Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sunil Goutham | 9740 | 56.50% | 35 | 31.25% |
Linu Cherian | 1424 | 8.26% | 8 | 7.14% |
Tomasz Duszynski | 1303 | 7.56% | 4 | 3.57% |
Subbaraya Sundeep | 1096 | 6.36% | 14 | 12.50% |
Geetha Sowjanya | 1081 | 6.27% | 9 | 8.04% |
George Cherian | 614 | 3.56% | 2 | 1.79% |
Rakesh Babu | 522 | 3.03% | 2 | 1.79% |
SrujanaChalla | 332 | 1.93% | 5 | 4.46% |
Aleksey Makarov | 294 | 1.71% | 3 | 2.68% |
Hariprasad Kelam | 268 | 1.55% | 4 | 3.57% |
Ratheesh Kannoth | 218 | 1.26% | 5 | 4.46% |
Nithin Dabilpuram | 88 | 0.51% | 4 | 3.57% |
Vamsi Attunuru | 78 | 0.45% | 1 | 0.89% |
Radha Mohan Chintakuntla | 42 | 0.24% | 1 | 0.89% |
Christina Jacob | 40 | 0.23% | 2 | 1.79% |
Stanislaw Kardach | 36 | 0.21% | 2 | 1.79% |
Smadar Fuks | 21 | 0.12% | 1 | 0.89% |
Yi Guo | 12 | 0.07% | 1 | 0.89% |
Zyta Szpak | 9 | 0.05% | 1 | 0.89% |
Christophe Jaillet | 6 | 0.03% | 1 | 0.89% |
Naveen Mamindlapalli | 5 | 0.03% | 1 | 0.89% |
Prakash Brahmajyosyula | 3 | 0.02% | 1 | 0.89% |
Zhou Qingyang | 3 | 0.02% | 1 | 0.89% |
Vidhya Raman | 1 | 0.01% | 1 | 0.89% |
Björn Helgaas | 1 | 0.01% | 1 | 0.89% |
Tejun Heo | 1 | 0.01% | 1 | 0.89% |
Harman Kalra | 1 | 0.01% | 1 | 0.89% |
Total | 17239 | 112 |
// SPDX-License-Identifier: GPL-2.0 /* Marvell RVU Admin Function driver * * Copyright (C) 2018 Marvell. * */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/irq.h> #include <linux/pci.h> #include <linux/sysfs.h> #include "cgx.h" #include "rvu.h" #include "rvu_reg.h" #include "ptp.h" #include "mcs.h" #include "rvu_trace.h" #include "rvu_npc_hash.h" #define DRV_NAME "rvu_af" #define DRV_STRING "Marvell OcteonTX2 RVU Admin Function Driver" static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, struct rvu_block *block, int lf); static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, struct rvu_block *block, int lf); static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc); static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw, int type, int num, void (mbox_handler)(struct work_struct *), void (mbox_up_handler)(struct work_struct *)); enum { TYPE_AFVF, TYPE_AFPF, }; /* Supported devices */ static const struct pci_device_id rvu_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) }, { 0, } /* end of table */ }; MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>"); MODULE_DESCRIPTION(DRV_STRING); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(pci, rvu_id_table); static char *mkex_profile; /* MKEX profile name */ module_param(mkex_profile, charp, 0000); MODULE_PARM_DESC(mkex_profile, "MKEX profile name string"); static char *kpu_profile; /* KPU profile name */ module_param(kpu_profile, charp, 0000); MODULE_PARM_DESC(kpu_profile, "KPU profile name string"); static void rvu_setup_hw_capabilities(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1; hw->cap.nix_fixed_txschq_mapping = false; hw->cap.nix_shaping = true; hw->cap.nix_tx_link_bp = true; hw->cap.nix_rx_multicast = true; hw->cap.nix_shaper_toggle_wait = false; hw->cap.npc_hash_extract = false; hw->cap.npc_exact_match_enabled = false; hw->rvu = rvu; if (is_rvu_pre_96xx_C0(rvu)) { hw->cap.nix_fixed_txschq_mapping = true; hw->cap.nix_txsch_per_cgx_lmac = 4; hw->cap.nix_txsch_per_lbk_lmac = 132; hw->cap.nix_txsch_per_sdp_lmac = 76; hw->cap.nix_shaping = false; hw->cap.nix_tx_link_bp = false; if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu)) hw->cap.nix_rx_multicast = false; } if (!is_rvu_pre_96xx_C0(rvu)) hw->cap.nix_shaper_toggle_wait = true; if (!is_rvu_otx2(rvu)) hw->cap.per_pf_mbox_regs = true; if (is_rvu_npc_hash_extract_en(rvu)) hw->cap.npc_hash_extract = true; } /* Poll a RVU block's register 'offset', for a 'zero' * or 'nonzero' at bits specified by 'mask' */ int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero) { unsigned long timeout = jiffies + usecs_to_jiffies(20000); bool twice = false; void __iomem *reg; u64 reg_val; reg = rvu->afreg_base + ((block << 28) | offset); again: reg_val = readq(reg); if (zero && !(reg_val & mask)) return 0; if (!zero && (reg_val & mask)) return 0; if (time_before(jiffies, timeout)) { usleep_range(1, 5); goto again; } /* In scenarios where CPU is scheduled out before checking * 'time_before' (above) and gets scheduled in such that * jiffies are beyond timeout value, then check again if HW is * done with the operation in the meantime. */ if (!twice) { twice = true; goto again; } return -EBUSY; } int rvu_alloc_rsrc(struct rsrc_bmap *rsrc) { int id; if (!rsrc->bmap) return -EINVAL; id = find_first_zero_bit(rsrc->bmap, rsrc->max); if (id >= rsrc->max) return -ENOSPC; __set_bit(id, rsrc->bmap); return id; } int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc) { int start; if (!rsrc->bmap) return -EINVAL; start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0); if (start >= rsrc->max) return -ENOSPC; bitmap_set(rsrc->bmap, start, nrsrc); return start; } static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start) { if (!rsrc->bmap) return; if (start >= rsrc->max) return; bitmap_clear(rsrc->bmap, start, nrsrc); } bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc) { int start; if (!rsrc->bmap) return false; start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0); if (start >= rsrc->max) return false; return true; } void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id) { if (!rsrc->bmap) return; __clear_bit(id, rsrc->bmap); } int rvu_rsrc_free_count(struct rsrc_bmap *rsrc) { int used; if (!rsrc->bmap) return 0; used = bitmap_weight(rsrc->bmap, rsrc->max); return (rsrc->max - used); } bool is_rsrc_free(struct rsrc_bmap *rsrc, int id) { if (!rsrc->bmap) return false; return !test_bit(id, rsrc->bmap); } int rvu_alloc_bitmap(struct rsrc_bmap *rsrc) { rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max), sizeof(long), GFP_KERNEL); if (!rsrc->bmap) return -ENOMEM; return 0; } void rvu_free_bitmap(struct rsrc_bmap *rsrc) { kfree(rsrc->bmap); } /* Get block LF's HW index from a PF_FUNC's block slot number */ int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot) { u16 match = 0; int lf; mutex_lock(&rvu->rsrc_lock); for (lf = 0; lf < block->lf.max; lf++) { if (block->fn_map[lf] == pcifunc) { if (slot == match) { mutex_unlock(&rvu->rsrc_lock); return lf; } match++; } } mutex_unlock(&rvu->rsrc_lock); return -ENODEV; } /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E. * Some silicon variants of OcteonTX2 supports * multiple blocks of same type. * * @pcifunc has to be zero when no LF is yet attached. * * For a pcifunc if LFs are attached from multiple blocks of same type, then * return blkaddr of first encountered block. */ int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc) { int devnum, blkaddr = -ENODEV; u64 cfg, reg; bool is_pf; switch (blktype) { case BLKTYPE_NPC: blkaddr = BLKADDR_NPC; goto exit; case BLKTYPE_NPA: blkaddr = BLKADDR_NPA; goto exit; case BLKTYPE_NIX: /* For now assume NIX0 */ if (!pcifunc) { blkaddr = BLKADDR_NIX0; goto exit; } break; case BLKTYPE_SSO: blkaddr = BLKADDR_SSO; goto exit; case BLKTYPE_SSOW: blkaddr = BLKADDR_SSOW; goto exit; case BLKTYPE_TIM: blkaddr = BLKADDR_TIM; goto exit; case BLKTYPE_CPT: /* For now assume CPT0 */ if (!pcifunc) { blkaddr = BLKADDR_CPT0; goto exit; } break; } /* Check if this is a RVU PF or VF */ if (pcifunc & RVU_PFVF_FUNC_MASK) { is_pf = false; devnum = rvu_get_hwvf(rvu, pcifunc); } else { is_pf = true; devnum = rvu_get_pf(pcifunc); } /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or * 'BLKADDR_NIX1'. */ if (blktype == BLKTYPE_NIX) { reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) : RVU_PRIV_HWVFX_NIXX_CFG(0); cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16)); if (cfg) { blkaddr = BLKADDR_NIX0; goto exit; } reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) : RVU_PRIV_HWVFX_NIXX_CFG(1); cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16)); if (cfg) blkaddr = BLKADDR_NIX1; } if (blktype == BLKTYPE_CPT) { reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) : RVU_PRIV_HWVFX_CPTX_CFG(0); cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16)); if (cfg) { blkaddr = BLKADDR_CPT0; goto exit; } reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) : RVU_PRIV_HWVFX_CPTX_CFG(1); cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16)); if (cfg) blkaddr = BLKADDR_CPT1; } exit: if (is_block_implemented(rvu->hw, blkaddr)) return blkaddr; return -ENODEV; } static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf, struct rvu_block *block, u16 pcifunc, u16 lf, bool attach) { int devnum, num_lfs = 0; bool is_pf; u64 reg; if (lf >= block->lf.max) { dev_err(&rvu->pdev->dev, "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n", __func__, lf, block->name, block->lf.max); return; } /* Check if this is for a RVU PF or VF */ if (pcifunc & RVU_PFVF_FUNC_MASK) { is_pf = false; devnum = rvu_get_hwvf(rvu, pcifunc); } else { is_pf = true; devnum = rvu_get_pf(pcifunc); } block->fn_map[lf] = attach ? pcifunc : 0; switch (block->addr) { case BLKADDR_NPA: pfvf->npalf = attach ? true : false; num_lfs = pfvf->npalf; break; case BLKADDR_NIX0: case BLKADDR_NIX1: pfvf->nixlf = attach ? true : false; num_lfs = pfvf->nixlf; break; case BLKADDR_SSO: attach ? pfvf->sso++ : pfvf->sso--; num_lfs = pfvf->sso; break; case BLKADDR_SSOW: attach ? pfvf->ssow++ : pfvf->ssow--; num_lfs = pfvf->ssow; break; case BLKADDR_TIM: attach ? pfvf->timlfs++ : pfvf->timlfs--; num_lfs = pfvf->timlfs; break; case BLKADDR_CPT0: attach ? pfvf->cptlfs++ : pfvf->cptlfs--; num_lfs = pfvf->cptlfs; break; case BLKADDR_CPT1: attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--; num_lfs = pfvf->cpt1_lfs; break; } reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg; rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs); } inline int rvu_get_pf(u16 pcifunc) { return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK; } void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf) { u64 cfg; /* Get numVFs attached to this PF and first HWVF */ cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); if (numvfs) *numvfs = (cfg >> 12) & 0xFF; if (hwvf) *hwvf = cfg & 0xFFF; } int rvu_get_hwvf(struct rvu *rvu, int pcifunc) { int pf, func; u64 cfg; pf = rvu_get_pf(pcifunc); func = pcifunc & RVU_PFVF_FUNC_MASK; /* Get first HWVF attached to this PF */ cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); return ((cfg & 0xFFF) + func - 1); } struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc) { /* Check if it is a PF or VF */ if (pcifunc & RVU_PFVF_FUNC_MASK) return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)]; else return &rvu->pf[rvu_get_pf(pcifunc)]; } static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc) { int pf, vf, nvfs; u64 cfg; pf = rvu_get_pf(pcifunc); if (pf >= rvu->hw->total_pfs) return false; if (!(pcifunc & RVU_PFVF_FUNC_MASK)) return true; /* Check if VF is within number of VFs attached to this PF */ vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1; cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); nvfs = (cfg >> 12) & 0xFF; if (vf >= nvfs) return false; return true; } bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr) { struct rvu_block *block; if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT) return false; block = &hw->block[blkaddr]; return block->implemented; } static void rvu_check_block_implemented(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int blkid; u64 cfg; /* For each block check if 'implemented' bit is set */ for (blkid = 0; blkid < BLK_COUNT; blkid++) { block = &hw->block[blkid]; cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid)); if (cfg & BIT_ULL(11)) block->implemented = true; } } static void rvu_setup_rvum_blk_revid(struct rvu *rvu) { rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), RVU_BLK_RVUM_REVID); } static void rvu_clear_rvum_blk_revid(struct rvu *rvu) { rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00); } int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf) { int err; if (!block->implemented) return 0; rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12)); err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12), true); return err; } static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg) { struct rvu_block *block = &rvu->hw->block[blkaddr]; int err; if (!block->implemented) return; rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0)); err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true); if (err) { dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr); while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY) ; } } static void rvu_reset_all_blocks(struct rvu *rvu) { /* Do a HW reset of all RVU blocks */ rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST); rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST); } static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block) { struct rvu_pfvf *pfvf; u64 cfg; int lf; for (lf = 0; lf < block->lf.max; lf++) { cfg = rvu_read64(rvu, block->addr, block->lfcfg_reg | (lf << block->lfshift)); if (!(cfg & BIT_ULL(63))) continue; /* Set this resource as being used */ __set_bit(lf, block->lf.bmap); /* Get, to whom this LF is attached */ pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF); rvu_update_rsrc_map(rvu, pfvf, block, (cfg >> 8) & 0xFFFF, lf, true); /* Set start MSIX vector for this LF within this PF/VF */ rvu_set_msix_offset(rvu, pfvf, block, lf); } } static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf) { int min_vecs; if (!vf) goto check_pf; if (!nvecs) { dev_warn(rvu->dev, "PF%d:VF%d is configured with zero msix vectors, %d\n", pf, vf - 1, nvecs); } return; check_pf: if (pf == 0) min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT; else min_vecs = RVU_PF_INT_VEC_CNT; if (!(nvecs < min_vecs)) return; dev_warn(rvu->dev, "PF%d is configured with too few vectors, %d, min is %d\n", pf, nvecs, min_vecs); } static int rvu_setup_msix_resources(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; int pf, vf, numvfs, hwvf, err; int nvecs, offset, max_msix; struct rvu_pfvf *pfvf; u64 cfg, phy_addr; dma_addr_t iova; for (pf = 0; pf < hw->total_pfs; pf++) { cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); /* If PF is not enabled, nothing to do */ if (!((cfg >> 20) & 0x01)) continue; rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf); pfvf = &rvu->pf[pf]; /* Get num of MSIX vectors attached to this PF */ cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf)); pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1; rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0); /* Alloc msix bitmap for this PF */ err = rvu_alloc_bitmap(&pfvf->msix); if (err) return err; /* Allocate memory for MSIX vector to RVU block LF mapping */ pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max, sizeof(u16), GFP_KERNEL); if (!pfvf->msix_lfmap) return -ENOMEM; /* For PF0 (AF) firmware will set msix vector offsets for * AF, block AF and PF0_INT vectors, so jump to VFs. */ if (!pf) goto setup_vfmsix; /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors. * These are allocated on driver init and never freed, * so no need to set 'msix_lfmap' for these. */ cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf)); nvecs = (cfg >> 12) & 0xFF; cfg &= ~0x7FFULL; offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs); rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf), cfg | offset); setup_vfmsix: /* Alloc msix bitmap for VFs */ for (vf = 0; vf < numvfs; vf++) { pfvf = &rvu->hwvf[hwvf + vf]; /* Get num of MSIX vectors attached to this VF */ cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf)); pfvf->msix.max = (cfg & 0xFFF) + 1; rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1); /* Alloc msix bitmap for this VF */ err = rvu_alloc_bitmap(&pfvf->msix); if (err) return err; pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max, sizeof(u16), GFP_KERNEL); if (!pfvf->msix_lfmap) return -ENOMEM; /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors. * These are allocated on driver init and never freed, * so no need to set 'msix_lfmap' for these. */ cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_HWVFX_INT_CFG(hwvf + vf)); nvecs = (cfg >> 12) & 0xFF; cfg &= ~0x7FFULL; offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs); rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_HWVFX_INT_CFG(hwvf + vf), cfg | offset); } } /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence * create an IOMMU mapping for the physical address configured by * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA. */ cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST); max_msix = cfg & 0xFFFFF; if (rvu->fwdata && rvu->fwdata->msixtr_base) phy_addr = rvu->fwdata->msixtr_base; else phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE); iova = dma_map_resource(rvu->dev, phy_addr, max_msix * PCI_MSIX_ENTRY_SIZE, DMA_BIDIRECTIONAL, 0); if (dma_mapping_error(rvu->dev, iova)) return -ENOMEM; rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova); rvu->msix_base_iova = iova; rvu->msixtr_base_phy = phy_addr; return 0; } static void rvu_reset_msix(struct rvu *rvu) { /* Restore msixtr base register */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, rvu->msixtr_base_phy); } static void rvu_free_hw_resources(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; struct rvu_pfvf *pfvf; int id, max_msix; u64 cfg; rvu_npa_freemem(rvu); rvu_npc_freemem(rvu); rvu_nix_freemem(rvu); /* Free block LF bitmaps */ for (id = 0; id < BLK_COUNT; id++) { block = &hw->block[id]; kfree(block->lf.bmap); } /* Free MSIX bitmaps */ for (id = 0; id < hw->total_pfs; id++) { pfvf = &rvu->pf[id]; kfree(pfvf->msix.bmap); } for (id = 0; id < hw->total_vfs; id++) { pfvf = &rvu->hwvf[id]; kfree(pfvf->msix.bmap); } /* Unmap MSIX vector base IOVA mapping */ if (!rvu->msix_base_iova) return; cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST); max_msix = cfg & 0xFFFFF; dma_unmap_resource(rvu->dev, rvu->msix_base_iova, max_msix * PCI_MSIX_ENTRY_SIZE, DMA_BIDIRECTIONAL, 0); rvu_reset_msix(rvu); mutex_destroy(&rvu->rsrc_lock); } static void rvu_setup_pfvf_macaddress(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; int pf, vf, numvfs, hwvf; struct rvu_pfvf *pfvf; u64 *mac; for (pf = 0; pf < hw->total_pfs; pf++) { /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */ if (!pf) goto lbkvf; if (!is_pf_cgxmapped(rvu, pf)) continue; /* Assign MAC address to PF */ pfvf = &rvu->pf[pf]; if (rvu->fwdata && pf < PF_MACNUM_MAX) { mac = &rvu->fwdata->pf_macs[pf]; if (*mac) u64_to_ether_addr(*mac, pfvf->mac_addr); else eth_random_addr(pfvf->mac_addr); } else { eth_random_addr(pfvf->mac_addr); } ether_addr_copy(pfvf->default_mac, pfvf->mac_addr); lbkvf: /* Assign MAC address to VFs*/ rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf); for (vf = 0; vf < numvfs; vf++, hwvf++) { pfvf = &rvu->hwvf[hwvf]; if (rvu->fwdata && hwvf < VF_MACNUM_MAX) { mac = &rvu->fwdata->vf_macs[hwvf]; if (*mac) u64_to_ether_addr(*mac, pfvf->mac_addr); else eth_random_addr(pfvf->mac_addr); } else { eth_random_addr(pfvf->mac_addr); } ether_addr_copy(pfvf->default_mac, pfvf->mac_addr); } } } static int rvu_fwdata_init(struct rvu *rvu) { u64 fwdbase; int err; /* Get firmware data base address */ err = cgx_get_fwdata_base(&fwdbase); if (err) goto fail; rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata)); if (!rvu->fwdata) goto fail; if (!is_rvu_fwdata_valid(rvu)) { dev_err(rvu->dev, "Mismatch in 'fwdata' struct btw kernel and firmware\n"); iounmap(rvu->fwdata); rvu->fwdata = NULL; return -EINVAL; } return 0; fail: dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n"); return -EIO; } static void rvu_fwdata_exit(struct rvu *rvu) { if (rvu->fwdata) iounmap(rvu->fwdata); } static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int blkid; u64 cfg; /* Init NIX LF's bitmap */ block = &hw->block[blkaddr]; if (!block->implemented) return 0; blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1; cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2); block->lf.max = cfg & 0xFFF; block->addr = blkaddr; block->type = BLKTYPE_NIX; block->lfshift = 8; block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG; block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid); block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid); block->lfcfg_reg = NIX_PRIV_LFX_CFG; block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG; block->lfreset_reg = NIX_AF_LF_RST; block->rvu = rvu; sprintf(block->name, "NIX%d", blkid); rvu->nix_blkaddr[blkid] = blkaddr; return rvu_alloc_bitmap(&block->lf); } static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int blkid; u64 cfg; /* Init CPT LF's bitmap */ block = &hw->block[blkaddr]; if (!block->implemented) return 0; blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1; cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0); block->lf.max = cfg & 0xFF; block->addr = blkaddr; block->type = BLKTYPE_CPT; block->multislot = true; block->lfshift = 3; block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG; block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid); block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid); block->lfcfg_reg = CPT_PRIV_LFX_CFG; block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG; block->lfreset_reg = CPT_AF_LF_RST; block->rvu = rvu; sprintf(block->name, "CPT%d", blkid); return rvu_alloc_bitmap(&block->lf); } static void rvu_get_lbk_bufsize(struct rvu *rvu) { struct pci_dev *pdev = NULL; void __iomem *base; u64 lbk_const; pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK, pdev); if (!pdev) return; base = pci_ioremap_bar(pdev, 0); if (!base) goto err_put; lbk_const = readq(base + LBK_CONST); /* cache fifo size */ rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const); iounmap(base); err_put: pci_dev_put(pdev); } static int rvu_setup_hw_resources(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int blkid, err; u64 cfg; /* Get HW supported max RVU PF & VF count */ cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST); hw->total_pfs = (cfg >> 32) & 0xFF; hw->total_vfs = (cfg >> 20) & 0xFFF; hw->max_vfs_per_pf = (cfg >> 40) & 0xFF; /* Init NPA LF's bitmap */ block = &hw->block[BLKADDR_NPA]; if (!block->implemented) goto nix; cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST); block->lf.max = (cfg >> 16) & 0xFFF; block->addr = BLKADDR_NPA; block->type = BLKTYPE_NPA; block->lfshift = 8; block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG; block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG; block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG; block->lfcfg_reg = NPA_PRIV_LFX_CFG; block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG; block->lfreset_reg = NPA_AF_LF_RST; block->rvu = rvu; sprintf(block->name, "NPA"); err = rvu_alloc_bitmap(&block->lf); if (err) { dev_err(rvu->dev, "%s: Failed to allocate NPA LF bitmap\n", __func__); return err; } nix: err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0); if (err) { dev_err(rvu->dev, "%s: Failed to allocate NIX0 LFs bitmap\n", __func__); return err; } err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1); if (err) { dev_err(rvu->dev, "%s: Failed to allocate NIX1 LFs bitmap\n", __func__); return err; } /* Init SSO group's bitmap */ block = &hw->block[BLKADDR_SSO]; if (!block->implemented) goto ssow; cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST); block->lf.max = cfg & 0xFFFF; block->addr = BLKADDR_SSO; block->type = BLKTYPE_SSO; block->multislot = true; block->lfshift = 3; block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG; block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG; block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG; block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG; block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG; block->lfreset_reg = SSO_AF_LF_HWGRP_RST; block->rvu = rvu; sprintf(block->name, "SSO GROUP"); err = rvu_alloc_bitmap(&block->lf); if (err) { dev_err(rvu->dev, "%s: Failed to allocate SSO LF bitmap\n", __func__); return err; } ssow: /* Init SSO workslot's bitmap */ block = &hw->block[BLKADDR_SSOW]; if (!block->implemented) goto tim; block->lf.max = (cfg >> 56) & 0xFF; block->addr = BLKADDR_SSOW; block->type = BLKTYPE_SSOW; block->multislot = true; block->lfshift = 3; block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG; block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG; block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG; block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG; block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG; block->lfreset_reg = SSOW_AF_LF_HWS_RST; block->rvu = rvu; sprintf(block->name, "SSOWS"); err = rvu_alloc_bitmap(&block->lf); if (err) { dev_err(rvu->dev, "%s: Failed to allocate SSOW LF bitmap\n", __func__); return err; } tim: /* Init TIM LF's bitmap */ block = &hw->block[BLKADDR_TIM]; if (!block->implemented) goto cpt; cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST); block->lf.max = cfg & 0xFFFF; block->addr = BLKADDR_TIM; block->type = BLKTYPE_TIM; block->multislot = true; block->lfshift = 3; block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG; block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG; block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG; block->lfcfg_reg = TIM_PRIV_LFX_CFG; block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG; block->lfreset_reg = TIM_AF_LF_RST; block->rvu = rvu; sprintf(block->name, "TIM"); err = rvu_alloc_bitmap(&block->lf); if (err) { dev_err(rvu->dev, "%s: Failed to allocate TIM LF bitmap\n", __func__); return err; } cpt: err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0); if (err) { dev_err(rvu->dev, "%s: Failed to allocate CPT0 LF bitmap\n", __func__); return err; } err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1); if (err) { dev_err(rvu->dev, "%s: Failed to allocate CPT1 LF bitmap\n", __func__); return err; } /* Allocate memory for PFVF data */ rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs, sizeof(struct rvu_pfvf), GFP_KERNEL); if (!rvu->pf) { dev_err(rvu->dev, "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__); return -ENOMEM; } rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs, sizeof(struct rvu_pfvf), GFP_KERNEL); if (!rvu->hwvf) { dev_err(rvu->dev, "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__); return -ENOMEM; } mutex_init(&rvu->rsrc_lock); rvu_fwdata_init(rvu); err = rvu_setup_msix_resources(rvu); if (err) { dev_err(rvu->dev, "%s: Failed to setup MSIX resources\n", __func__); return err; } for (blkid = 0; blkid < BLK_COUNT; blkid++) { block = &hw->block[blkid]; if (!block->lf.bmap) continue; /* Allocate memory for block LF/slot to pcifunc mapping info */ block->fn_map = devm_kcalloc(rvu->dev, block->lf.max, sizeof(u16), GFP_KERNEL); if (!block->fn_map) { err = -ENOMEM; goto msix_err; } /* Scan all blocks to check if low level firmware has * already provisioned any of the resources to a PF/VF. */ rvu_scan_block(rvu, block); } err = rvu_set_channels_base(rvu); if (err) goto msix_err; err = rvu_npc_init(rvu); if (err) { dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__); goto npc_err; } err = rvu_cgx_init(rvu); if (err) { dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__); goto cgx_err; } err = rvu_npc_exact_init(rvu); if (err) { dev_err(rvu->dev, "failed to initialize exact match table\n"); return err; } /* Assign MACs for CGX mapped functions */ rvu_setup_pfvf_macaddress(rvu); err = rvu_npa_init(rvu); if (err) { dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__); goto npa_err; } rvu_get_lbk_bufsize(rvu); err = rvu_nix_init(rvu); if (err) { dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__); goto nix_err; } err = rvu_sdp_init(rvu); if (err) { dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__); goto nix_err; } rvu_program_channels(rvu); err = rvu_mcs_init(rvu); if (err) { dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__); goto nix_err; } err = rvu_cpt_init(rvu); if (err) { dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__); goto mcs_err; } return 0; mcs_err: rvu_mcs_exit(rvu); nix_err: rvu_nix_freemem(rvu); npa_err: rvu_npa_freemem(rvu); cgx_err: rvu_cgx_exit(rvu); npc_err: rvu_npc_freemem(rvu); rvu_fwdata_exit(rvu); msix_err: rvu_reset_msix(rvu); return err; } /* NPA and NIX admin queue APIs */ void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq) { if (!aq) return; qmem_free(rvu->dev, aq->inst); qmem_free(rvu->dev, aq->res); devm_kfree(rvu->dev, aq); } int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue, int qsize, int inst_size, int res_size) { struct admin_queue *aq; int err; *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL); if (!*ad_queue) return -ENOMEM; aq = *ad_queue; /* Alloc memory for instructions i.e AQ */ err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size); if (err) { devm_kfree(rvu->dev, aq); return err; } /* Alloc memory for results */ err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size); if (err) { rvu_aq_free(rvu, aq); return err; } spin_lock_init(&aq->lock); return 0; } int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req, struct ready_msg_rsp *rsp) { if (rvu->fwdata) { rsp->rclk_freq = rvu->fwdata->rclk; rsp->sclk_freq = rvu->fwdata->sclk; } return 0; } /* Get current count of a RVU block's LF/slots * provisioned to a given RVU func. */ u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr) { switch (blkaddr) { case BLKADDR_NPA: return pfvf->npalf ? 1 : 0; case BLKADDR_NIX0: case BLKADDR_NIX1: return pfvf->nixlf ? 1 : 0; case BLKADDR_SSO: return pfvf->sso; case BLKADDR_SSOW: return pfvf->ssow; case BLKADDR_TIM: return pfvf->timlfs; case BLKADDR_CPT0: return pfvf->cptlfs; case BLKADDR_CPT1: return pfvf->cpt1_lfs; } return 0; } /* Return true if LFs of block type are attached to pcifunc */ static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype) { switch (blktype) { case BLKTYPE_NPA: return pfvf->npalf ? 1 : 0; case BLKTYPE_NIX: return pfvf->nixlf ? 1 : 0; case BLKTYPE_SSO: return !!pfvf->sso; case BLKTYPE_SSOW: return !!pfvf->ssow; case BLKTYPE_TIM: return !!pfvf->timlfs; case BLKTYPE_CPT: return pfvf->cptlfs || pfvf->cpt1_lfs; } return false; } bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype) { struct rvu_pfvf *pfvf; if (!is_pf_func_valid(rvu, pcifunc)) return false; pfvf = rvu_get_pfvf(rvu, pcifunc); /* Check if this PFFUNC has a LF of type blktype attached */ if (!is_blktype_attached(pfvf, blktype)) return false; return true; } static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block, int pcifunc, int slot) { u64 val; val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13); rvu_write64(rvu, block->addr, block->lookup_reg, val); /* Wait for the lookup to finish */ /* TODO: put some timeout here */ while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13)) ; val = rvu_read64(rvu, block->addr, block->lookup_reg); /* Check LF valid bit */ if (!(val & (1ULL << 12))) return -1; return (val & 0xFFF); } int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc, u16 global_slot, u16 *slot_in_block) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); int numlfs, total_lfs = 0, nr_blocks = 0; int i, num_blkaddr[BLK_COUNT] = { 0 }; struct rvu_block *block; int blkaddr; u16 start_slot; if (!is_blktype_attached(pfvf, blktype)) return -ENODEV; /* Get all the block addresses from which LFs are attached to * the given pcifunc in num_blkaddr[]. */ for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) { block = &rvu->hw->block[blkaddr]; if (block->type != blktype) continue; if (!is_block_implemented(rvu->hw, blkaddr)) continue; numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr); if (numlfs) { total_lfs += numlfs; num_blkaddr[nr_blocks] = blkaddr; nr_blocks++; } } if (global_slot >= total_lfs) return -ENODEV; /* Based on the given global slot number retrieve the * correct block address out of all attached block * addresses and slot number in that block. */ total_lfs = 0; blkaddr = -ENODEV; for (i = 0; i < nr_blocks; i++) { numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]); total_lfs += numlfs; if (global_slot < total_lfs) { blkaddr = num_blkaddr[i]; start_slot = total_lfs - numlfs; *slot_in_block = global_slot - start_slot; break; } } return blkaddr; } static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int slot, lf, num_lfs; int blkaddr; blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc); if (blkaddr < 0) return; if (blktype == BLKTYPE_NIX) rvu_nix_reset_mac(pfvf, pcifunc); block = &hw->block[blkaddr]; num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr); if (!num_lfs) return; for (slot = 0; slot < num_lfs; slot++) { lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot); if (lf < 0) /* This should never happen */ continue; /* Disable the LF */ rvu_write64(rvu, blkaddr, block->lfcfg_reg | (lf << block->lfshift), 0x00ULL); /* Update SW maintained mapping info as well */ rvu_update_rsrc_map(rvu, pfvf, block, pcifunc, lf, false); /* Free the resource */ rvu_free_rsrc(&block->lf, lf); /* Clear MSIX vector offset for this LF */ rvu_clear_msix_offset(rvu, pfvf, block, lf); } } static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach, u16 pcifunc) { struct rvu_hwinfo *hw = rvu->hw; bool detach_all = true; struct rvu_block *block; int blkid; mutex_lock(&rvu->rsrc_lock); /* Check for partial resource detach */ if (detach && detach->partial) detach_all = false; /* Check for RVU block's LFs attached to this func, * if so, detach them. */ for (blkid = 0; blkid < BLK_COUNT; blkid++) { block = &hw->block[blkid]; if (!block->lf.bmap) continue; if (!detach_all && detach) { if (blkid == BLKADDR_NPA && !detach->npalf) continue; else if ((blkid == BLKADDR_NIX0) && !detach->nixlf) continue; else if ((blkid == BLKADDR_NIX1) && !detach->nixlf) continue; else if ((blkid == BLKADDR_SSO) && !detach->sso) continue; else if ((blkid == BLKADDR_SSOW) && !detach->ssow) continue; else if ((blkid == BLKADDR_TIM) && !detach->timlfs) continue; else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs) continue; else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs) continue; } rvu_detach_block(rvu, pcifunc, block->type); } mutex_unlock(&rvu->rsrc_lock); return 0; } int rvu_mbox_handler_detach_resources(struct rvu *rvu, struct rsrc_detach *detach, struct msg_rsp *rsp) { return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc); } int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); int blkaddr = BLKADDR_NIX0, vf; struct rvu_pfvf *pf; pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK); /* All CGX mapped PFs are set with assigned NIX block during init */ if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) { blkaddr = pf->nix_blkaddr; } else if (is_afvf(pcifunc)) { vf = pcifunc - 1; /* Assign NIX based on VF number. All even numbered VFs get * NIX0 and odd numbered gets NIX1 */ blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0; /* NIX1 is not present on all silicons */ if (!is_block_implemented(rvu->hw, BLKADDR_NIX1)) blkaddr = BLKADDR_NIX0; } /* if SDP1 then the blkaddr is NIX1 */ if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1) blkaddr = BLKADDR_NIX1; switch (blkaddr) { case BLKADDR_NIX1: pfvf->nix_blkaddr = BLKADDR_NIX1; pfvf->nix_rx_intf = NIX_INTFX_RX(1); pfvf->nix_tx_intf = NIX_INTFX_TX(1); break; case BLKADDR_NIX0: default: pfvf->nix_blkaddr = BLKADDR_NIX0; pfvf->nix_rx_intf = NIX_INTFX_RX(0); pfvf->nix_tx_intf = NIX_INTFX_TX(0); break; } return pfvf->nix_blkaddr; } static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc, struct rsrc_attach *attach) { int blkaddr; switch (blktype) { case BLKTYPE_NIX: blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc); break; case BLKTYPE_CPT: if (attach->hdr.ver < RVU_MULTI_BLK_VER) return rvu_get_blkaddr(rvu, blktype, 0); blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr : BLKADDR_CPT0; if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1) return -ENODEV; break; default: return rvu_get_blkaddr(rvu, blktype, 0); } if (is_block_implemented(rvu->hw, blkaddr)) return blkaddr; return -ENODEV; } static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype, int num_lfs, struct rsrc_attach *attach) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int slot, lf; int blkaddr; u64 cfg; if (!num_lfs) return; blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach); if (blkaddr < 0) return; block = &hw->block[blkaddr]; if (!block->lf.bmap) return; for (slot = 0; slot < num_lfs; slot++) { /* Allocate the resource */ lf = rvu_alloc_rsrc(&block->lf); if (lf < 0) return; cfg = (1ULL << 63) | (pcifunc << 8) | slot; rvu_write64(rvu, blkaddr, block->lfcfg_reg | (lf << block->lfshift), cfg); rvu_update_rsrc_map(rvu, pfvf, block, pcifunc, lf, true); /* Set start MSIX vector for this LF within this PF/VF */ rvu_set_msix_offset(rvu, pfvf, block, lf); } } static int rvu_check_rsrc_availability(struct rvu *rvu, struct rsrc_attach *req, u16 pcifunc) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); int free_lfs, mappedlfs, blkaddr; struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; /* Only one NPA LF can be attached */ if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) { block = &hw->block[BLKADDR_NPA]; free_lfs = rvu_rsrc_free_count(&block->lf); if (!free_lfs) goto fail; } else if (req->npalf) { dev_err(&rvu->pdev->dev, "Func 0x%x: Invalid req, already has NPA\n", pcifunc); return -EINVAL; } /* Only one NIX LF can be attached */ if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) { blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX, pcifunc, req); if (blkaddr < 0) return blkaddr; block = &hw->block[blkaddr]; free_lfs = rvu_rsrc_free_count(&block->lf); if (!free_lfs) goto fail; } else if (req->nixlf) { dev_err(&rvu->pdev->dev, "Func 0x%x: Invalid req, already has NIX\n", pcifunc); return -EINVAL; } if (req->sso) { block = &hw->block[BLKADDR_SSO]; /* Is request within limits ? */ if (req->sso > block->lf.max) { dev_err(&rvu->pdev->dev, "Func 0x%x: Invalid SSO req, %d > max %d\n", pcifunc, req->sso, block->lf.max); return -EINVAL; } mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr); free_lfs = rvu_rsrc_free_count(&block->lf); /* Check if additional resources are available */ if (req->sso > mappedlfs && ((req->sso - mappedlfs) > free_lfs)) goto fail; } if (req->ssow) { block = &hw->block[BLKADDR_SSOW]; if (req->ssow > block->lf.max) { dev_err(&rvu->pdev->dev, "Func 0x%x: Invalid SSOW req, %d > max %d\n", pcifunc, req->sso, block->lf.max); return -EINVAL; } mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr); free_lfs = rvu_rsrc_free_count(&block->lf); if (req->ssow > mappedlfs && ((req->ssow - mappedlfs) > free_lfs)) goto fail; } if (req->timlfs) { block = &hw->block[BLKADDR_TIM]; if (req->timlfs > block->lf.max) { dev_err(&rvu->pdev->dev, "Func 0x%x: Invalid TIMLF req, %d > max %d\n", pcifunc, req->timlfs, block->lf.max); return -EINVAL; } mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr); free_lfs = rvu_rsrc_free_count(&block->lf); if (req->timlfs > mappedlfs && ((req->timlfs - mappedlfs) > free_lfs)) goto fail; } if (req->cptlfs) { blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT, pcifunc, req); if (blkaddr < 0) return blkaddr; block = &hw->block[blkaddr]; if (req->cptlfs > block->lf.max) { dev_err(&rvu->pdev->dev, "Func 0x%x: Invalid CPTLF req, %d > max %d\n", pcifunc, req->cptlfs, block->lf.max); return -EINVAL; } mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr); free_lfs = rvu_rsrc_free_count(&block->lf); if (req->cptlfs > mappedlfs && ((req->cptlfs - mappedlfs) > free_lfs)) goto fail; } return 0; fail: dev_info(rvu->dev, "Request for %s failed\n", block->name); return -ENOSPC; } static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype, struct rsrc_attach *attach) { int blkaddr, num_lfs; blkaddr = rvu_get_attach_blkaddr(rvu, blktype, attach->hdr.pcifunc, attach); if (blkaddr < 0) return false; num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc), blkaddr); /* Requester already has LFs from given block ? */ return !!num_lfs; } int rvu_mbox_handler_attach_resources(struct rvu *rvu, struct rsrc_attach *attach, struct msg_rsp *rsp) { u16 pcifunc = attach->hdr.pcifunc; int err; /* If first request, detach all existing attached resources */ if (!attach->modify) rvu_detach_rsrcs(rvu, NULL, pcifunc); mutex_lock(&rvu->rsrc_lock); /* Check if the request can be accommodated */ err = rvu_check_rsrc_availability(rvu, attach, pcifunc); if (err) goto exit; /* Now attach the requested resources */ if (attach->npalf) rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach); if (attach->nixlf) rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach); if (attach->sso) { /* RVU func doesn't know which exact LF or slot is attached * to it, it always sees as slot 0,1,2. So for a 'modify' * request, simply detach all existing attached LFs/slots * and attach a fresh. */ if (attach->modify) rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO); rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso, attach); } if (attach->ssow) { if (attach->modify) rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW); rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow, attach); } if (attach->timlfs) { if (attach->modify) rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM); rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs, attach); } if (attach->cptlfs) { if (attach->modify && rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach)) rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT); rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs, attach); } exit: mutex_unlock(&rvu->rsrc_lock); return err; } static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, int blkaddr, int lf) { u16 vec; if (lf < 0) return MSIX_VECTOR_INVALID; for (vec = 0; vec < pfvf->msix.max; vec++) { if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf)) return vec; } return MSIX_VECTOR_INVALID; } static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, struct rvu_block *block, int lf) { u16 nvecs, vec, offset; u64 cfg; cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg | (lf << block->lfshift)); nvecs = (cfg >> 12) & 0xFF; /* Check and alloc MSIX vectors, must be contiguous */ if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs)) return; offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs); /* Config MSIX offset in LF */ rvu_write64(rvu, block->addr, block->msixcfg_reg | (lf << block->lfshift), (cfg & ~0x7FFULL) | offset); /* Update the bitmap as well */ for (vec = 0; vec < nvecs; vec++) pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf); } static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, struct rvu_block *block, int lf) { u16 nvecs, vec, offset; u64 cfg; cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg | (lf << block->lfshift)); nvecs = (cfg >> 12) & 0xFF; /* Clear MSIX offset in LF */ rvu_write64(rvu, block->addr, block->msixcfg_reg | (lf << block->lfshift), cfg & ~0x7FFULL); offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf); /* Update the mapping */ for (vec = 0; vec < nvecs; vec++) pfvf->msix_lfmap[offset + vec] = 0; /* Free the same in MSIX bitmap */ rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset); } int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req, struct msix_offset_rsp *rsp) { struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; struct rvu_pfvf *pfvf; int lf, slot, blkaddr; pfvf = rvu_get_pfvf(rvu, pcifunc); if (!pfvf->msix.bmap) return 0; /* Set MSIX offsets for each block's LFs attached to this PF/VF */ lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0); rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf); /* Get BLKADDR from which LFs are attached to pcifunc */ blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (blkaddr < 0) { rsp->nix_msixoff = MSIX_VECTOR_INVALID; } else { lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0); rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf); } rsp->sso = pfvf->sso; for (slot = 0; slot < rsp->sso; slot++) { lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot); rsp->sso_msixoff[slot] = rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf); } rsp->ssow = pfvf->ssow; for (slot = 0; slot < rsp->ssow; slot++) { lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot); rsp->ssow_msixoff[slot] = rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf); } rsp->timlfs = pfvf->timlfs; for (slot = 0; slot < rsp->timlfs; slot++) { lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot); rsp->timlf_msixoff[slot] = rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf); } rsp->cptlfs = pfvf->cptlfs; for (slot = 0; slot < rsp->cptlfs; slot++) { lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot); rsp->cptlf_msixoff[slot] = rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf); } rsp->cpt1_lfs = pfvf->cpt1_lfs; for (slot = 0; slot < rsp->cpt1_lfs; slot++) { lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot); rsp->cpt1_lf_msixoff[slot] = rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf); } return 0; } int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req, struct free_rsrcs_rsp *rsp) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; struct nix_txsch *txsch; struct nix_hw *nix_hw; mutex_lock(&rvu->rsrc_lock); block = &hw->block[BLKADDR_NPA]; rsp->npa = rvu_rsrc_free_count(&block->lf); block = &hw->block[BLKADDR_NIX0]; rsp->nix = rvu_rsrc_free_count(&block->lf); block = &hw->block[BLKADDR_NIX1]; rsp->nix1 = rvu_rsrc_free_count(&block->lf); block = &hw->block[BLKADDR_SSO]; rsp->sso = rvu_rsrc_free_count(&block->lf); block = &hw->block[BLKADDR_SSOW]; rsp->ssow = rvu_rsrc_free_count(&block->lf); block = &hw->block[BLKADDR_TIM]; rsp->tim = rvu_rsrc_free_count(&block->lf); block = &hw->block[BLKADDR_CPT0]; rsp->cpt = rvu_rsrc_free_count(&block->lf); block = &hw->block[BLKADDR_CPT1]; rsp->cpt1 = rvu_rsrc_free_count(&block->lf); if (rvu->hw->cap.nix_fixed_txschq_mapping) { rsp->schq[NIX_TXSCH_LVL_SMQ] = 1; rsp->schq[NIX_TXSCH_LVL_TL4] = 1; rsp->schq[NIX_TXSCH_LVL_TL3] = 1; rsp->schq[NIX_TXSCH_LVL_TL2] = 1; /* NIX1 */ if (!is_block_implemented(rvu->hw, BLKADDR_NIX1)) goto out; rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1; rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1; rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1; rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1; } else { nix_hw = get_nix_hw(hw, BLKADDR_NIX0); txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ]; rsp->schq[NIX_TXSCH_LVL_SMQ] = rvu_rsrc_free_count(&txsch->schq); txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4]; rsp->schq[NIX_TXSCH_LVL_TL4] = rvu_rsrc_free_count(&txsch->schq); txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3]; rsp->schq[NIX_TXSCH_LVL_TL3] = rvu_rsrc_free_count(&txsch->schq); txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2]; rsp->schq[NIX_TXSCH_LVL_TL2] = rvu_rsrc_free_count(&txsch->schq); if (!is_block_implemented(rvu->hw, BLKADDR_NIX1)) goto out; nix_hw = get_nix_hw(hw, BLKADDR_NIX1); txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ]; rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = rvu_rsrc_free_count(&txsch->schq); txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4]; rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = rvu_rsrc_free_count(&txsch->schq); txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3]; rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = rvu_rsrc_free_count(&txsch->schq); txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2]; rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = rvu_rsrc_free_count(&txsch->schq); } rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1; out: rsp->schq[NIX_TXSCH_LVL_TL1] = 1; mutex_unlock(&rvu->rsrc_lock); return 0; } int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; u16 vf, numvfs; u64 cfg; vf = pcifunc & RVU_PFVF_FUNC_MASK; cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc))); numvfs = (cfg >> 12) & 0xFF; if (vf && vf <= numvfs) __rvu_flr_handler(rvu, pcifunc); else return RVU_INVALID_VF_ID; return 0; } int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req, struct get_hw_cap_rsp *rsp) { struct rvu_hwinfo *hw = rvu->hw; rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping; rsp->nix_shaping = hw->cap.nix_shaping; rsp->npc_hash_extract = hw->cap.npc_hash_extract; return 0; } int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req, struct msg_rsp *rsp) { struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; struct rvu_pfvf *pfvf; int blkaddr, nixlf; u16 target; /* Only PF can add VF permissions */ if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc)) return -EOPNOTSUPP; target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1); pfvf = rvu_get_pfvf(rvu, target); if (req->flags & RESET_VF_PERM) { pfvf->flags &= RVU_CLEAR_VF_PERM; } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^ (req->flags & VF_TRUSTED)) { change_bit(PF_SET_VF_TRUSTED, &pfvf->flags); /* disable multicast and promisc entries */ if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) { blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target); if (blkaddr < 0) return 0; nixlf = rvu_get_lf(rvu, &hw->block[blkaddr], target, 0); if (nixlf < 0) return 0; npc_enadis_default_mce_entry(rvu, target, nixlf, NIXLF_ALLMULTI_ENTRY, false); npc_enadis_default_mce_entry(rvu, target, nixlf, NIXLF_PROMISC_ENTRY, false); } } return 0; } static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid, struct mbox_msghdr *req) { struct rvu *rvu = pci_get_drvdata(mbox->pdev); /* Check if valid, if not reply with a invalid msg */ if (req->sig != OTX2_MBOX_REQ_SIG) goto bad_message; switch (req->id) { #define M(_name, _id, _fn_name, _req_type, _rsp_type) \ case _id: { \ struct _rsp_type *rsp; \ int err; \ \ rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \ mbox, devid, \ sizeof(struct _rsp_type)); \ /* some handlers should complete even if reply */ \ /* could not be allocated */ \ if (!rsp && \ _id != MBOX_MSG_DETACH_RESOURCES && \ _id != MBOX_MSG_NIX_TXSCH_FREE && \ _id != MBOX_MSG_VF_FLR) \ return -ENOMEM; \ if (rsp) { \ rsp->hdr.id = _id; \ rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \ rsp->hdr.pcifunc = req->pcifunc; \ rsp->hdr.rc = 0; \ } \ \ err = rvu_mbox_handler_ ## _fn_name(rvu, \ (struct _req_type *)req, \ rsp); \ if (rsp && err) \ rsp->hdr.rc = err; \ \ trace_otx2_msg_process(mbox->pdev, _id, err); \ return rsp ? err : -ENOMEM; \ } MBOX_MESSAGES #undef M bad_message: default: otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id); return -ENODEV; } } static void __rvu_mbox_handler(struct rvu_work *mwork, int type) { struct rvu *rvu = mwork->rvu; int offset, err, id, devid; struct otx2_mbox_dev *mdev; struct mbox_hdr *req_hdr; struct mbox_msghdr *msg; struct mbox_wq_info *mw; struct otx2_mbox *mbox; switch (type) { case TYPE_AFPF: mw = &rvu->afpf_wq_info; break; case TYPE_AFVF: mw = &rvu->afvf_wq_info; break; default: return; } devid = mwork - mw->mbox_wrk; mbox = &mw->mbox; mdev = &mbox->dev[devid]; /* Process received mbox messages */ req_hdr = mdev->mbase + mbox->rx_start; if (mw->mbox_wrk[devid].num_msgs == 0) return; offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN); for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) { msg = mdev->mbase + offset; /* Set which PF/VF sent this message based on mbox IRQ */ switch (type) { case TYPE_AFPF: msg->pcifunc &= ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT); msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT); break; case TYPE_AFVF: msg->pcifunc &= ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT); msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1; break; } err = rvu_process_mbox_msg(mbox, devid, msg); if (!err) { offset = mbox->rx_start + msg->next_msgoff; continue; } if (msg->pcifunc & RVU_PFVF_FUNC_MASK) dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n", err, otx2_mbox_id2name(msg->id), msg->id, rvu_get_pf(msg->pcifunc), (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1); else dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n", err, otx2_mbox_id2name(msg->id), msg->id, devid); } mw->mbox_wrk[devid].num_msgs = 0; /* Send mbox responses to VF/PF */ otx2_mbox_msg_send(mbox, devid); } static inline void rvu_afpf_mbox_handler(struct work_struct *work) { struct rvu_work *mwork = container_of(work, struct rvu_work, work); __rvu_mbox_handler(mwork, TYPE_AFPF); } static inline void rvu_afvf_mbox_handler(struct work_struct *work) { struct rvu_work *mwork = container_of(work, struct rvu_work, work); __rvu_mbox_handler(mwork, TYPE_AFVF); } static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type) { struct rvu *rvu = mwork->rvu; struct otx2_mbox_dev *mdev; struct mbox_hdr *rsp_hdr; struct mbox_msghdr *msg; struct mbox_wq_info *mw; struct otx2_mbox *mbox; int offset, id, devid; switch (type) { case TYPE_AFPF: mw = &rvu->afpf_wq_info; break; case TYPE_AFVF: mw = &rvu->afvf_wq_info; break; default: return; } devid = mwork - mw->mbox_wrk_up; mbox = &mw->mbox_up; mdev = &mbox->dev[devid]; rsp_hdr = mdev->mbase + mbox->rx_start; if (mw->mbox_wrk_up[devid].up_num_msgs == 0) { dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n"); return; } offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN); for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) { msg = mdev->mbase + offset; if (msg->id >= MBOX_MSG_MAX) { dev_err(rvu->dev, "Mbox msg with unknown ID 0x%x\n", msg->id); goto end; } if (msg->sig != OTX2_MBOX_RSP_SIG) { dev_err(rvu->dev, "Mbox msg with wrong signature %x, ID 0x%x\n", msg->sig, msg->id); goto end; } switch (msg->id) { case MBOX_MSG_CGX_LINK_EVENT: break; default: if (msg->rc) dev_err(rvu->dev, "Mbox msg response has err %d, ID 0x%x\n", msg->rc, msg->id); break; } end: offset = mbox->rx_start + msg->next_msgoff; mdev->msgs_acked++; } mw->mbox_wrk_up[devid].up_num_msgs = 0; otx2_mbox_reset(mbox, devid); } static inline void rvu_afpf_mbox_up_handler(struct work_struct *work) { struct rvu_work *mwork = container_of(work, struct rvu_work, work); __rvu_mbox_up_handler(mwork, TYPE_AFPF); } static inline void rvu_afvf_mbox_up_handler(struct work_struct *work) { struct rvu_work *mwork = container_of(work, struct rvu_work, work); __rvu_mbox_up_handler(mwork, TYPE_AFVF); } static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr, int num, int type, unsigned long *pf_bmap) { struct rvu_hwinfo *hw = rvu->hw; int region; u64 bar4; /* For cn10k platform VF mailbox regions of a PF follows after the * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from * RVU_PF_VF_BAR4_ADDR register. */ if (type == TYPE_AFVF) { for (region = 0; region < num; region++) { if (!test_bit(region, pf_bmap)) continue; if (hw->cap.per_pf_mbox_regs) { bar4 = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFX_BAR4_ADDR(0)) + MBOX_SIZE; bar4 += region * MBOX_SIZE; } else { bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR); bar4 += region * MBOX_SIZE; } mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE); if (!mbox_addr[region]) goto error; } return 0; } /* For cn10k platform AF <-> PF mailbox region of a PF is read from per * PF registers. Whereas for Octeontx2 it is read from * RVU_AF_PF_BAR4_ADDR register. */ for (region = 0; region < num; region++) { if (!test_bit(region, pf_bmap)) continue; if (hw->cap.per_pf_mbox_regs) { bar4 = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFX_BAR4_ADDR(region)); } else { bar4 = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR); bar4 += region * MBOX_SIZE; } mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE); if (!mbox_addr[region]) goto error; } return 0; error: while (region--) iounmap((void __iomem *)mbox_addr[region]); return -ENOMEM; } static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw, int type, int num, void (mbox_handler)(struct work_struct *), void (mbox_up_handler)(struct work_struct *)) { int err = -EINVAL, i, dir, dir_up; void __iomem *reg_base; struct rvu_work *mwork; unsigned long *pf_bmap; void **mbox_regions; const char *name; u64 cfg; pf_bmap = bitmap_zalloc(num, GFP_KERNEL); if (!pf_bmap) return -ENOMEM; /* RVU VFs */ if (type == TYPE_AFVF) bitmap_set(pf_bmap, 0, num); if (type == TYPE_AFPF) { /* Mark enabled PFs in bitmap */ for (i = 0; i < num; i++) { cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i)); if (cfg & BIT_ULL(20)) set_bit(i, pf_bmap); } } mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL); if (!mbox_regions) { err = -ENOMEM; goto free_bitmap; } switch (type) { case TYPE_AFPF: name = "rvu_afpf_mailbox"; dir = MBOX_DIR_AFPF; dir_up = MBOX_DIR_AFPF_UP; reg_base = rvu->afreg_base; err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap); if (err) goto free_regions; break; case TYPE_AFVF: name = "rvu_afvf_mailbox"; dir = MBOX_DIR_PFVF; dir_up = MBOX_DIR_PFVF_UP; reg_base = rvu->pfreg_base; err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap); if (err) goto free_regions; break; default: goto free_regions; } mw->mbox_wq = alloc_workqueue(name, WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM, num); if (!mw->mbox_wq) { err = -ENOMEM; goto unmap_regions; } mw->mbox_wrk = devm_kcalloc(rvu->dev, num, sizeof(struct rvu_work), GFP_KERNEL); if (!mw->mbox_wrk) { err = -ENOMEM; goto exit; } mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num, sizeof(struct rvu_work), GFP_KERNEL); if (!mw->mbox_wrk_up) { err = -ENOMEM; goto exit; } err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev, reg_base, dir, num, pf_bmap); if (err) goto exit; err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev, reg_base, dir_up, num, pf_bmap); if (err) goto exit; for (i = 0; i < num; i++) { if (!test_bit(i, pf_bmap)) continue; mwork = &mw->mbox_wrk[i]; mwork->rvu = rvu; INIT_WORK(&mwork->work, mbox_handler); mwork = &mw->mbox_wrk_up[i]; mwork->rvu = rvu; INIT_WORK(&mwork->work, mbox_up_handler); } goto free_regions; exit: destroy_workqueue(mw->mbox_wq); unmap_regions: while (num--) iounmap((void __iomem *)mbox_regions[num]); free_regions: kfree(mbox_regions); free_bitmap: bitmap_free(pf_bmap); return err; } static void rvu_mbox_destroy(struct mbox_wq_info *mw) { struct otx2_mbox *mbox = &mw->mbox; struct otx2_mbox_dev *mdev; int devid; if (mw->mbox_wq) { destroy_workqueue(mw->mbox_wq); mw->mbox_wq = NULL; } for (devid = 0; devid < mbox->ndevs; devid++) { mdev = &mbox->dev[devid]; if (mdev->hwbase) iounmap((void __iomem *)mdev->hwbase); } otx2_mbox_destroy(&mw->mbox); otx2_mbox_destroy(&mw->mbox_up); } static void rvu_queue_work(struct mbox_wq_info *mw, int first, int mdevs, u64 intr) { struct otx2_mbox_dev *mdev; struct otx2_mbox *mbox; struct mbox_hdr *hdr; int i; for (i = first; i < mdevs; i++) { /* start from 0 */ if (!(intr & BIT_ULL(i - first))) continue; mbox = &mw->mbox; mdev = &mbox->dev[i]; hdr = mdev->mbase + mbox->rx_start; /*The hdr->num_msgs is set to zero immediately in the interrupt * handler to ensure that it holds a correct value next time * when the interrupt handler is called. * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler * pf>mbox.up_num_msgs holds the data for use in * pfaf_mbox_up_handler. */ if (hdr->num_msgs) { mw->mbox_wrk[i].num_msgs = hdr->num_msgs; hdr->num_msgs = 0; queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work); } mbox = &mw->mbox_up; mdev = &mbox->dev[i]; hdr = mdev->mbase + mbox->rx_start; if (hdr->num_msgs) { mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs; hdr->num_msgs = 0; queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work); } } } static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq) { struct rvu *rvu = (struct rvu *)rvu_irq; int vfs = rvu->vfs; u64 intr; intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT); /* Clear interrupts */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr); if (intr) trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr); /* Sync with mbox memory region */ rmb(); rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr); /* Handle VF interrupts */ if (vfs > 64) { intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1)); rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr); rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr); vfs -= 64; } intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0)); rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr); if (intr) trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr); rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr); return IRQ_HANDLED; } static void rvu_enable_mbox_intr(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; /* Clear spurious irqs, if any */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs)); /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S, INTR_MASK(hw->total_pfs) & ~1ULL); } static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr) { struct rvu_block *block; int slot, lf, num_lfs; int err; block = &rvu->hw->block[blkaddr]; num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), block->addr); if (!num_lfs) return; for (slot = 0; slot < num_lfs; slot++) { lf = rvu_get_lf(rvu, block, pcifunc, slot); if (lf < 0) continue; /* Cleanup LF and reset it */ if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1) rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf); else if (block->addr == BLKADDR_NPA) rvu_npa_lf_teardown(rvu, pcifunc, lf); else if ((block->addr == BLKADDR_CPT0) || (block->addr == BLKADDR_CPT1)) rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf, slot); err = rvu_lf_reset(rvu, block, lf); if (err) { dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n", block->addr, lf); } } } static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc) { if (rvu_npc_exact_has_match_table(rvu)) rvu_npc_exact_reset(rvu, pcifunc); mutex_lock(&rvu->flr_lock); /* Reset order should reflect inter-block dependencies: * 1. Reset any packet/work sources (NIX, CPT, TIM) * 2. Flush and reset SSO/SSOW * 3. Cleanup pools (NPA) */ rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0); rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1); rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0); rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1); rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM); rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW); rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO); rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA); rvu_reset_lmt_map_tbl(rvu, pcifunc); rvu_detach_rsrcs(rvu, NULL, pcifunc); /* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM * entries, check and free the MCAM entries explicitly to avoid leak. * Since LF is detached use LF number as -1. */ rvu_npc_free_mcam_entries(rvu, pcifunc, -1); rvu_mac_reset(rvu, pcifunc); mutex_unlock(&rvu->flr_lock); } static void rvu_afvf_flr_handler(struct rvu *rvu, int vf) { int reg = 0; /* pcifunc = 0(PF0) | (vf + 1) */ __rvu_flr_handler(rvu, vf + 1); if (vf >= 64) { reg = 1; vf = vf - 64; } /* Signal FLR finish and enable IRQ */ rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf)); rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf)); } static void rvu_flr_handler(struct work_struct *work) { struct rvu_work *flrwork = container_of(work, struct rvu_work, work); struct rvu *rvu = flrwork->rvu; u16 pcifunc, numvfs, vf; u64 cfg; int pf; pf = flrwork - rvu->flr_wrk; if (pf >= rvu->hw->total_pfs) { rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs); return; } cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); numvfs = (cfg >> 12) & 0xFF; pcifunc = pf << RVU_PFVF_PF_SHIFT; for (vf = 0; vf < numvfs; vf++) __rvu_flr_handler(rvu, (pcifunc | (vf + 1))); __rvu_flr_handler(rvu, pcifunc); /* Signal FLR finish */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf)); /* Enable interrupt */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, BIT_ULL(pf)); } static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs) { int dev, vf, reg = 0; u64 intr; if (start_vf >= 64) reg = 1; intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg)); if (!intr) return; for (vf = 0; vf < numvfs; vf++) { if (!(intr & BIT_ULL(vf))) continue; /* Clear and disable the interrupt */ rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf)); rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf)); dev = vf + start_vf + rvu->hw->total_pfs; queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work); } } static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq) { struct rvu *rvu = (struct rvu *)rvu_irq; u64 intr; u8 pf; intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT); if (!intr) goto afvf_flr; for (pf = 0; pf < rvu->hw->total_pfs; pf++) { if (intr & (1ULL << pf)) { /* clear interrupt */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT, BIT_ULL(pf)); /* Disable the interrupt */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C, BIT_ULL(pf)); /* PF is already dead do only AF related operations */ queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work); } } afvf_flr: rvu_afvf_queue_flr_work(rvu, 0, 64); if (rvu->vfs > 64) rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64); return IRQ_HANDLED; } static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr) { int vf; /* Nothing to be done here other than clearing the * TRPEND bit. */ for (vf = 0; vf < 64; vf++) { if (intr & (1ULL << vf)) { /* clear the trpend due to ME(master enable) */ rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf)); /* clear interrupt */ rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf)); } } } /* Handles ME interrupts from VFs of AF */ static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq) { struct rvu *rvu = (struct rvu *)rvu_irq; int vfset; u64 intr; intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT); for (vfset = 0; vfset <= 1; vfset++) { intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset)); if (intr) rvu_me_handle_vfset(rvu, vfset, intr); } return IRQ_HANDLED; } /* Handles ME interrupts from PFs */ static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq) { struct rvu *rvu = (struct rvu *)rvu_irq; u64 intr; u8 pf; intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT); /* Nothing to be done here other than clearing the * TRPEND bit. */ for (pf = 0; pf < rvu->hw->total_pfs; pf++) { if (intr & (1ULL << pf)) { /* clear the trpend due to ME(master enable) */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf)); /* clear interrupt */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT, BIT_ULL(pf)); } } return IRQ_HANDLED; } static void rvu_unregister_interrupts(struct rvu *rvu) { int irq; rvu_cpt_unregister_interrupts(rvu); /* Disable the Mbox interrupt */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C, INTR_MASK(rvu->hw->total_pfs) & ~1ULL); /* Disable the PF FLR interrupt */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C, INTR_MASK(rvu->hw->total_pfs) & ~1ULL); /* Disable the PF ME interrupt */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C, INTR_MASK(rvu->hw->total_pfs) & ~1ULL); for (irq = 0; irq < rvu->num_vec; irq++) { if (rvu->irq_allocated[irq]) { free_irq(pci_irq_vector(rvu->pdev, irq), rvu); rvu->irq_allocated[irq] = false; } } pci_free_irq_vectors(rvu->pdev); rvu->num_vec = 0; } static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu) { struct rvu_pfvf *pfvf = &rvu->pf[0]; int offset; pfvf = &rvu->pf[0]; offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff; /* Make sure there are enough MSIX vectors configured so that * VF interrupts can be handled. Offset equal to zero means * that PF vectors are not configured and overlapping AF vectors. */ return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) && offset; } static int rvu_register_interrupts(struct rvu *rvu) { int ret, offset, pf_vec_start; rvu->num_vec = pci_msix_vec_count(rvu->pdev); rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec, NAME_SIZE, GFP_KERNEL); if (!rvu->irq_name) return -ENOMEM; rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec, sizeof(bool), GFP_KERNEL); if (!rvu->irq_allocated) return -ENOMEM; /* Enable MSI-X */ ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec, rvu->num_vec, PCI_IRQ_MSIX); if (ret < 0) { dev_err(rvu->dev, "RVUAF: Request for %d msix vectors failed, ret %d\n", rvu->num_vec, ret); return ret; } /* Register mailbox interrupt handler */ sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox"); ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX), rvu_mbox_intr_handler, 0, &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu); if (ret) { dev_err(rvu->dev, "RVUAF: IRQ registration failed for mbox irq\n"); goto fail; } rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true; /* Enable mailbox interrupts from all PFs */ rvu_enable_mbox_intr(rvu); /* Register FLR interrupt handler */ sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE], "RVUAF FLR"); ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR), rvu_flr_intr_handler, 0, &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE], rvu); if (ret) { dev_err(rvu->dev, "RVUAF: IRQ registration failed for FLR\n"); goto fail; } rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true; /* Enable FLR interrupt for all PFs*/ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs)); rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, INTR_MASK(rvu->hw->total_pfs) & ~1ULL); /* Register ME interrupt handler */ sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE], "RVUAF ME"); ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME), rvu_me_pf_intr_handler, 0, &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE], rvu); if (ret) { dev_err(rvu->dev, "RVUAF: IRQ registration failed for ME\n"); } rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true; /* Clear TRPEND bit for all PF */ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs)); /* Enable ME interrupt for all PFs*/ rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs)); rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S, INTR_MASK(rvu->hw->total_pfs) & ~1ULL); if (!rvu_afvf_msix_vectors_num_ok(rvu)) return 0; /* Get PF MSIX vectors offset. */ pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff; /* Register MBOX0 interrupt. */ offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0; sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0"); ret = request_irq(pci_irq_vector(rvu->pdev, offset), rvu_mbox_intr_handler, 0, &rvu->irq_name[offset * NAME_SIZE], rvu); if (ret) dev_err(rvu->dev, "RVUAF: IRQ registration failed for Mbox0\n"); rvu->irq_allocated[offset] = true; /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so * simply increment current offset by 1. */ offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1; sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1"); ret = request_irq(pci_irq_vector(rvu->pdev, offset), rvu_mbox_intr_handler, 0, &rvu->irq_name[offset * NAME_SIZE], rvu); if (ret) dev_err(rvu->dev, "RVUAF: IRQ registration failed for Mbox1\n"); rvu->irq_allocated[offset] = true; /* Register FLR interrupt handler for AF's VFs */ offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0; sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0"); ret = request_irq(pci_irq_vector(rvu->pdev, offset), rvu_flr_intr_handler, 0, &rvu->irq_name[offset * NAME_SIZE], rvu); if (ret) { dev_err(rvu->dev, "RVUAF: IRQ registration failed for RVUAFVF FLR0\n"); goto fail; } rvu->irq_allocated[offset] = true; offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1; sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1"); ret = request_irq(pci_irq_vector(rvu->pdev, offset), rvu_flr_intr_handler, 0, &rvu->irq_name[offset * NAME_SIZE], rvu); if (ret) { dev_err(rvu->dev, "RVUAF: IRQ registration failed for RVUAFVF FLR1\n"); goto fail; } rvu->irq_allocated[offset] = true; /* Register ME interrupt handler for AF's VFs */ offset = pf_vec_start + RVU_PF_INT_VEC_VFME0; sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0"); ret = request_irq(pci_irq_vector(rvu->pdev, offset), rvu_me_vf_intr_handler, 0, &rvu->irq_name[offset * NAME_SIZE], rvu); if (ret) { dev_err(rvu->dev, "RVUAF: IRQ registration failed for RVUAFVF ME0\n"); goto fail; } rvu->irq_allocated[offset] = true; offset = pf_vec_start + RVU_PF_INT_VEC_VFME1; sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1"); ret = request_irq(pci_irq_vector(rvu->pdev, offset), rvu_me_vf_intr_handler, 0, &rvu->irq_name[offset * NAME_SIZE], rvu); if (ret) { dev_err(rvu->dev, "RVUAF: IRQ registration failed for RVUAFVF ME1\n"); goto fail; } rvu->irq_allocated[offset] = true; ret = rvu_cpt_register_interrupts(rvu); if (ret) goto fail; return 0; fail: rvu_unregister_interrupts(rvu); return ret; } static void rvu_flr_wq_destroy(struct rvu *rvu) { if (rvu->flr_wq) { destroy_workqueue(rvu->flr_wq); rvu->flr_wq = NULL; } } static int rvu_flr_init(struct rvu *rvu) { int dev, num_devs; u64 cfg; int pf; /* Enable FLR for all PFs*/ for (pf = 0; pf < rvu->hw->total_pfs; pf++) { cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf), cfg | BIT_ULL(22)); } rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr", WQ_HIGHPRI | WQ_MEM_RECLAIM); if (!rvu->flr_wq) return -ENOMEM; num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev); rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs, sizeof(struct rvu_work), GFP_KERNEL); if (!rvu->flr_wrk) { destroy_workqueue(rvu->flr_wq); return -ENOMEM; } for (dev = 0; dev < num_devs; dev++) { rvu->flr_wrk[dev].rvu = rvu; INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler); } mutex_init(&rvu->flr_lock); return 0; } static void rvu_disable_afvf_intr(struct rvu *rvu) { int vfs = rvu->vfs; rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs)); rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs)); rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs)); if (vfs <= 64) return; rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1), INTR_MASK(vfs - 64)); rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64)); rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64)); } static void rvu_enable_afvf_intr(struct rvu *rvu) { int vfs = rvu->vfs; /* Clear any pending interrupts and enable AF VF interrupts for * the first 64 VFs. */ /* Mbox */ rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs)); rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs)); /* FLR */ rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs)); rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs)); rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs)); /* Same for remaining VFs, if any. */ if (vfs <= 64) return; rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64)); rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1), INTR_MASK(vfs - 64)); rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64)); rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64)); rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64)); } int rvu_get_num_lbk_chans(void) { struct pci_dev *pdev; void __iomem *base; int ret = -EIO; pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK, NULL); if (!pdev) goto err; base = pci_ioremap_bar(pdev, 0); if (!base) goto err_put; /* Read number of available LBK channels from LBK(0)_CONST register. */ ret = (readq(base + 0x10) >> 32) & 0xffff; iounmap(base); err_put: pci_dev_put(pdev); err: return ret; } static int rvu_enable_sriov(struct rvu *rvu) { struct pci_dev *pdev = rvu->pdev; int err, chans, vfs; if (!rvu_afvf_msix_vectors_num_ok(rvu)) { dev_warn(&pdev->dev, "Skipping SRIOV enablement since not enough IRQs are available\n"); return 0; } chans = rvu_get_num_lbk_chans(); if (chans < 0) return chans; vfs = pci_sriov_get_totalvfs(pdev); /* Limit VFs in case we have more VFs than LBK channels available. */ if (vfs > chans) vfs = chans; if (!vfs) return 0; /* LBK channel number 63 is used for switching packets between * CGX mapped VFs. Hence limit LBK pairs till 62 only. */ if (vfs > 62) vfs = 62; /* Save VFs number for reference in VF interrupts handlers. * Since interrupts might start arriving during SRIOV enablement * ordinary API cannot be used to get number of enabled VFs. */ rvu->vfs = vfs; err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs, rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler); if (err) return err; rvu_enable_afvf_intr(rvu); /* Make sure IRQs are enabled before SRIOV. */ mb(); err = pci_enable_sriov(pdev, vfs); if (err) { rvu_disable_afvf_intr(rvu); rvu_mbox_destroy(&rvu->afvf_wq_info); return err; } return 0; } static void rvu_disable_sriov(struct rvu *rvu) { rvu_disable_afvf_intr(rvu); rvu_mbox_destroy(&rvu->afvf_wq_info); pci_disable_sriov(rvu->pdev); } static void rvu_update_module_params(struct rvu *rvu) { const char *default_pfl_name = "default"; strscpy(rvu->mkex_pfl_name, mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN); strscpy(rvu->kpu_pfl_name, kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN); } static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct device *dev = &pdev->dev; struct rvu *rvu; int err; rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL); if (!rvu) return -ENOMEM; rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL); if (!rvu->hw) { devm_kfree(dev, rvu); return -ENOMEM; } pci_set_drvdata(pdev, rvu); rvu->pdev = pdev; rvu->dev = &pdev->dev; err = pci_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); goto err_freemem; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto err_disable_device; } err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "DMA mask config failed, abort\n"); goto err_release_regions; } pci_set_master(pdev); rvu->ptp = ptp_get(); if (IS_ERR(rvu->ptp)) { err = PTR_ERR(rvu->ptp); if (err) goto err_release_regions; rvu->ptp = NULL; } /* Map Admin function CSRs */ rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0); rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0); if (!rvu->afreg_base || !rvu->pfreg_base) { dev_err(dev, "Unable to map admin function CSRs, aborting\n"); err = -ENOMEM; goto err_put_ptp; } /* Store module params in rvu structure */ rvu_update_module_params(rvu); /* Check which blocks the HW supports */ rvu_check_block_implemented(rvu); rvu_reset_all_blocks(rvu); rvu_setup_hw_capabilities(rvu); err = rvu_setup_hw_resources(rvu); if (err) goto err_put_ptp; /* Init mailbox btw AF and PFs */ err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF, rvu->hw->total_pfs, rvu_afpf_mbox_handler, rvu_afpf_mbox_up_handler); if (err) { dev_err(dev, "%s: Failed to initialize mbox\n", __func__); goto err_hwsetup; } err = rvu_flr_init(rvu); if (err) { dev_err(dev, "%s: Failed to initialize flr\n", __func__); goto err_mbox; } err = rvu_register_interrupts(rvu); if (err) { dev_err(dev, "%s: Failed to register interrupts\n", __func__); goto err_flr; } err = rvu_register_dl(rvu); if (err) { dev_err(dev, "%s: Failed to register devlink\n", __func__); goto err_irq; } rvu_setup_rvum_blk_revid(rvu); /* Enable AF's VFs (if any) */ err = rvu_enable_sriov(rvu); if (err) { dev_err(dev, "%s: Failed to enable sriov\n", __func__); goto err_dl; } /* Initialize debugfs */ rvu_dbg_init(rvu); mutex_init(&rvu->rswitch.switch_lock); if (rvu->fwdata) ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate, rvu->fwdata->ptp_ext_tstamp); return 0; err_dl: rvu_unregister_dl(rvu); err_irq: rvu_unregister_interrupts(rvu); err_flr: rvu_flr_wq_destroy(rvu); err_mbox: rvu_mbox_destroy(&rvu->afpf_wq_info); err_hwsetup: rvu_cgx_exit(rvu); rvu_fwdata_exit(rvu); rvu_mcs_exit(rvu); rvu_reset_all_blocks(rvu); rvu_free_hw_resources(rvu); rvu_clear_rvum_blk_revid(rvu); err_put_ptp: ptp_put(rvu->ptp); err_release_regions: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); err_freemem: pci_set_drvdata(pdev, NULL); devm_kfree(&pdev->dev, rvu->hw); devm_kfree(dev, rvu); return err; } static void rvu_remove(struct pci_dev *pdev) { struct rvu *rvu = pci_get_drvdata(pdev); rvu_dbg_exit(rvu); rvu_unregister_dl(rvu); rvu_unregister_interrupts(rvu); rvu_flr_wq_destroy(rvu); rvu_cgx_exit(rvu); rvu_fwdata_exit(rvu); rvu_mcs_exit(rvu); rvu_mbox_destroy(&rvu->afpf_wq_info); rvu_disable_sriov(rvu); rvu_reset_all_blocks(rvu); rvu_free_hw_resources(rvu); rvu_clear_rvum_blk_revid(rvu); ptp_put(rvu->ptp); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); devm_kfree(&pdev->dev, rvu->hw); devm_kfree(&pdev->dev, rvu); } static struct pci_driver rvu_driver = { .name = DRV_NAME, .id_table = rvu_id_table, .probe = rvu_probe, .remove = rvu_remove, }; static int __init rvu_init_module(void) { int err; pr_info("%s: %s\n", DRV_NAME, DRV_STRING); err = pci_register_driver(&cgx_driver); if (err < 0) return err; err = pci_register_driver(&ptp_driver); if (err < 0) goto ptp_err; err = pci_register_driver(&mcs_driver); if (err < 0) goto mcs_err; err = pci_register_driver(&rvu_driver); if (err < 0) goto rvu_err; return 0; rvu_err: pci_unregister_driver(&mcs_driver); mcs_err: pci_unregister_driver(&ptp_driver); ptp_err: pci_unregister_driver(&cgx_driver); return err; } static void __exit rvu_cleanup_module(void) { pci_unregister_driver(&rvu_driver); pci_unregister_driver(&mcs_driver); pci_unregister_driver(&ptp_driver); pci_unregister_driver(&cgx_driver); } module_init(rvu_init_module); module_exit(rvu_cleanup_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1