC_TSICR_TT1; } else { tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0); tsim &= ~IGC_TSICR_TT0; } if (on) { struct timespec64 safe_start; int i = rq->perout.index; igc_pin_perout(igc, i, pin, use_freq); igc_ptp_read(igc, &safe_start); /* PPS output start time is triggered by Target time(TT) * register. Programming any past time value into TT * register will cause PPS to never start. Need to make * sure we program the TT register a time ahead in * future. There isn't a stringent need to fire PPS out * right away. Adding +2 seconds should take care of * corner cases. Let's say if the SYSTIML is close to * wrap up and the timer keeps ticking as we program the * register, adding +2seconds is safe bet. */ safe_start.tv_sec += 2; if (rq->perout.start.sec < safe_start.tv_sec) igc->perout[i].start.tv_sec = safe_start.tv_sec; else igc->perout[i].start.tv_sec = rq->perout.start.sec; igc->perout[i].start.tv_nsec = rq->perout.start.nsec; igc->perout[i].period.tv_sec = ts.tv_sec; igc->perout[i].period.tv_nsec = ts.tv_nsec; wr32(trgttimh, (u32)igc->perout[i].start.tv_sec); /* For now, always select timer 0 as source. */ wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0)); if (use_freq) wr32(freqout, ns); tsauxc |= tsauxc_mask; tsim |= tsim_mask; } wr32(IGC_TSAUXC, tsauxc); wr32(IGC_TSIM, tsim); spin_unlock_irqrestore(&igc->tmreg_lock, flags); return 0; case PTP_CLK_REQ_PPS: spin_lock_irqsave(&igc->tmreg_lock, flags); tsim = rd32(IGC_TSIM); if (on) tsim |= IGC_TSICR_SYS_WRAP; else tsim &= ~IGC_TSICR_SYS_WRAP; igc->pps_sys_wrap_on = on; wr32(IGC_TSIM, tsim); spin_unlock_irqrestore(&igc->tmreg_lock, flags); return 0; default: break; } return -EOPNOTSUPP; } static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: case PTP_PF_PEROUT: break; case PTP_PF_PHYSYNC: return -1; } return 0; } /** * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp * @adapter: board private structure * @hwtstamps: timestamp structure to update * @systim: unsigned 64bit system time value * * We need to convert the system time value stored in the RX/TXSTMP registers * into a hwtstamp which can be used by the upper level timestamping functions. * * Returns 0 on success. **/ static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter, struct skb_shared_hwtstamps *hwtstamps, u64 systim) { switch (adapter->hw.mac.type) { case igc_i225: memset(hwtstamps, 0, sizeof(*hwtstamps)); /* Upper 32 bits contain s, lower 32 bits contain ns. */ hwtstamps->hwtstamp = ktime_set(systim >> 32, systim & 0xFFFFFFFF); break; default: return -EINVAL; } return 0; } /** * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer * @adapter: Pointer to adapter the packet buffer belongs to * @buf: Pointer to packet buffer * * This function retrieves the timestamp saved in the beginning of packet * buffer. While two timestamps are available, one in timer0 reference and the * other in timer1 reference, this function considers only the timestamp in * timer0 reference. * * Returns timestamp value. */ ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf) { ktime_t timestamp; u32 secs, nsecs; int adjust; /* Timestamps are saved in little endian at the beginning of the packet * buffer following the layout: * * DWORD: | 0 | 1 | 2 | 3 | * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH | * * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds * part of the timestamp. */ nsecs = le32_to_cpu(buf[2]); secs = le32_to_cpu(buf[3]); timestamp = ktime_set(secs, nsecs); /* Adjust timestamp for the RX latency based on link speed */ switch (adapter->link_speed) { case SPEED_10: adjust = IGC_I225_RX_LATENCY_10; break; case SPEED_100: adjust = IGC_I225_RX_LATENCY_100; break; case SPEED_1000: adjust = IGC_I225_RX_LATENCY_1000; break; case SPEED_2500: adjust = IGC_I225_RX_LATENCY_2500; break; default: adjust = 0; netdev_warn_once(adapter->netdev, "Imprecise timestamp\n"); break; } return ktime_sub_ns(timestamp, adjust); } static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 val; int i; wr32(IGC_TSYNCRXCTL, 0); for (i = 0; i < adapter->num_rx_queues; i++) { val = rd32(IGC_SRRCTL(i)); val &= ~IGC_SRRCTL_TIMESTAMP; wr32(IGC_SRRCTL(i), val); } val = rd32(IGC_RXPBS); val &= ~IGC_RXPBS_CFG_TS_EN; wr32(IGC_RXPBS, val); } static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 val; int i; val = rd32(IGC_RXPBS); val |= IGC_RXPBS_CFG_TS_EN; wr32(IGC_RXPBS, val); for (i = 0; i < adapter->num_rx_queues; i++) { val = rd32(IGC_SRRCTL(i)); /* FIXME: For now, only support retrieving RX timestamps from * timer 0. */ val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) | IGC_SRRCTL_TIMESTAMP; wr32(IGC_SRRCTL(i), val); } val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL | IGC_TSYNCRXCTL_RXSYNSIG; wr32(IGC_TSYNCRXCTL, val); } static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter) { unsigned long flags; spin_lock_irqsave(&adapter->ptp_tx_lock, flags); dev_kfree_skb_any(adapter->ptp_tx_skb); adapter->ptp_tx_skb = NULL; spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); } static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; int i; /* Clear the flags first to avoid new packets to be enqueued * for TX timestamping. */ for (i = 0; i < adapter->num_tx_queues; i++) { struct igc_ring *tx_ring = adapter->tx_ring[i]; clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags); } /* Now we can clean the pending TX timestamp requests. */ igc_ptp_clear_tx_tstamp(adapter); wr32(IGC_TSYNCTXCTL, 0); } static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; int i; wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG); /* Read TXSTMP registers to discard any timestamp previously stored. */ rd32(IGC_TXSTMPL); rd32(IGC_TXSTMPH); /* The hardware is ready to accept TX timestamp requests, * notify the transmit path. */ for (i = 0; i < adapter->num_tx_queues; i++) { struct igc_ring *tx_ring = adapter->tx_ring[i]; set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags); } } /** * igc_ptp_set_timestamp_mode - setup hardware for timestamping * @adapter: networking device structure * @config: hwtstamp configuration * * Return: 0 in case of success, negative errno code otherwise. */ static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter, struct hwtstamp_config *config) { switch (config->tx_type) { case HWTSTAMP_TX_OFF: igc_ptp_disable_tx_timestamp(adapter); break; case HWTSTAMP_TX_ON: igc_ptp_enable_tx_timestamp(adapter); break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: igc_ptp_disable_rx_timestamp(adapter); break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: igc_ptp_enable_rx_timestamp(adapter); config->rx_filter = HWTSTAMP_FILTER_ALL; break; default: return -ERANGE; } return 0; } /* Requires adapter->ptp_tx_lock held by caller. */ static void igc_ptp_tx_timeout(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; dev_kfree_skb_any(adapter->ptp_tx_skb); adapter->ptp_tx_skb = NULL; adapter->tx_hwtstamp_timeouts++; /* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */ rd32(IGC_TXSTMPH); netdev_warn(adapter->netdev, "Tx timestamp timeout\n"); } void igc_ptp_tx_hang(struct igc_adapter *adapter) { unsigned long flags; spin_lock_irqsave(&adapter->ptp_tx_lock, flags); if (!adapter->ptp_tx_skb) goto unlock; if (time_is_after_jiffies(adapter->ptp_tx_start + IGC_PTP_TX_TIMEOUT)) goto unlock; igc_ptp_tx_timeout(adapter); unlock: spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); } /** * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp * @adapter: Board private structure * * If we were asked to do hardware stamping and such a time stamp is * available, then it must have been for this skb here because we only * allow only one such packet into the queue. * * Context: Expects adapter->ptp_tx_lock to be held by caller. */ static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter) { struct sk_buff *skb = adapter->ptp_tx_skb; struct skb_shared_hwtstamps shhwtstamps; struct igc_hw *hw = &adapter->hw; u32 tsynctxctl; int adjust = 0; u64 regval; if (WARN_ON_ONCE(!skb)) return; tsynctxctl = rd32(IGC_TSYNCTXCTL); tsynctxctl &= IGC_TSYNCTXCTL_TXTT_0; if (tsynctxctl) { regval = rd32(IGC_TXSTMPL); regval |= (u64)rd32(IGC_TXSTMPH) << 32; } else { /* There's a bug in the hardware that could cause * missing interrupts for TX timestamping. The issue * is that for new interrupts to be triggered, the * IGC_TXSTMPH_0 register must be read. * * To avoid discarding a valid timestamp that just * happened at the "wrong" time, we need to confirm * that there was no timestamp captured, we do that by * assuming that no two timestamps in sequence have * the same nanosecond value. * * So, we read the "low" register, read the "high" * register (to latch a new timestamp) and read the * "low" register again, if "old" and "new" versions * of the "low" register are different, a valid * timestamp was captured, we can read the "high" * register again. */ u32 txstmpl_old, txstmpl_new; txstmpl_old = rd32(IGC_TXSTMPL); rd32(IGC_TXSTMPH); txstmpl_new = rd32(IGC_TXSTMPL); if (txstmpl_old == txstmpl_new) return; regval = txstmpl_new; regval |= (u64)rd32(IGC_TXSTMPH) << 32; } if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval)) return; switch (adapter->link_speed) { case SPEED_10: adjust = IGC_I225_TX_LATENCY_10; break; case SPEED_100: adjust = IGC_I225_TX_LATENCY_100; break; case SPEED_1000: adjust = IGC_I225_TX_LATENCY_1000; break; case SPEED_2500: adjust = IGC_I225_TX_LATENCY_2500; break; } shhwtstamps.hwtstamp = ktime_add_ns(shhwtstamps.hwtstamp, adjust); adapter->ptp_tx_skb = NULL; /* Notify the stack and free the skb after we've unlocked */ skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /** * igc_ptp_tx_tstamp_event * @adapter: board private structure * * Called when a TX timestamp interrupt happens to retrieve the * timestamp and send it up to the socket. */ void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter) { unsigned long flags; spin_lock_irqsave(&adapter->ptp_tx_lock, flags); if (!adapter->ptp_tx_skb) goto unlock; igc_ptp_tx_hwtstamp(adapter); unlock: spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); } /** * igc_ptp_set_ts_config - set hardware time stamping config * @netdev: network interface device structure * @ifr: interface request data * **/ int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) { struct igc_adapter *adapter = netdev_priv(netdev); struct hwtstamp_config config; int err; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = igc_ptp_set_timestamp_mode(adapter, &config); if (err) return err; /* save these settings for future reference */ memcpy(&adapter->tstamp_config, &config, sizeof(adapter->tstamp_config)); return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * igc_ptp_get_ts_config - get hardware time stamping config * @netdev: network interface device structure * @ifr: interface request data * * Get the hwtstamp_config settings to return to the user. Rather than attempt * to deconstruct the settings from the registers, just return a shadow copy * of the last known settings. **/ int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) { struct igc_adapter *adapter = netdev_priv(netdev); struct hwtstamp_config *config = &adapter->tstamp_config; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /* The two conditions below must be met for cross timestamping via * PCIe PTM: * * 1. We have an way to convert the timestamps in the PTM messages * to something related to the system clocks (right now, only * X86 systems with support for the Always Running Timer allow that); * * 2. We have PTM enabled in the path from the device to the PCIe root port. */ static bool igc_is_crosststamp_supported(struct igc_adapter *adapter) { if (!IS_ENABLED(CONFIG_X86_TSC)) return false; /* FIXME: it was noticed that enabling support for PCIe PTM in * some i225-V models could cause lockups when bringing the * interface up/down. There should be no downsides to * disabling crosstimestamping support for i225-V, as it * doesn't have any PTP support. That way we gain some time * while root causing the issue. */ if (adapter->pdev->device == IGC_DEV_ID_I225_V) return false; return pcie_ptm_enabled(adapter->pdev); } static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp) { #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML) return convert_art_ns_to_tsc(tstamp); #else return (struct system_counterval_t) { }; #endif } static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat) { struct net_device *netdev = adapter->netdev; switch (ptm_stat) { case IGC_PTM_STAT_RET_ERR: netdev_err(netdev, "PTM Error: Root port timeout\n"); break; case IGC_PTM_STAT_BAD_PTM_RES: netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n"); break; case IGC_PTM_STAT_T4M1_OVFL: netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n"); break; case IGC_PTM_STAT_ADJUST_1ST: netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n"); break; case IGC_PTM_STAT_ADJUST_CYC: netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n"); break; default: netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat); break; } } static int igc_phc_get_syncdevicetime(ktime_t *device, struct system_counterval_t *system, void *ctx) { u32 stat, t2_curr_h, t2_curr_l, ctrl; struct igc_adapter *adapter = ctx; struct igc_hw *hw = &adapter->hw; int err, count = 100; ktime_t t1, t2_curr; /* Get a snapshot of system clocks to use as historic value. */ ktime_get_snapshot(&adapter->snapshot); do { /* Doing this in a loop because in the event of a * badly timed (ha!) system clock adjustment, we may * get PTM errors from the PCI root, but these errors * are transitory. Repeating the process returns valid * data eventually. */ /* To "manually" start the PTM cycle we need to clear and * then set again the TRIG bit. */ ctrl = rd32(IGC_PTM_CTRL); ctrl &= ~IGC_PTM_CTRL_TRIG; wr32(IGC_PTM_CTRL, ctrl); ctrl |= IGC_PTM_CTRL_TRIG; wr32(IGC_PTM_CTRL, ctrl); /* The cycle only starts "for real" when software notifies * that it has read the registers, this is done by setting * VALID bit. */ wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID); err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat, stat, IGC_PTM_STAT_SLEEP, IGC_PTM_STAT_TIMEOUT); if (err < 0) { netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n"); return err; } if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID) break; if (stat & ~IGC_PTM_STAT_VALID) { /* An error occurred, log it. */ igc_ptm_log_error(adapter, stat); /* The STAT register is write-1-to-clear (W1C), * so write the previous error status to clear it. */ wr32(IGC_PTM_STAT, stat); continue; } } while (--count); if (!count) { netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n"); return -ETIMEDOUT; } t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L)); t2_curr_l = rd32(IGC_PTM_CURR_T2_L); t2_curr_h = rd32(IGC_PTM_CURR_T2_H); /* FIXME: When the register that tells the endianness of the * PTM registers are implemented, check them here and add the * appropriate conversion. */ t2_curr_h = swab32(t2_curr_h); t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l); *device = t1; *system = igc_device_tstamp_to_system(t2_curr); return 0; } static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp, struct system_device_crosststamp *cts) { struct igc_adapter *adapter = container_of(ptp, struct igc_adapter, ptp_caps); return get_device_system_crosststamp(igc_phc_get_syncdevicetime, adapter, &adapter->snapshot, cts); } /** * igc_ptp_init - Initialize PTP functionality * @adapter: Board private structure * * This function is called at device probe to initialize the PTP * functionality. */ void igc_ptp_init(struct igc_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct igc_hw *hw = &adapter->hw; int i; switch (hw->mac.type) { case igc_i225: for (i = 0; i < IGC_N_SDP; i++) { struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); ppd->index = i; ppd->func = PTP_PF_NONE; } snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); adapter->ptp_caps.owner = THIS_MODULE; adapter->ptp_caps.max_adj = 62499999; adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225; adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225; adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225; adapter->ptp_caps.settime64 = igc_ptp_settime_i225; adapter->ptp_caps.enable = igc_ptp_feature_enable_i225; adapter->ptp_caps.pps = 1; adapter->ptp_caps.pin_config = adapter->sdp_config; adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS; adapter->ptp_caps.n_per_out = IGC_N_PEROUT; adapter->ptp_caps.n_pins = IGC_N_SDP; adapter->ptp_caps.verify = igc_ptp_verify_pin; if (!igc_is_crosststamp_supported(adapter)) break; adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp; break; default: adapter->ptp_clock = NULL; return; } spin_lock_init(&adapter->ptp_tx_lock); spin_lock_init(&adapter->tmreg_lock); adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real()); adapter->ptp_reset_start = ktime_get(); adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, &adapter->pdev->dev); if (IS_ERR(adapter->ptp_clock)) { adapter->ptp_clock = NULL; netdev_err(netdev, "ptp_clock_register failed\n"); } else if (adapter->ptp_clock) { netdev_info(netdev, "PHC added\n"); adapter->ptp_flags |= IGC_PTP_ENABLED; } } static void igc_ptp_time_save(struct igc_adapter *adapter) { igc_ptp_read(adapter, &adapter->prev_ptp_time); adapter->ptp_reset_start = ktime_get(); } static void igc_ptp_time_restore(struct igc_adapter *adapter) { struct timespec64 ts = adapter->prev_ptp_time; ktime_t delta; delta = ktime_sub(ktime_get(), adapter->ptp_reset_start); timespec64_add_ns(&ts, ktime_to_ns(delta)); igc_ptp_write_i225(adapter, &ts); } static void igc_ptm_stop(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 ctrl; ctrl = rd32(IGC_PTM_CTRL); ctrl &= ~IGC_PTM_CTRL_EN; wr32(IGC_PTM_CTRL, ctrl); } /** * igc_ptp_suspend - Disable PTP work items and prepare for suspend * @adapter: Board private structure * * This function stops the overflow check work and PTP Tx timestamp work, and * will prepare the device for OS suspend. */ void igc_ptp_suspend(struct igc_adapter *adapter) { if (!(adapter->ptp_flags & IGC_PTP_ENABLED)) return; igc_ptp_clear_tx_tstamp(adapter); if (pci_device_is_present(adapter->pdev)) { igc_ptp_time_save(adapter); igc_ptm_stop(adapter); } } /** * igc_ptp_stop - Disable PTP device and stop the overflow check. * @adapter: Board private structure. * * This function stops the PTP support and cancels the delayed work. **/ void igc_ptp_stop(struct igc_adapter *adapter) { igc_ptp_suspend(adapter); if (adapter->ptp_clock) { ptp_clock_unregister(adapter->ptp_clock); netdev_info(adapter->netdev, "PHC removed\n"); adapter->ptp_flags &= ~IGC_PTP_ENABLED; } } /** * igc_ptp_reset - Re-enable the adapter for PTP following a reset. * @adapter: Board private structure. * * This function handles the reset work required to re-enable the PTP device. **/ void igc_ptp_reset(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 cycle_ctrl, ctrl; unsigned long flags; u32 timadj; /* reset the tstamp_config */ igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); spin_lock_irqsave(&adapter->tmreg_lock, flags); switch (adapter->hw.mac.type) { case igc_i225: timadj = rd32(IGC_TIMADJ); timadj |= IGC_TIMADJ_ADJUST_METH; wr32(IGC_TIMADJ, timadj); wr32(IGC_TSAUXC, 0x0); wr32(IGC_TSSDP, 0x0); wr32(IGC_TSIM, IGC_TSICR_INTERRUPTS | (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0)); wr32(IGC_IMS, IGC_IMS_TS); if (!igc_is_crosststamp_supported(adapter)) break; wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT); wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT); cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT); wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl); ctrl = IGC_PTM_CTRL_EN | IGC_PTM_CTRL_START_NOW | IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) | IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) | IGC_PTM_CTRL_TRIG; wr32(IGC_PTM_CTRL, ctrl); /* Force the first cycle to run. */ wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID); break; default: /* No work to do. */ goto out; } /* Re-initialize the timer. */ if (hw->mac.type == igc_i225) { igc_ptp_time_restore(adapter); } else { timecounter_init(&adapter->tc, &adapter->cc, ktime_to_ns(ktime_get_real())); } out: spin_unlock_irqrestore(&adapter->tmreg_lock, flags); wrfl(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1