Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sten Wang | 3038 | 52.94% | 1 | 0.92% |
Florian Fainelli | 1903 | 33.16% | 56 | 51.38% |
Shawn Lin | 267 | 4.65% | 1 | 0.92% |
Christophe Jaillet | 71 | 1.24% | 1 | 0.92% |
Stephen Hemminger | 67 | 1.17% | 3 | 2.75% |
François Romieu | 59 | 1.03% | 2 | 1.83% |
Denis Kirjanov | 49 | 0.85% | 1 | 0.92% |
Devendra Naga | 33 | 0.58% | 3 | 2.75% |
Jakub Kiciński | 31 | 0.54% | 2 | 1.83% |
Joe Chou | 22 | 0.38% | 2 | 1.83% |
Manuel Bessler | 18 | 0.31% | 1 | 0.92% |
Jiri Pirko | 18 | 0.31% | 4 | 3.67% |
Li Zetao | 17 | 0.30% | 1 | 0.92% |
Michael Thalmeier | 15 | 0.26% | 1 | 0.92% |
Jeff Garzik | 14 | 0.24% | 1 | 0.92% |
John W. Linville | 14 | 0.24% | 1 | 0.92% |
Al Viro | 12 | 0.21% | 1 | 0.92% |
Mark Kelly | 11 | 0.19% | 1 | 0.92% |
Philippe Reynes | 10 | 0.17% | 2 | 1.83% |
Andrew Lunn | 8 | 0.14% | 4 | 3.67% |
Yang Hongyang | 8 | 0.14% | 1 | 0.92% |
Richard Cochran | 8 | 0.14% | 2 | 1.83% |
Henk de Groot | 7 | 0.12% | 1 | 0.92% |
Ben Hutchings | 6 | 0.10% | 1 | 0.92% |
Benoit Taine | 6 | 0.10% | 1 | 0.92% |
Axel Lin | 5 | 0.09% | 1 | 0.92% |
Michael S. Tsirkin | 4 | 0.07% | 1 | 0.92% |
Wolfram Sang | 3 | 0.05% | 1 | 0.92% |
Colin Ian King | 2 | 0.03% | 1 | 0.92% |
Hannes Eder | 2 | 0.03% | 1 | 0.92% |
Florian Westphal | 2 | 0.03% | 1 | 0.92% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.92% |
Lucas De Marchi | 1 | 0.02% | 1 | 0.92% |
Cesar Eduardo Barros | 1 | 0.02% | 1 | 0.92% |
Otavio Salvador | 1 | 0.02% | 1 | 0.92% |
Michael Opdenacker | 1 | 0.02% | 1 | 0.92% |
Arnd Bergmann | 1 | 0.02% | 1 | 0.92% |
Heiner Kallweit | 1 | 0.02% | 1 | 0.92% |
Danny Kukawka | 1 | 0.02% | 1 | 0.92% |
Total | 5739 | 109 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * RDC R6040 Fast Ethernet MAC support * * Copyright (C) 2004 Sten Wang <sten.wang@rdc.com.tw> * Copyright (C) 2007 * Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us> * Copyright (C) 2007-2012 Florian Fainelli <f.fainelli@gmail.com> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <linux/crc32.h> #include <linux/spinlock.h> #include <linux/bitops.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/uaccess.h> #include <linux/phy.h> #include <asm/processor.h> #define DRV_NAME "r6040" #define DRV_VERSION "0.29" #define DRV_RELDATE "04Jul2016" /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (6000 * HZ / 1000) /* RDC MAC I/O Size */ #define R6040_IO_SIZE 256 /* MAX RDC MAC */ #define MAX_MAC 2 /* MAC registers */ #define MCR0 0x00 /* Control register 0 */ #define MCR0_RCVEN 0x0002 /* Receive enable */ #define MCR0_PROMISC 0x0020 /* Promiscuous mode */ #define MCR0_HASH_EN 0x0100 /* Enable multicast hash table function */ #define MCR0_XMTEN 0x1000 /* Transmission enable */ #define MCR0_FD 0x8000 /* Full/Half duplex */ #define MCR1 0x04 /* Control register 1 */ #define MAC_RST 0x0001 /* Reset the MAC */ #define MBCR 0x08 /* Bus control */ #define MT_ICR 0x0C /* TX interrupt control */ #define MR_ICR 0x10 /* RX interrupt control */ #define MTPR 0x14 /* TX poll command register */ #define TM2TX 0x0001 /* Trigger MAC to transmit */ #define MR_BSR 0x18 /* RX buffer size */ #define MR_DCR 0x1A /* RX descriptor control */ #define MLSR 0x1C /* Last status */ #define TX_FIFO_UNDR 0x0200 /* TX FIFO under-run */ #define TX_EXCEEDC 0x2000 /* Transmit exceed collision */ #define TX_LATEC 0x4000 /* Transmit late collision */ #define MMDIO 0x20 /* MDIO control register */ #define MDIO_WRITE 0x4000 /* MDIO write */ #define MDIO_READ 0x2000 /* MDIO read */ #define MMRD 0x24 /* MDIO read data register */ #define MMWD 0x28 /* MDIO write data register */ #define MTD_SA0 0x2C /* TX descriptor start address 0 */ #define MTD_SA1 0x30 /* TX descriptor start address 1 */ #define MRD_SA0 0x34 /* RX descriptor start address 0 */ #define MRD_SA1 0x38 /* RX descriptor start address 1 */ #define MISR 0x3C /* Status register */ #define MIER 0x40 /* INT enable register */ #define MSK_INT 0x0000 /* Mask off interrupts */ #define RX_FINISH 0x0001 /* RX finished */ #define RX_NO_DESC 0x0002 /* No RX descriptor available */ #define RX_FIFO_FULL 0x0004 /* RX FIFO full */ #define RX_EARLY 0x0008 /* RX early */ #define TX_FINISH 0x0010 /* TX finished */ #define TX_EARLY 0x0080 /* TX early */ #define EVENT_OVRFL 0x0100 /* Event counter overflow */ #define LINK_CHANGED 0x0200 /* PHY link changed */ #define ME_CISR 0x44 /* Event counter INT status */ #define ME_CIER 0x48 /* Event counter INT enable */ #define MR_CNT 0x50 /* Successfully received packet counter */ #define ME_CNT0 0x52 /* Event counter 0 */ #define ME_CNT1 0x54 /* Event counter 1 */ #define ME_CNT2 0x56 /* Event counter 2 */ #define ME_CNT3 0x58 /* Event counter 3 */ #define MT_CNT 0x5A /* Successfully transmit packet counter */ #define ME_CNT4 0x5C /* Event counter 4 */ #define MP_CNT 0x5E /* Pause frame counter register */ #define MAR0 0x60 /* Hash table 0 */ #define MAR1 0x62 /* Hash table 1 */ #define MAR2 0x64 /* Hash table 2 */ #define MAR3 0x66 /* Hash table 3 */ #define MID_0L 0x68 /* Multicast address MID0 Low */ #define MID_0M 0x6A /* Multicast address MID0 Medium */ #define MID_0H 0x6C /* Multicast address MID0 High */ #define MID_1L 0x70 /* MID1 Low */ #define MID_1M 0x72 /* MID1 Medium */ #define MID_1H 0x74 /* MID1 High */ #define MID_2L 0x78 /* MID2 Low */ #define MID_2M 0x7A /* MID2 Medium */ #define MID_2H 0x7C /* MID2 High */ #define MID_3L 0x80 /* MID3 Low */ #define MID_3M 0x82 /* MID3 Medium */ #define MID_3H 0x84 /* MID3 High */ #define PHY_CC 0x88 /* PHY status change configuration register */ #define SCEN 0x8000 /* PHY status change enable */ #define PHYAD_SHIFT 8 /* PHY address shift */ #define TMRDIV_SHIFT 0 /* Timer divider shift */ #define PHY_ST 0x8A /* PHY status register */ #define MAC_SM 0xAC /* MAC status machine */ #define MAC_SM_RST 0x0002 /* MAC status machine reset */ #define MD_CSC 0xb6 /* MDC speed control register */ #define MD_CSC_DEFAULT 0x0030 #define MAC_ID 0xBE /* Identifier register */ #define TX_DCNT 0x80 /* TX descriptor count */ #define RX_DCNT 0x80 /* RX descriptor count */ #define MAX_BUF_SIZE 0x600 #define RX_DESC_SIZE (RX_DCNT * sizeof(struct r6040_descriptor)) #define TX_DESC_SIZE (TX_DCNT * sizeof(struct r6040_descriptor)) #define MBCR_DEFAULT 0x012A /* MAC Bus Control Register */ #define MCAST_MAX 3 /* Max number multicast addresses to filter */ #define MAC_DEF_TIMEOUT 2048 /* Default MAC read/write operation timeout */ /* Descriptor status */ #define DSC_OWNER_MAC 0x8000 /* MAC is the owner of this descriptor */ #define DSC_RX_OK 0x4000 /* RX was successful */ #define DSC_RX_ERR 0x0800 /* RX PHY error */ #define DSC_RX_ERR_DRI 0x0400 /* RX dribble packet */ #define DSC_RX_ERR_BUF 0x0200 /* RX length exceeds buffer size */ #define DSC_RX_ERR_LONG 0x0100 /* RX length > maximum packet length */ #define DSC_RX_ERR_RUNT 0x0080 /* RX packet length < 64 byte */ #define DSC_RX_ERR_CRC 0x0040 /* RX CRC error */ #define DSC_RX_BCAST 0x0020 /* RX broadcast (no error) */ #define DSC_RX_MCAST 0x0010 /* RX multicast (no error) */ #define DSC_RX_MCH_HIT 0x0008 /* RX multicast hit in hash table (no error) */ #define DSC_RX_MIDH_HIT 0x0004 /* RX MID table hit (no error) */ #define DSC_RX_IDX_MID_MASK 3 /* RX mask for the index of matched MIDx */ MODULE_AUTHOR("Sten Wang <sten.wang@rdc.com.tw>," "Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>," "Florian Fainelli <f.fainelli@gmail.com>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("RDC R6040 NAPI PCI FastEthernet driver"); MODULE_VERSION(DRV_VERSION " " DRV_RELDATE); /* RX and TX interrupts that we handle */ #define RX_INTS (RX_FIFO_FULL | RX_NO_DESC | RX_FINISH) #define TX_INTS (TX_FINISH) #define INT_MASK (RX_INTS | TX_INTS) struct r6040_descriptor { u16 status, len; /* 0-3 */ __le32 buf; /* 4-7 */ __le32 ndesc; /* 8-B */ u32 rev1; /* C-F */ char *vbufp; /* 10-13 */ struct r6040_descriptor *vndescp; /* 14-17 */ struct sk_buff *skb_ptr; /* 18-1B */ u32 rev2; /* 1C-1F */ } __aligned(32); struct r6040_private { spinlock_t lock; /* driver lock */ struct pci_dev *pdev; struct r6040_descriptor *rx_insert_ptr; struct r6040_descriptor *rx_remove_ptr; struct r6040_descriptor *tx_insert_ptr; struct r6040_descriptor *tx_remove_ptr; struct r6040_descriptor *rx_ring; struct r6040_descriptor *tx_ring; dma_addr_t rx_ring_dma; dma_addr_t tx_ring_dma; u16 tx_free_desc; u16 mcr0; struct net_device *dev; struct mii_bus *mii_bus; struct napi_struct napi; void __iomem *base; int old_link; int old_duplex; }; static char version[] = DRV_NAME ": RDC R6040 NAPI net driver," "version "DRV_VERSION " (" DRV_RELDATE ")"; /* Read a word data from PHY Chip */ static int r6040_phy_read(void __iomem *ioaddr, int phy_addr, int reg) { int limit = MAC_DEF_TIMEOUT; u16 cmd; iowrite16(MDIO_READ | reg | (phy_addr << 8), ioaddr + MMDIO); /* Wait for the read bit to be cleared */ while (limit--) { cmd = ioread16(ioaddr + MMDIO); if (!(cmd & MDIO_READ)) break; udelay(1); } if (limit < 0) return -ETIMEDOUT; return ioread16(ioaddr + MMRD); } /* Write a word data from PHY Chip */ static int r6040_phy_write(void __iomem *ioaddr, int phy_addr, int reg, u16 val) { int limit = MAC_DEF_TIMEOUT; u16 cmd; iowrite16(val, ioaddr + MMWD); /* Write the command to the MDIO bus */ iowrite16(MDIO_WRITE | reg | (phy_addr << 8), ioaddr + MMDIO); /* Wait for the write bit to be cleared */ while (limit--) { cmd = ioread16(ioaddr + MMDIO); if (!(cmd & MDIO_WRITE)) break; udelay(1); } return (limit < 0) ? -ETIMEDOUT : 0; } static int r6040_mdiobus_read(struct mii_bus *bus, int phy_addr, int reg) { struct net_device *dev = bus->priv; struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; return r6040_phy_read(ioaddr, phy_addr, reg); } static int r6040_mdiobus_write(struct mii_bus *bus, int phy_addr, int reg, u16 value) { struct net_device *dev = bus->priv; struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; return r6040_phy_write(ioaddr, phy_addr, reg, value); } static void r6040_free_txbufs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); int i; for (i = 0; i < TX_DCNT; i++) { if (lp->tx_insert_ptr->skb_ptr) { dma_unmap_single(&lp->pdev->dev, le32_to_cpu(lp->tx_insert_ptr->buf), MAX_BUF_SIZE, DMA_TO_DEVICE); dev_kfree_skb(lp->tx_insert_ptr->skb_ptr); lp->tx_insert_ptr->skb_ptr = NULL; } lp->tx_insert_ptr = lp->tx_insert_ptr->vndescp; } } static void r6040_free_rxbufs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); int i; for (i = 0; i < RX_DCNT; i++) { if (lp->rx_insert_ptr->skb_ptr) { dma_unmap_single(&lp->pdev->dev, le32_to_cpu(lp->rx_insert_ptr->buf), MAX_BUF_SIZE, DMA_FROM_DEVICE); dev_kfree_skb(lp->rx_insert_ptr->skb_ptr); lp->rx_insert_ptr->skb_ptr = NULL; } lp->rx_insert_ptr = lp->rx_insert_ptr->vndescp; } } static void r6040_init_ring_desc(struct r6040_descriptor *desc_ring, dma_addr_t desc_dma, int size) { struct r6040_descriptor *desc = desc_ring; dma_addr_t mapping = desc_dma; while (size-- > 0) { mapping += sizeof(*desc); desc->ndesc = cpu_to_le32(mapping); desc->vndescp = desc + 1; desc++; } desc--; desc->ndesc = cpu_to_le32(desc_dma); desc->vndescp = desc_ring; } static void r6040_init_txbufs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); lp->tx_free_desc = TX_DCNT; lp->tx_remove_ptr = lp->tx_insert_ptr = lp->tx_ring; r6040_init_ring_desc(lp->tx_ring, lp->tx_ring_dma, TX_DCNT); } static int r6040_alloc_rxbufs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); struct r6040_descriptor *desc; struct sk_buff *skb; int rc; lp->rx_remove_ptr = lp->rx_insert_ptr = lp->rx_ring; r6040_init_ring_desc(lp->rx_ring, lp->rx_ring_dma, RX_DCNT); /* Allocate skbs for the rx descriptors */ desc = lp->rx_ring; do { skb = netdev_alloc_skb(dev, MAX_BUF_SIZE); if (!skb) { rc = -ENOMEM; goto err_exit; } desc->skb_ptr = skb; desc->buf = cpu_to_le32(dma_map_single(&lp->pdev->dev, desc->skb_ptr->data, MAX_BUF_SIZE, DMA_FROM_DEVICE)); desc->status = DSC_OWNER_MAC; desc = desc->vndescp; } while (desc != lp->rx_ring); return 0; err_exit: /* Deallocate all previously allocated skbs */ r6040_free_rxbufs(dev); return rc; } static void r6040_reset_mac(struct r6040_private *lp) { void __iomem *ioaddr = lp->base; int limit = MAC_DEF_TIMEOUT; u16 cmd, md_csc; md_csc = ioread16(ioaddr + MD_CSC); iowrite16(MAC_RST, ioaddr + MCR1); while (limit--) { cmd = ioread16(ioaddr + MCR1); if (cmd & MAC_RST) break; } /* Reset internal state machine */ iowrite16(MAC_SM_RST, ioaddr + MAC_SM); iowrite16(0, ioaddr + MAC_SM); mdelay(5); /* Restore MDIO clock frequency */ if (md_csc != MD_CSC_DEFAULT) iowrite16(md_csc, ioaddr + MD_CSC); } static void r6040_init_mac_regs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; /* Mask Off Interrupt */ iowrite16(MSK_INT, ioaddr + MIER); /* Reset RDC MAC */ r6040_reset_mac(lp); /* MAC Bus Control Register */ iowrite16(MBCR_DEFAULT, ioaddr + MBCR); /* Buffer Size Register */ iowrite16(MAX_BUF_SIZE, ioaddr + MR_BSR); /* Write TX ring start address */ iowrite16(lp->tx_ring_dma, ioaddr + MTD_SA0); iowrite16(lp->tx_ring_dma >> 16, ioaddr + MTD_SA1); /* Write RX ring start address */ iowrite16(lp->rx_ring_dma, ioaddr + MRD_SA0); iowrite16(lp->rx_ring_dma >> 16, ioaddr + MRD_SA1); /* Set interrupt waiting time and packet numbers */ iowrite16(0, ioaddr + MT_ICR); iowrite16(0, ioaddr + MR_ICR); /* Enable interrupts */ iowrite16(INT_MASK, ioaddr + MIER); /* Enable TX and RX */ iowrite16(lp->mcr0 | MCR0_RCVEN, ioaddr); /* Let TX poll the descriptors * we may got called by r6040_tx_timeout which has left * some unsent tx buffers */ iowrite16(TM2TX, ioaddr + MTPR); } static void r6040_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct r6040_private *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; netdev_warn(dev, "transmit timed out, int enable %4.4x " "status %4.4x\n", ioread16(ioaddr + MIER), ioread16(ioaddr + MISR)); dev->stats.tx_errors++; /* Reset MAC and re-init all registers */ r6040_init_mac_regs(dev); } static struct net_device_stats *r6040_get_stats(struct net_device *dev) { struct r6040_private *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); dev->stats.rx_crc_errors += ioread8(ioaddr + ME_CNT1); dev->stats.multicast += ioread8(ioaddr + ME_CNT0); spin_unlock_irqrestore(&priv->lock, flags); return &dev->stats; } /* Stop RDC MAC and Free the allocated resource */ static void r6040_down(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; const u16 *adrp; /* Stop MAC */ iowrite16(MSK_INT, ioaddr + MIER); /* Mask Off Interrupt */ /* Reset RDC MAC */ r6040_reset_mac(lp); /* Restore MAC Address to MIDx */ adrp = (const u16 *) dev->dev_addr; iowrite16(adrp[0], ioaddr + MID_0L); iowrite16(adrp[1], ioaddr + MID_0M); iowrite16(adrp[2], ioaddr + MID_0H); } static int r6040_close(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); struct pci_dev *pdev = lp->pdev; phy_stop(dev->phydev); napi_disable(&lp->napi); netif_stop_queue(dev); spin_lock_irq(&lp->lock); r6040_down(dev); /* Free RX buffer */ r6040_free_rxbufs(dev); /* Free TX buffer */ r6040_free_txbufs(dev); spin_unlock_irq(&lp->lock); free_irq(dev->irq, dev); /* Free Descriptor memory */ if (lp->rx_ring) { dma_free_coherent(&pdev->dev, RX_DESC_SIZE, lp->rx_ring, lp->rx_ring_dma); lp->rx_ring = NULL; } if (lp->tx_ring) { dma_free_coherent(&pdev->dev, TX_DESC_SIZE, lp->tx_ring, lp->tx_ring_dma); lp->tx_ring = NULL; } return 0; } static int r6040_rx(struct net_device *dev, int limit) { struct r6040_private *priv = netdev_priv(dev); struct r6040_descriptor *descptr = priv->rx_remove_ptr; struct sk_buff *skb_ptr, *new_skb; int count = 0; u16 err; /* Limit not reached and the descriptor belongs to the CPU */ while (count < limit && !(descptr->status & DSC_OWNER_MAC)) { /* Read the descriptor status */ err = descptr->status; /* Global error status set */ if (err & DSC_RX_ERR) { /* RX dribble */ if (err & DSC_RX_ERR_DRI) dev->stats.rx_frame_errors++; /* Buffer length exceeded */ if (err & DSC_RX_ERR_BUF) dev->stats.rx_length_errors++; /* Packet too long */ if (err & DSC_RX_ERR_LONG) dev->stats.rx_length_errors++; /* Packet < 64 bytes */ if (err & DSC_RX_ERR_RUNT) dev->stats.rx_length_errors++; /* CRC error */ if (err & DSC_RX_ERR_CRC) { spin_lock(&priv->lock); dev->stats.rx_crc_errors++; spin_unlock(&priv->lock); } goto next_descr; } /* Packet successfully received */ new_skb = netdev_alloc_skb(dev, MAX_BUF_SIZE); if (!new_skb) { dev->stats.rx_dropped++; goto next_descr; } skb_ptr = descptr->skb_ptr; skb_ptr->dev = priv->dev; /* Do not count the CRC */ skb_put(skb_ptr, descptr->len - ETH_FCS_LEN); dma_unmap_single(&priv->pdev->dev, le32_to_cpu(descptr->buf), MAX_BUF_SIZE, DMA_FROM_DEVICE); skb_ptr->protocol = eth_type_trans(skb_ptr, priv->dev); /* Send to upper layer */ netif_receive_skb(skb_ptr); dev->stats.rx_packets++; dev->stats.rx_bytes += descptr->len - ETH_FCS_LEN; /* put new skb into descriptor */ descptr->skb_ptr = new_skb; descptr->buf = cpu_to_le32(dma_map_single(&priv->pdev->dev, descptr->skb_ptr->data, MAX_BUF_SIZE, DMA_FROM_DEVICE)); next_descr: /* put the descriptor back to the MAC */ descptr->status = DSC_OWNER_MAC; descptr = descptr->vndescp; count++; } priv->rx_remove_ptr = descptr; return count; } static void r6040_tx(struct net_device *dev) { struct r6040_private *priv = netdev_priv(dev); struct r6040_descriptor *descptr; void __iomem *ioaddr = priv->base; struct sk_buff *skb_ptr; u16 err; spin_lock(&priv->lock); descptr = priv->tx_remove_ptr; while (priv->tx_free_desc < TX_DCNT) { /* Check for errors */ err = ioread16(ioaddr + MLSR); if (err & TX_FIFO_UNDR) dev->stats.tx_fifo_errors++; if (err & (TX_EXCEEDC | TX_LATEC)) dev->stats.tx_carrier_errors++; if (descptr->status & DSC_OWNER_MAC) break; /* Not complete */ skb_ptr = descptr->skb_ptr; /* Statistic Counter */ dev->stats.tx_packets++; dev->stats.tx_bytes += skb_ptr->len; dma_unmap_single(&priv->pdev->dev, le32_to_cpu(descptr->buf), skb_ptr->len, DMA_TO_DEVICE); /* Free buffer */ dev_kfree_skb(skb_ptr); descptr->skb_ptr = NULL; /* To next descriptor */ descptr = descptr->vndescp; priv->tx_free_desc++; } priv->tx_remove_ptr = descptr; if (priv->tx_free_desc) netif_wake_queue(dev); spin_unlock(&priv->lock); } static int r6040_poll(struct napi_struct *napi, int budget) { struct r6040_private *priv = container_of(napi, struct r6040_private, napi); struct net_device *dev = priv->dev; void __iomem *ioaddr = priv->base; int work_done; r6040_tx(dev); work_done = r6040_rx(dev, budget); if (work_done < budget) { napi_complete_done(napi, work_done); /* Enable RX/TX interrupt */ iowrite16(ioread16(ioaddr + MIER) | RX_INTS | TX_INTS, ioaddr + MIER); } return work_done; } /* The RDC interrupt handler. */ static irqreturn_t r6040_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; u16 misr, status; /* Save MIER */ misr = ioread16(ioaddr + MIER); /* Mask off RDC MAC interrupt */ iowrite16(MSK_INT, ioaddr + MIER); /* Read MISR status and clear */ status = ioread16(ioaddr + MISR); if (status == 0x0000 || status == 0xffff) { /* Restore RDC MAC interrupt */ iowrite16(misr, ioaddr + MIER); return IRQ_NONE; } /* RX interrupt request */ if (status & (RX_INTS | TX_INTS)) { if (status & RX_NO_DESC) { /* RX descriptor unavailable */ dev->stats.rx_dropped++; dev->stats.rx_missed_errors++; } if (status & RX_FIFO_FULL) dev->stats.rx_fifo_errors++; if (likely(napi_schedule_prep(&lp->napi))) { /* Mask off RX interrupt */ misr &= ~(RX_INTS | TX_INTS); __napi_schedule_irqoff(&lp->napi); } } /* Restore RDC MAC interrupt */ iowrite16(misr, ioaddr + MIER); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void r6040_poll_controller(struct net_device *dev) { disable_irq(dev->irq); r6040_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* Init RDC MAC */ static int r6040_up(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int ret; /* Initialise and alloc RX/TX buffers */ r6040_init_txbufs(dev); ret = r6040_alloc_rxbufs(dev); if (ret) return ret; /* improve performance (by RDC guys) */ r6040_phy_write(ioaddr, 30, 17, (r6040_phy_read(ioaddr, 30, 17) | 0x4000)); r6040_phy_write(ioaddr, 30, 17, ~((~r6040_phy_read(ioaddr, 30, 17)) | 0x2000)); r6040_phy_write(ioaddr, 0, 19, 0x0000); r6040_phy_write(ioaddr, 0, 30, 0x01F0); /* Initialize all MAC registers */ r6040_init_mac_regs(dev); phy_start(dev->phydev); return 0; } /* Read/set MAC address routines */ static void r6040_mac_address(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; const u16 *adrp; /* Reset MAC */ r6040_reset_mac(lp); /* Restore MAC Address */ adrp = (const u16 *) dev->dev_addr; iowrite16(adrp[0], ioaddr + MID_0L); iowrite16(adrp[1], ioaddr + MID_0M); iowrite16(adrp[2], ioaddr + MID_0H); } static int r6040_open(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); int ret; /* Request IRQ and Register interrupt handler */ ret = request_irq(dev->irq, r6040_interrupt, IRQF_SHARED, dev->name, dev); if (ret) goto out; /* Set MAC address */ r6040_mac_address(dev); /* Allocate Descriptor memory */ lp->rx_ring = dma_alloc_coherent(&lp->pdev->dev, RX_DESC_SIZE, &lp->rx_ring_dma, GFP_KERNEL); if (!lp->rx_ring) { ret = -ENOMEM; goto err_free_irq; } lp->tx_ring = dma_alloc_coherent(&lp->pdev->dev, TX_DESC_SIZE, &lp->tx_ring_dma, GFP_KERNEL); if (!lp->tx_ring) { ret = -ENOMEM; goto err_free_rx_ring; } ret = r6040_up(dev); if (ret) goto err_free_tx_ring; napi_enable(&lp->napi); netif_start_queue(dev); return 0; err_free_tx_ring: dma_free_coherent(&lp->pdev->dev, TX_DESC_SIZE, lp->tx_ring, lp->tx_ring_dma); err_free_rx_ring: dma_free_coherent(&lp->pdev->dev, RX_DESC_SIZE, lp->rx_ring, lp->rx_ring_dma); err_free_irq: free_irq(dev->irq, dev); out: return ret; } static netdev_tx_t r6040_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); struct r6040_descriptor *descptr; void __iomem *ioaddr = lp->base; unsigned long flags; if (skb_put_padto(skb, ETH_ZLEN) < 0) return NETDEV_TX_OK; /* Critical Section */ spin_lock_irqsave(&lp->lock, flags); /* TX resource check */ if (!lp->tx_free_desc) { spin_unlock_irqrestore(&lp->lock, flags); netif_stop_queue(dev); netdev_err(dev, ": no tx descriptor\n"); return NETDEV_TX_BUSY; } /* Set TX descriptor & Transmit it */ lp->tx_free_desc--; descptr = lp->tx_insert_ptr; descptr->len = skb->len; descptr->skb_ptr = skb; descptr->buf = cpu_to_le32(dma_map_single(&lp->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE)); descptr->status = DSC_OWNER_MAC; skb_tx_timestamp(skb); /* Trigger the MAC to check the TX descriptor */ if (!netdev_xmit_more() || netif_queue_stopped(dev)) iowrite16(TM2TX, ioaddr + MTPR); lp->tx_insert_ptr = descptr->vndescp; /* If no tx resource, stop */ if (!lp->tx_free_desc) netif_stop_queue(dev); spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_OK; } static void r6040_multicast_list(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned long flags; struct netdev_hw_addr *ha; int i; const u16 *adrp; u16 hash_table[4] = { 0 }; spin_lock_irqsave(&lp->lock, flags); /* Keep our MAC Address */ adrp = (const u16 *)dev->dev_addr; iowrite16(adrp[0], ioaddr + MID_0L); iowrite16(adrp[1], ioaddr + MID_0M); iowrite16(adrp[2], ioaddr + MID_0H); /* Clear AMCP & PROM bits */ lp->mcr0 = ioread16(ioaddr + MCR0) & ~(MCR0_PROMISC | MCR0_HASH_EN); /* Promiscuous mode */ if (dev->flags & IFF_PROMISC) lp->mcr0 |= MCR0_PROMISC; /* Enable multicast hash table function to * receive all multicast packets. */ else if (dev->flags & IFF_ALLMULTI) { lp->mcr0 |= MCR0_HASH_EN; for (i = 0; i < MCAST_MAX ; i++) { iowrite16(0, ioaddr + MID_1L + 8 * i); iowrite16(0, ioaddr + MID_1M + 8 * i); iowrite16(0, ioaddr + MID_1H + 8 * i); } for (i = 0; i < 4; i++) hash_table[i] = 0xffff; } /* Use internal multicast address registers if the number of * multicast addresses is not greater than MCAST_MAX. */ else if (netdev_mc_count(dev) <= MCAST_MAX) { i = 0; netdev_for_each_mc_addr(ha, dev) { u16 *adrp = (u16 *) ha->addr; iowrite16(adrp[0], ioaddr + MID_1L + 8 * i); iowrite16(adrp[1], ioaddr + MID_1M + 8 * i); iowrite16(adrp[2], ioaddr + MID_1H + 8 * i); i++; } while (i < MCAST_MAX) { iowrite16(0, ioaddr + MID_1L + 8 * i); iowrite16(0, ioaddr + MID_1M + 8 * i); iowrite16(0, ioaddr + MID_1H + 8 * i); i++; } } /* Otherwise, Enable multicast hash table function. */ else { u32 crc; lp->mcr0 |= MCR0_HASH_EN; for (i = 0; i < MCAST_MAX ; i++) { iowrite16(0, ioaddr + MID_1L + 8 * i); iowrite16(0, ioaddr + MID_1M + 8 * i); iowrite16(0, ioaddr + MID_1H + 8 * i); } /* Build multicast hash table */ netdev_for_each_mc_addr(ha, dev) { u8 *addrs = ha->addr; crc = ether_crc(ETH_ALEN, addrs); crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } } iowrite16(lp->mcr0, ioaddr + MCR0); /* Fill the MAC hash tables with their values */ if (lp->mcr0 & MCR0_HASH_EN) { iowrite16(hash_table[0], ioaddr + MAR0); iowrite16(hash_table[1], ioaddr + MAR1); iowrite16(hash_table[2], ioaddr + MAR2); iowrite16(hash_table[3], ioaddr + MAR3); } spin_unlock_irqrestore(&lp->lock, flags); } static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct r6040_private *rp = netdev_priv(dev); strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, DRV_VERSION, sizeof(info->version)); strscpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info)); } static const struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_link = ethtool_op_get_link, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .nway_reset = phy_ethtool_nway_reset, }; static const struct net_device_ops r6040_netdev_ops = { .ndo_open = r6040_open, .ndo_stop = r6040_close, .ndo_start_xmit = r6040_start_xmit, .ndo_get_stats = r6040_get_stats, .ndo_set_rx_mode = r6040_multicast_list, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_eth_ioctl = phy_do_ioctl, .ndo_tx_timeout = r6040_tx_timeout, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = r6040_poll_controller, #endif }; static void r6040_adjust_link(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); struct phy_device *phydev = dev->phydev; int status_changed = 0; void __iomem *ioaddr = lp->base; BUG_ON(!phydev); if (lp->old_link != phydev->link) { status_changed = 1; lp->old_link = phydev->link; } /* reflect duplex change */ if (phydev->link && (lp->old_duplex != phydev->duplex)) { lp->mcr0 |= (phydev->duplex == DUPLEX_FULL ? MCR0_FD : 0); iowrite16(lp->mcr0, ioaddr); status_changed = 1; lp->old_duplex = phydev->duplex; } if (status_changed) phy_print_status(phydev); } static int r6040_mii_probe(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); struct phy_device *phydev = NULL; phydev = phy_find_first(lp->mii_bus); if (!phydev) { dev_err(&lp->pdev->dev, "no PHY found\n"); return -ENODEV; } phydev = phy_connect(dev, phydev_name(phydev), &r6040_adjust_link, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { dev_err(&lp->pdev->dev, "could not attach to PHY\n"); return PTR_ERR(phydev); } phy_set_max_speed(phydev, SPEED_100); lp->old_link = 0; lp->old_duplex = -1; phy_attached_info(phydev); return 0; } static int r6040_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct r6040_private *lp; void __iomem *ioaddr; int err, io_size = R6040_IO_SIZE; static int card_idx = -1; u16 addr[ETH_ALEN / 2]; int bar = 0; pr_info("%s\n", version); err = pci_enable_device(pdev); if (err) goto err_out; /* this should always be supported */ err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "32-bit PCI DMA addresses not supported by the card\n"); goto err_out_disable_dev; } err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "32-bit PCI DMA addresses not supported by the card\n"); goto err_out_disable_dev; } /* IO Size check */ if (pci_resource_len(pdev, bar) < io_size) { dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n"); err = -EIO; goto err_out_disable_dev; } pci_set_master(pdev); dev = alloc_etherdev(sizeof(struct r6040_private)); if (!dev) { err = -ENOMEM; goto err_out_disable_dev; } SET_NETDEV_DEV(dev, &pdev->dev); lp = netdev_priv(dev); err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "Failed to request PCI regions\n"); goto err_out_free_dev; } ioaddr = pci_iomap(pdev, bar, io_size); if (!ioaddr) { dev_err(&pdev->dev, "ioremap failed for device\n"); err = -EIO; goto err_out_free_res; } /* If PHY status change register is still set to zero it means the * bootloader didn't initialize it, so we set it to: * - enable phy status change * - enable all phy addresses * - set to lowest timer divider */ if (ioread16(ioaddr + PHY_CC) == 0) iowrite16(SCEN | PHY_MAX_ADDR << PHYAD_SHIFT | 7 << TMRDIV_SHIFT, ioaddr + PHY_CC); /* Init system & device */ lp->base = ioaddr; dev->irq = pdev->irq; spin_lock_init(&lp->lock); pci_set_drvdata(pdev, dev); /* Set MAC address */ card_idx++; addr[0] = ioread16(ioaddr + MID_0L); addr[1] = ioread16(ioaddr + MID_0M); addr[2] = ioread16(ioaddr + MID_0H); eth_hw_addr_set(dev, (u8 *)addr); /* Some bootloader/BIOSes do not initialize * MAC address, warn about that */ if (!(addr[0] || addr[1] || addr[2])) { netdev_warn(dev, "MAC address not initialized, " "generating random\n"); eth_hw_addr_random(dev); } /* Link new device into r6040_root_dev */ lp->pdev = pdev; lp->dev = dev; /* Init RDC private data */ lp->mcr0 = MCR0_XMTEN | MCR0_RCVEN; /* The RDC-specific entries in the device structure. */ dev->netdev_ops = &r6040_netdev_ops; dev->ethtool_ops = &netdev_ethtool_ops; dev->watchdog_timeo = TX_TIMEOUT; netif_napi_add(dev, &lp->napi, r6040_poll); lp->mii_bus = mdiobus_alloc(); if (!lp->mii_bus) { dev_err(&pdev->dev, "mdiobus_alloc() failed\n"); err = -ENOMEM; goto err_out_unmap; } lp->mii_bus->priv = dev; lp->mii_bus->read = r6040_mdiobus_read; lp->mii_bus->write = r6040_mdiobus_write; lp->mii_bus->name = "r6040_eth_mii"; snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", dev_name(&pdev->dev), card_idx); err = mdiobus_register(lp->mii_bus); if (err) { dev_err(&pdev->dev, "failed to register MII bus\n"); goto err_out_mdio; } err = r6040_mii_probe(dev); if (err) { dev_err(&pdev->dev, "failed to probe MII bus\n"); goto err_out_mdio_unregister; } /* Register net device. After this dev->name assign */ err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "Failed to register net device\n"); goto err_out_phy_disconnect; } return 0; err_out_phy_disconnect: phy_disconnect(dev->phydev); err_out_mdio_unregister: mdiobus_unregister(lp->mii_bus); err_out_mdio: mdiobus_free(lp->mii_bus); err_out_unmap: netif_napi_del(&lp->napi); pci_iounmap(pdev, ioaddr); err_out_free_res: pci_release_regions(pdev); err_out_free_dev: free_netdev(dev); err_out_disable_dev: pci_disable_device(pdev); err_out: return err; } static void r6040_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct r6040_private *lp = netdev_priv(dev); unregister_netdev(dev); phy_disconnect(dev->phydev); mdiobus_unregister(lp->mii_bus); mdiobus_free(lp->mii_bus); netif_napi_del(&lp->napi); pci_iounmap(pdev, lp->base); pci_release_regions(pdev); free_netdev(dev); pci_disable_device(pdev); } static const struct pci_device_id r6040_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_RDC, 0x6040) }, { 0 } }; MODULE_DEVICE_TABLE(pci, r6040_pci_tbl); static struct pci_driver r6040_driver = { .name = DRV_NAME, .id_table = r6040_pci_tbl, .probe = r6040_init_one, .remove = r6040_remove_one, }; module_pci_driver(r6040_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1