Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Maftei (amaftei) | 2476 | 48.44% | 6 | 6.98% |
Ben Hutchings | 1054 | 20.62% | 36 | 41.86% |
Edward Cree | 1003 | 19.62% | 14 | 16.28% |
Daniel Pieczko | 328 | 6.42% | 3 | 3.49% |
Steve Hodgson | 79 | 1.55% | 5 | 5.81% |
Jon Cooper | 51 | 1.00% | 3 | 3.49% |
Martin Habets | 37 | 0.72% | 2 | 2.33% |
Alexandre Rames | 19 | 0.37% | 1 | 1.16% |
Jiasheng Jiang | 14 | 0.27% | 1 | 1.16% |
Andrew Rybchenko | 9 | 0.18% | 1 | 1.16% |
FUJITA Tomonori | 8 | 0.16% | 1 | 1.16% |
Pieter Jansen van Vuuren | 6 | 0.12% | 1 | 1.16% |
Jesper Dangaard Brouer | 5 | 0.10% | 1 | 1.16% |
Herbert Xu | 5 | 0.10% | 2 | 2.33% |
Tom Herbert | 3 | 0.06% | 1 | 1.16% |
David Riddoch | 3 | 0.06% | 1 | 1.16% |
Charles McLachlan | 3 | 0.06% | 1 | 1.16% |
Bert Kenward | 2 | 0.04% | 2 | 2.33% |
Björn Töpel | 2 | 0.04% | 1 | 1.16% |
Jonathan Cooper | 2 | 0.04% | 1 | 1.16% |
Thomas Gleixner | 1 | 0.02% | 1 | 1.16% |
Stuart Hodgson | 1 | 0.02% | 1 | 1.16% |
Total | 5111 | 86 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2018 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include "net_driver.h" #include <linux/module.h> #include <linux/iommu.h> #include "efx.h" #include "nic.h" #include "rx_common.h" /* This is the percentage fill level below which new RX descriptors * will be added to the RX descriptor ring. */ static unsigned int rx_refill_threshold; module_param(rx_refill_threshold, uint, 0444); MODULE_PARM_DESC(rx_refill_threshold, "RX descriptor ring refill threshold (%)"); /* RX maximum head room required. * * This must be at least 1 to prevent overflow, plus one packet-worth * to allow pipelined receives. */ #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) /* Check the RX page recycle ring for a page that can be reused. */ static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; struct efx_rx_page_state *state; unsigned int index; struct page *page; if (unlikely(!rx_queue->page_ring)) return NULL; index = rx_queue->page_remove & rx_queue->page_ptr_mask; page = rx_queue->page_ring[index]; if (page == NULL) return NULL; rx_queue->page_ring[index] = NULL; /* page_remove cannot exceed page_add. */ if (rx_queue->page_remove != rx_queue->page_add) ++rx_queue->page_remove; /* If page_count is 1 then we hold the only reference to this page. */ if (page_count(page) == 1) { ++rx_queue->page_recycle_count; return page; } else { state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); put_page(page); ++rx_queue->page_recycle_failed; } return NULL; } /* Attempt to recycle the page if there is an RX recycle ring; the page can * only be added if this is the final RX buffer, to prevent pages being used in * the descriptor ring and appearing in the recycle ring simultaneously. */ static void efx_recycle_rx_page(struct efx_channel *channel, struct efx_rx_buffer *rx_buf) { struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); struct efx_nic *efx = rx_queue->efx; struct page *page = rx_buf->page; unsigned int index; /* Only recycle the page after processing the final buffer. */ if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) return; index = rx_queue->page_add & rx_queue->page_ptr_mask; if (rx_queue->page_ring[index] == NULL) { unsigned int read_index = rx_queue->page_remove & rx_queue->page_ptr_mask; /* The next slot in the recycle ring is available, but * increment page_remove if the read pointer currently * points here. */ if (read_index == index) ++rx_queue->page_remove; rx_queue->page_ring[index] = page; ++rx_queue->page_add; return; } ++rx_queue->page_recycle_full; efx_unmap_rx_buffer(efx, rx_buf); put_page(rx_buf->page); } /* Recycle the pages that are used by buffers that have just been received. */ void efx_recycle_rx_pages(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags) { struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); if (unlikely(!rx_queue->page_ring)) return; do { efx_recycle_rx_page(channel, rx_buf); rx_buf = efx_rx_buf_next(rx_queue, rx_buf); } while (--n_frags); } void efx_discard_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags) { struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); efx_recycle_rx_pages(channel, rx_buf, n_frags); efx_free_rx_buffers(rx_queue, rx_buf, n_frags); } static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) { unsigned int bufs_in_recycle_ring, page_ring_size; struct efx_nic *efx = rx_queue->efx; bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx); page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / efx->rx_bufs_per_page); rx_queue->page_ring = kcalloc(page_ring_size, sizeof(*rx_queue->page_ring), GFP_KERNEL); if (!rx_queue->page_ring) rx_queue->page_ptr_mask = 0; else rx_queue->page_ptr_mask = page_ring_size - 1; } static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; int i; if (unlikely(!rx_queue->page_ring)) return; /* Unmap and release the pages in the recycle ring. Remove the ring. */ for (i = 0; i <= rx_queue->page_ptr_mask; i++) { struct page *page = rx_queue->page_ring[i]; struct efx_rx_page_state *state; if (page == NULL) continue; state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); put_page(page); } kfree(rx_queue->page_ring); rx_queue->page_ring = NULL; } static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) { /* Release the page reference we hold for the buffer. */ if (rx_buf->page) put_page(rx_buf->page); /* If this is the last buffer in a page, unmap and free it. */ if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { efx_unmap_rx_buffer(rx_queue->efx, rx_buf); efx_free_rx_buffers(rx_queue, rx_buf, 1); } rx_buf->page = NULL; } int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int entries; int rc; /* Create the smallest power-of-two aligned ring */ entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); rx_queue->ptr_mask = entries - 1; netif_dbg(efx, probe, efx->net_dev, "creating RX queue %d size %#x mask %#x\n", efx_rx_queue_index(rx_queue), efx->rxq_entries, rx_queue->ptr_mask); /* Allocate RX buffers */ rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), GFP_KERNEL); if (!rx_queue->buffer) return -ENOMEM; rc = efx_nic_probe_rx(rx_queue); if (rc) { kfree(rx_queue->buffer); rx_queue->buffer = NULL; } return rc; } void efx_init_rx_queue(struct efx_rx_queue *rx_queue) { unsigned int max_fill, trigger, max_trigger; struct efx_nic *efx = rx_queue->efx; int rc = 0; netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); /* Initialise ptr fields */ rx_queue->added_count = 0; rx_queue->notified_count = 0; rx_queue->granted_count = 0; rx_queue->removed_count = 0; rx_queue->min_fill = -1U; efx_init_rx_recycle_ring(rx_queue); rx_queue->page_remove = 0; rx_queue->page_add = rx_queue->page_ptr_mask + 1; rx_queue->page_recycle_count = 0; rx_queue->page_recycle_failed = 0; rx_queue->page_recycle_full = 0; /* Initialise limit fields */ max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; max_trigger = max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; if (rx_refill_threshold != 0) { trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; if (trigger > max_trigger) trigger = max_trigger; } else { trigger = max_trigger; } rx_queue->max_fill = max_fill; rx_queue->fast_fill_trigger = trigger; rx_queue->refill_enabled = true; /* Initialise XDP queue information */ rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, rx_queue->core_index, 0); if (rc) { netif_err(efx, rx_err, efx->net_dev, "Failure to initialise XDP queue information rc=%d\n", rc); efx->xdp_rxq_info_failed = true; } else { rx_queue->xdp_rxq_info_valid = true; } /* Set up RX descriptor ring */ efx_nic_init_rx(rx_queue); } void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) { struct efx_rx_buffer *rx_buf; int i; netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); del_timer_sync(&rx_queue->slow_fill); if (rx_queue->grant_credits) flush_work(&rx_queue->grant_work); /* Release RX buffers from the current read ptr to the write ptr */ if (rx_queue->buffer) { for (i = rx_queue->removed_count; i < rx_queue->added_count; i++) { unsigned int index = i & rx_queue->ptr_mask; rx_buf = efx_rx_buffer(rx_queue, index); efx_fini_rx_buffer(rx_queue, rx_buf); } } efx_fini_rx_recycle_ring(rx_queue); if (rx_queue->xdp_rxq_info_valid) xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); rx_queue->xdp_rxq_info_valid = false; } void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) { netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); efx_nic_remove_rx(rx_queue); kfree(rx_queue->buffer); rx_queue->buffer = NULL; } /* Unmap a DMA-mapped page. This function is only called for the final RX * buffer in a page. */ void efx_unmap_rx_buffer(struct efx_nic *efx, struct efx_rx_buffer *rx_buf) { struct page *page = rx_buf->page; if (page) { struct efx_rx_page_state *state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); } } void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf, unsigned int num_bufs) { do { if (rx_buf->page) { put_page(rx_buf->page); rx_buf->page = NULL; } rx_buf = efx_rx_buf_next(rx_queue, rx_buf); } while (--num_bufs); } void efx_rx_slow_fill(struct timer_list *t) { struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); /* Post an event to cause NAPI to run and refill the queue */ efx_nic_generate_fill_event(rx_queue); ++rx_queue->slow_fill_count; } void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) { mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); } /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers * * @rx_queue: Efx RX queue * * This allocates a batch of pages, maps them for DMA, and populates * struct efx_rx_buffers for each one. Return a negative error code or * 0 on success. If a single page can be used for multiple buffers, * then the page will either be inserted fully, or not at all. */ static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) { unsigned int page_offset, index, count; struct efx_nic *efx = rx_queue->efx; struct efx_rx_page_state *state; struct efx_rx_buffer *rx_buf; dma_addr_t dma_addr; struct page *page; count = 0; do { page = efx_reuse_page(rx_queue); if (page == NULL) { page = alloc_pages(__GFP_COMP | (atomic ? GFP_ATOMIC : GFP_KERNEL), efx->rx_buffer_order); if (unlikely(page == NULL)) return -ENOMEM; dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) { __free_pages(page, efx->rx_buffer_order); return -EIO; } state = page_address(page); state->dma_addr = dma_addr; } else { state = page_address(page); dma_addr = state->dma_addr; } dma_addr += sizeof(struct efx_rx_page_state); page_offset = sizeof(struct efx_rx_page_state); do { index = rx_queue->added_count & rx_queue->ptr_mask; rx_buf = efx_rx_buffer(rx_queue, index); rx_buf->dma_addr = dma_addr + efx->rx_ip_align + EFX_XDP_HEADROOM; rx_buf->page = page; rx_buf->page_offset = page_offset + efx->rx_ip_align + EFX_XDP_HEADROOM; rx_buf->len = efx->rx_dma_len; rx_buf->flags = 0; ++rx_queue->added_count; get_page(page); dma_addr += efx->rx_page_buf_step; page_offset += efx->rx_page_buf_step; } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; } while (++count < efx->rx_pages_per_batch); return 0; } void efx_rx_config_page_split(struct efx_nic *efx) { efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, EFX_RX_BUF_ALIGNMENT); efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / efx->rx_page_buf_step); efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / efx->rx_bufs_per_page; efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, efx->rx_bufs_per_page); } /* efx_fast_push_rx_descriptors - push new RX descriptors quickly * @rx_queue: RX descriptor queue * * This will aim to fill the RX descriptor queue up to * @rx_queue->@max_fill. If there is insufficient atomic * memory to do so, a slow fill will be scheduled. * * The caller must provide serialisation (none is used here). In practise, * this means this function must run from the NAPI handler, or be called * when NAPI is disabled. */ void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) { struct efx_nic *efx = rx_queue->efx; unsigned int fill_level, batch_size; int space, rc = 0; if (!rx_queue->refill_enabled) return; /* Calculate current fill level, and exit if we don't need to fill */ fill_level = (rx_queue->added_count - rx_queue->removed_count); EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); if (fill_level >= rx_queue->fast_fill_trigger) goto out; /* Record minimum fill level */ if (unlikely(fill_level < rx_queue->min_fill)) { if (fill_level) rx_queue->min_fill = fill_level; } batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; space = rx_queue->max_fill - fill_level; EFX_WARN_ON_ONCE_PARANOID(space < batch_size); netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, "RX queue %d fast-filling descriptor ring from" " level %d to level %d\n", efx_rx_queue_index(rx_queue), fill_level, rx_queue->max_fill); do { rc = efx_init_rx_buffers(rx_queue, atomic); if (unlikely(rc)) { /* Ensure that we don't leave the rx queue empty */ efx_schedule_slow_fill(rx_queue); goto out; } } while ((space -= batch_size) >= batch_size); netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, "RX queue %d fast-filled descriptor ring " "to level %d\n", efx_rx_queue_index(rx_queue), rx_queue->added_count - rx_queue->removed_count); out: if (rx_queue->notified_count != rx_queue->added_count) efx_nic_notify_rx_desc(rx_queue); } /* Pass a received packet up through GRO. GRO can handle pages * regardless of checksum state and skbs with a good checksum. */ void efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags, u8 *eh, __wsum csum) { struct napi_struct *napi = &channel->napi_str; struct efx_nic *efx = channel->efx; struct sk_buff *skb; skb = napi_get_frags(napi); if (unlikely(!skb)) { struct efx_rx_queue *rx_queue; rx_queue = efx_channel_get_rx_queue(channel); efx_free_rx_buffers(rx_queue, rx_buf, n_frags); return; } if (efx->net_dev->features & NETIF_F_RXHASH && efx_rx_buf_hash_valid(efx, eh)) skb_set_hash(skb, efx_rx_buf_hash(efx, eh), PKT_HASH_TYPE_L3); if (csum) { skb->csum = csum; skb->ip_summed = CHECKSUM_COMPLETE; } else { skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE); } skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); for (;;) { skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, rx_buf->len); rx_buf->page = NULL; skb->len += rx_buf->len; if (skb_shinfo(skb)->nr_frags == n_frags) break; rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); } skb->data_len = skb->len; skb->truesize += n_frags * efx->rx_buffer_truesize; skb_record_rx_queue(skb, channel->rx_queue.core_index); napi_gro_frags(napi); } /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because * (a) this is an infrequent control-plane operation and (b) n is small (max 64) */ struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) { struct list_head *head = &efx->rss_context.list; struct efx_rss_context *ctx, *new; u32 id = 1; /* Don't use zero, that refers to the master RSS context */ WARN_ON(!mutex_is_locked(&efx->rss_lock)); /* Search for first gap in the numbering */ list_for_each_entry(ctx, head, list) { if (ctx->user_id != id) break; id++; /* Check for wrap. If this happens, we have nearly 2^32 * allocated RSS contexts, which seems unlikely. */ if (WARN_ON_ONCE(!id)) return NULL; } /* Create the new entry */ new = kmalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID; new->rx_hash_udp_4tuple = false; /* Insert the new entry into the gap */ new->user_id = id; list_add_tail(&new->list, &ctx->list); return new; } struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) { struct list_head *head = &efx->rss_context.list; struct efx_rss_context *ctx; WARN_ON(!mutex_is_locked(&efx->rss_lock)); list_for_each_entry(ctx, head, list) if (ctx->user_id == id) return ctx; return NULL; } void efx_free_rss_context_entry(struct efx_rss_context *ctx) { list_del(&ctx->list); kfree(ctx); } void efx_set_default_rx_indir_table(struct efx_nic *efx, struct efx_rss_context *ctx) { size_t i; for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) ctx->rx_indir_table[i] = ethtool_rxfh_indir_default(i, efx->rss_spread); } /** * efx_filter_is_mc_recipient - test whether spec is a multicast recipient * @spec: Specification to test * * Return: %true if the specification is a non-drop RX filter that * matches a local MAC address I/G bit value of 1 or matches a local * IPv4 or IPv6 address value in the respective multicast address * range. Otherwise %false. */ bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) { if (!(spec->flags & EFX_FILTER_FLAG_RX) || spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) return false; if (spec->match_flags & (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && is_multicast_ether_addr(spec->loc_mac)) return true; if ((spec->match_flags & (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { if (spec->ether_type == htons(ETH_P_IP) && ipv4_is_multicast(spec->loc_host[0])) return true; if (spec->ether_type == htons(ETH_P_IPV6) && ((const u8 *)spec->loc_host)[0] == 0xff) return true; } return false; } bool efx_filter_spec_equal(const struct efx_filter_spec *left, const struct efx_filter_spec *right) { if ((left->match_flags ^ right->match_flags) | ((left->flags ^ right->flags) & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) return false; return memcmp(&left->vport_id, &right->vport_id, sizeof(struct efx_filter_spec) - offsetof(struct efx_filter_spec, vport_id)) == 0; } u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) { BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3); return jhash2((const u32 *)&spec->vport_id, (sizeof(struct efx_filter_spec) - offsetof(struct efx_filter_spec, vport_id)) / 4, 0); } #ifdef CONFIG_RFS_ACCEL bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, bool *force) { if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { /* ARFS is currently updating this entry, leave it */ return false; } if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { /* ARFS tried and failed to update this, so it's probably out * of date. Remove the filter and the ARFS rule entry. */ rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; *force = true; return true; } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ /* ARFS has moved on, so old filter is not needed. Since we did * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will * not be removed by efx_rps_hash_del() subsequently. */ *force = true; return true; } /* Remove it iff ARFS wants to. */ return true; } static struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, const struct efx_filter_spec *spec) { u32 hash = efx_filter_spec_hash(spec); lockdep_assert_held(&efx->rps_hash_lock); if (!efx->rps_hash_table) return NULL; return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; } struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, const struct efx_filter_spec *spec) { struct efx_arfs_rule *rule; struct hlist_head *head; struct hlist_node *node; head = efx_rps_hash_bucket(efx, spec); if (!head) return NULL; hlist_for_each(node, head) { rule = container_of(node, struct efx_arfs_rule, node); if (efx_filter_spec_equal(spec, &rule->spec)) return rule; } return NULL; } struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, const struct efx_filter_spec *spec, bool *new) { struct efx_arfs_rule *rule; struct hlist_head *head; struct hlist_node *node; head = efx_rps_hash_bucket(efx, spec); if (!head) return NULL; hlist_for_each(node, head) { rule = container_of(node, struct efx_arfs_rule, node); if (efx_filter_spec_equal(spec, &rule->spec)) { *new = false; return rule; } } rule = kmalloc(sizeof(*rule), GFP_ATOMIC); *new = true; if (rule) { memcpy(&rule->spec, spec, sizeof(rule->spec)); hlist_add_head(&rule->node, head); } return rule; } void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) { struct efx_arfs_rule *rule; struct hlist_head *head; struct hlist_node *node; head = efx_rps_hash_bucket(efx, spec); if (WARN_ON(!head)) return; hlist_for_each(node, head) { rule = container_of(node, struct efx_arfs_rule, node); if (efx_filter_spec_equal(spec, &rule->spec)) { /* Someone already reused the entry. We know that if * this check doesn't fire (i.e. filter_id == REMOVING) * then the REMOVING mark was put there by our caller, * because caller is holding a lock on filter table and * only holders of that lock set REMOVING. */ if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) return; hlist_del(node); kfree(rule); return; } } /* We didn't find it. */ WARN_ON(1); } #endif int efx_probe_filters(struct efx_nic *efx) { int rc; mutex_lock(&efx->mac_lock); rc = efx->type->filter_table_probe(efx); if (rc) goto out_unlock; #ifdef CONFIG_RFS_ACCEL if (efx->type->offload_features & NETIF_F_NTUPLE) { struct efx_channel *channel; int i, success = 1; efx_for_each_channel(channel, efx) { channel->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters, sizeof(*channel->rps_flow_id), GFP_KERNEL); if (!channel->rps_flow_id) success = 0; else for (i = 0; i < efx->type->max_rx_ip_filters; ++i) channel->rps_flow_id[i] = RPS_FLOW_ID_INVALID; channel->rfs_expire_index = 0; channel->rfs_filter_count = 0; } if (!success) { efx_for_each_channel(channel, efx) kfree(channel->rps_flow_id); efx->type->filter_table_remove(efx); rc = -ENOMEM; goto out_unlock; } } #endif out_unlock: mutex_unlock(&efx->mac_lock); return rc; } void efx_remove_filters(struct efx_nic *efx) { #ifdef CONFIG_RFS_ACCEL struct efx_channel *channel; efx_for_each_channel(channel, efx) { cancel_delayed_work_sync(&channel->filter_work); kfree(channel->rps_flow_id); channel->rps_flow_id = NULL; } #endif efx->type->filter_table_remove(efx); } #ifdef CONFIG_RFS_ACCEL static void efx_filter_rfs_work(struct work_struct *data) { struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, work); struct efx_nic *efx = efx_netdev_priv(req->net_dev); struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); int slot_idx = req - efx->rps_slot; struct efx_arfs_rule *rule; u16 arfs_id = 0; int rc; rc = efx->type->filter_insert(efx, &req->spec, true); if (rc >= 0) /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ rc %= efx->type->max_rx_ip_filters; if (efx->rps_hash_table) { spin_lock_bh(&efx->rps_hash_lock); rule = efx_rps_hash_find(efx, &req->spec); /* The rule might have already gone, if someone else's request * for the same spec was already worked and then expired before * we got around to our work. In that case we have nothing * tying us to an arfs_id, meaning that as soon as the filter * is considered for expiry it will be removed. */ if (rule) { if (rc < 0) rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; else rule->filter_id = rc; arfs_id = rule->arfs_id; } spin_unlock_bh(&efx->rps_hash_lock); } if (rc >= 0) { /* Remember this so we can check whether to expire the filter * later. */ mutex_lock(&efx->rps_mutex); if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) channel->rfs_filter_count++; channel->rps_flow_id[rc] = req->flow_id; mutex_unlock(&efx->rps_mutex); if (req->spec.ether_type == htons(ETH_P_IP)) netif_info(efx, rx_status, efx->net_dev, "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", req->spec.rem_host, ntohs(req->spec.rem_port), req->spec.loc_host, ntohs(req->spec.loc_port), req->rxq_index, req->flow_id, rc, arfs_id); else netif_info(efx, rx_status, efx->net_dev, "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", req->spec.rem_host, ntohs(req->spec.rem_port), req->spec.loc_host, ntohs(req->spec.loc_port), req->rxq_index, req->flow_id, rc, arfs_id); channel->n_rfs_succeeded++; } else { if (req->spec.ether_type == htons(ETH_P_IP)) netif_dbg(efx, rx_status, efx->net_dev, "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", req->spec.rem_host, ntohs(req->spec.rem_port), req->spec.loc_host, ntohs(req->spec.loc_port), req->rxq_index, req->flow_id, rc, arfs_id); else netif_dbg(efx, rx_status, efx->net_dev, "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", req->spec.rem_host, ntohs(req->spec.rem_port), req->spec.loc_host, ntohs(req->spec.loc_port), req->rxq_index, req->flow_id, rc, arfs_id); channel->n_rfs_failed++; /* We're overloading the NIC's filter tables, so let's do a * chunk of extra expiry work. */ __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 100u)); } /* Release references */ clear_bit(slot_idx, &efx->rps_slot_map); dev_put(req->net_dev); } int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id) { struct efx_nic *efx = efx_netdev_priv(net_dev); struct efx_async_filter_insertion *req; struct efx_arfs_rule *rule; struct flow_keys fk; int slot_idx; bool new; int rc; /* find a free slot */ for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) break; if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) return -EBUSY; if (flow_id == RPS_FLOW_ID_INVALID) { rc = -EINVAL; goto out_clear; } if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { rc = -EPROTONOSUPPORT; goto out_clear; } if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { rc = -EPROTONOSUPPORT; goto out_clear; } if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { rc = -EPROTONOSUPPORT; goto out_clear; } req = efx->rps_slot + slot_idx; efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, rxq_index); req->spec.match_flags = EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; req->spec.ether_type = fk.basic.n_proto; req->spec.ip_proto = fk.basic.ip_proto; if (fk.basic.n_proto == htons(ETH_P_IP)) { req->spec.rem_host[0] = fk.addrs.v4addrs.src; req->spec.loc_host[0] = fk.addrs.v4addrs.dst; } else { memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr)); memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr)); } req->spec.rem_port = fk.ports.src; req->spec.loc_port = fk.ports.dst; if (efx->rps_hash_table) { /* Add it to ARFS hash table */ spin_lock(&efx->rps_hash_lock); rule = efx_rps_hash_add(efx, &req->spec, &new); if (!rule) { rc = -ENOMEM; goto out_unlock; } if (new) rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; rc = rule->arfs_id; /* Skip if existing or pending filter already does the right thing */ if (!new && rule->rxq_index == rxq_index && rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) goto out_unlock; rule->rxq_index = rxq_index; rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; spin_unlock(&efx->rps_hash_lock); } else { /* Without an ARFS hash table, we just use arfs_id 0 for all * filters. This means if multiple flows hash to the same * flow_id, all but the most recently touched will be eligible * for expiry. */ rc = 0; } /* Queue the request */ dev_hold(req->net_dev = net_dev); INIT_WORK(&req->work, efx_filter_rfs_work); req->rxq_index = rxq_index; req->flow_id = flow_id; schedule_work(&req->work); return rc; out_unlock: spin_unlock(&efx->rps_hash_lock); out_clear: clear_bit(slot_idx, &efx->rps_slot_map); return rc; } bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) { bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); struct efx_nic *efx = channel->efx; unsigned int index, size, start; u32 flow_id; if (!mutex_trylock(&efx->rps_mutex)) return false; expire_one = efx->type->filter_rfs_expire_one; index = channel->rfs_expire_index; start = index; size = efx->type->max_rx_ip_filters; while (quota) { flow_id = channel->rps_flow_id[index]; if (flow_id != RPS_FLOW_ID_INVALID) { quota--; if (expire_one(efx, flow_id, index)) { netif_info(efx, rx_status, efx->net_dev, "expired filter %d [channel %u flow %u]\n", index, channel->channel, flow_id); channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; channel->rfs_filter_count--; } } if (++index == size) index = 0; /* If we were called with a quota that exceeds the total number * of filters in the table (which shouldn't happen, but could * if two callers race), ensure that we don't loop forever - * stop when we've examined every row of the table. */ if (index == start) break; } channel->rfs_expire_index = index; mutex_unlock(&efx->rps_mutex); return true; } #endif /* CONFIG_RFS_ACCEL */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1