Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steve Glendinning | 8685 | 72.44% | 22 | 18.18% |
Jeremy Linton | 489 | 4.08% | 6 | 4.96% |
Joe Perches | 328 | 2.74% | 3 | 2.48% |
Robert Marklund | 270 | 2.25% | 2 | 1.65% |
Javier Martinez Canillas | 259 | 2.16% | 1 | 0.83% |
Mathieu J. Poirier | 246 | 2.05% | 1 | 0.83% |
Shawn Guo | 220 | 1.83% | 1 | 0.83% |
Daniel Mack | 207 | 1.73% | 2 | 1.65% |
Geert Uytterhoeven | 150 | 1.25% | 3 | 2.48% |
Lee Jones | 132 | 1.10% | 2 | 1.65% |
Catalin Marinas | 121 | 1.01% | 1 | 0.83% |
Enric Balletbò i Serra | 117 | 0.98% | 2 | 1.65% |
Philippe Reynes | 88 | 0.73% | 2 | 1.65% |
Magnus Damm | 76 | 0.63% | 1 | 0.83% |
David Cai | 58 | 0.48% | 1 | 0.83% |
Guenter Roeck | 49 | 0.41% | 2 | 1.65% |
Linus Walleij | 39 | 0.33% | 2 | 1.65% |
Florian Fainelli | 36 | 0.30% | 3 | 2.48% |
Manuel Lauss | 29 | 0.24% | 1 | 0.83% |
Pavel Fedin | 28 | 0.23% | 2 | 1.65% |
Wolfram Sang | 27 | 0.23% | 2 | 1.65% |
Andrew Lunn | 25 | 0.21% | 4 | 3.31% |
Jakub Kiciński | 23 | 0.19% | 4 | 3.31% |
Herbert Valerio Riedel | 21 | 0.18% | 1 | 0.83% |
Ulf Hansson | 20 | 0.17% | 1 | 0.83% |
Kamlakant Patel | 19 | 0.16% | 2 | 1.65% |
Denis Kirjanov | 19 | 0.16% | 1 | 0.83% |
Will Deacon | 19 | 0.16% | 1 | 0.83% |
Matthias Brugger | 17 | 0.14% | 1 | 0.83% |
Tony Lindgren | 17 | 0.14% | 1 | 0.83% |
Jiri Pirko | 15 | 0.13% | 4 | 3.31% |
Göran Weinholt | 14 | 0.12% | 1 | 0.83% |
Alexey Khoroshilov | 13 | 0.11% | 1 | 0.83% |
Richard Cochran | 12 | 0.10% | 2 | 1.65% |
Sachin Kamat | 9 | 0.08% | 2 | 1.65% |
Julia Lawall | 9 | 0.08% | 1 | 0.83% |
Dave P Martin | 7 | 0.06% | 1 | 0.83% |
Balakumaran Kannan | 6 | 0.05% | 1 | 0.83% |
Dinghao Liu | 6 | 0.05% | 1 | 0.83% |
Fabio Estevam | 5 | 0.04% | 1 | 0.83% |
Krzysztof Kozlowski | 5 | 0.04% | 1 | 0.83% |
Vincent Stehlé | 5 | 0.04% | 1 | 0.83% |
Alexey Dobriyan | 4 | 0.03% | 2 | 1.65% |
Stephen Hemminger | 4 | 0.03% | 1 | 0.83% |
Matthew Leach | 4 | 0.03% | 1 | 0.83% |
Jingoo Han | 4 | 0.03% | 1 | 0.83% |
Akira Takeuchi | 4 | 0.03% | 1 | 0.83% |
Kay Sievers | 3 | 0.03% | 1 | 0.83% |
Eric Dumazet | 3 | 0.03% | 1 | 0.83% |
Alexander Kochetkov | 3 | 0.03% | 2 | 1.65% |
Ben Boeckel | 3 | 0.03% | 1 | 0.83% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.83% |
Thomas Weber | 2 | 0.02% | 1 | 0.83% |
Phil Edworthy | 2 | 0.02% | 1 | 0.83% |
Sergey Shtylyov | 1 | 0.01% | 1 | 0.83% |
Roel Kluin | 1 | 0.01% | 1 | 0.83% |
Eric W. Biedermann | 1 | 0.01% | 1 | 0.83% |
Christoph Hellwig | 1 | 0.01% | 1 | 0.83% |
Jeongtae Park | 1 | 0.01% | 1 | 0.83% |
Lucas De Marchi | 1 | 0.01% | 1 | 0.83% |
Yue haibing | 1 | 0.01% | 1 | 0.83% |
André Goddard Rosa | 1 | 0.01% | 1 | 0.83% |
Heiner Kallweit | 1 | 0.01% | 1 | 0.83% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.83% |
Danny Kukawka | 1 | 0.01% | 1 | 0.83% |
Ben Hutchings | 1 | 0.01% | 1 | 0.83% |
Total | 11990 | 121 |
// SPDX-License-Identifier: GPL-2.0-or-later /*************************************************************************** * * Copyright (C) 2004-2008 SMSC * Copyright (C) 2005-2008 ARM * *************************************************************************** * Rewritten, heavily based on smsc911x simple driver by SMSC. * Partly uses io macros from smc91x.c by Nicolas Pitre * * Supported devices: * LAN9115, LAN9116, LAN9117, LAN9118 * LAN9215, LAN9216, LAN9217, LAN9218 * LAN9210, LAN9211 * LAN9220, LAN9221 * LAN89218,LAN9250 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/crc32.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/bug.h> #include <linux/bitops.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/swab.h> #include <linux/phy.h> #include <linux/smsc911x.h> #include <linux/device.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/of_net.h> #include <linux/acpi.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/gpio/consumer.h> #include "smsc911x.h" #define SMSC_CHIPNAME "smsc911x" #define SMSC_MDIONAME "smsc911x-mdio" #define SMSC_DRV_VERSION "2008-10-21" MODULE_LICENSE("GPL"); MODULE_VERSION(SMSC_DRV_VERSION); MODULE_ALIAS("platform:smsc911x"); #if USE_DEBUG > 0 static int debug = 16; #else static int debug = 3; #endif module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); struct smsc911x_data; struct smsc911x_ops { u32 (*reg_read)(struct smsc911x_data *pdata, u32 reg); void (*reg_write)(struct smsc911x_data *pdata, u32 reg, u32 val); void (*rx_readfifo)(struct smsc911x_data *pdata, unsigned int *buf, unsigned int wordcount); void (*tx_writefifo)(struct smsc911x_data *pdata, unsigned int *buf, unsigned int wordcount); }; #define SMSC911X_NUM_SUPPLIES 2 struct smsc911x_data { void __iomem *ioaddr; unsigned int idrev; /* used to decide which workarounds apply */ unsigned int generation; /* device configuration (copied from platform_data during probe) */ struct smsc911x_platform_config config; /* This needs to be acquired before calling any of below: * smsc911x_mac_read(), smsc911x_mac_write() */ spinlock_t mac_lock; /* spinlock to ensure register accesses are serialised */ spinlock_t dev_lock; struct mii_bus *mii_bus; unsigned int using_extphy; int last_duplex; int last_carrier; u32 msg_enable; unsigned int gpio_setting; unsigned int gpio_orig_setting; struct net_device *dev; struct napi_struct napi; unsigned int software_irq_signal; #ifdef USE_PHY_WORK_AROUND #define MIN_PACKET_SIZE (64) char loopback_tx_pkt[MIN_PACKET_SIZE]; char loopback_rx_pkt[MIN_PACKET_SIZE]; unsigned int resetcount; #endif /* Members for Multicast filter workaround */ unsigned int multicast_update_pending; unsigned int set_bits_mask; unsigned int clear_bits_mask; unsigned int hashhi; unsigned int hashlo; /* register access functions */ const struct smsc911x_ops *ops; /* regulators */ struct regulator_bulk_data supplies[SMSC911X_NUM_SUPPLIES]; /* Reset GPIO */ struct gpio_desc *reset_gpiod; /* clock */ struct clk *clk; }; /* Easy access to information */ #define __smsc_shift(pdata, reg) ((reg) << ((pdata)->config.shift)) static inline u32 __smsc911x_reg_read(struct smsc911x_data *pdata, u32 reg) { if (pdata->config.flags & SMSC911X_USE_32BIT) return readl(pdata->ioaddr + reg); if (pdata->config.flags & SMSC911X_USE_16BIT) return ((readw(pdata->ioaddr + reg) & 0xFFFF) | ((readw(pdata->ioaddr + reg + 2) & 0xFFFF) << 16)); BUG(); return 0; } static inline u32 __smsc911x_reg_read_shift(struct smsc911x_data *pdata, u32 reg) { if (pdata->config.flags & SMSC911X_USE_32BIT) return readl(pdata->ioaddr + __smsc_shift(pdata, reg)); if (pdata->config.flags & SMSC911X_USE_16BIT) return (readw(pdata->ioaddr + __smsc_shift(pdata, reg)) & 0xFFFF) | ((readw(pdata->ioaddr + __smsc_shift(pdata, reg + 2)) & 0xFFFF) << 16); BUG(); return 0; } static inline u32 smsc911x_reg_read(struct smsc911x_data *pdata, u32 reg) { u32 data; unsigned long flags; spin_lock_irqsave(&pdata->dev_lock, flags); data = pdata->ops->reg_read(pdata, reg); spin_unlock_irqrestore(&pdata->dev_lock, flags); return data; } static inline void __smsc911x_reg_write(struct smsc911x_data *pdata, u32 reg, u32 val) { if (pdata->config.flags & SMSC911X_USE_32BIT) { writel(val, pdata->ioaddr + reg); return; } if (pdata->config.flags & SMSC911X_USE_16BIT) { writew(val & 0xFFFF, pdata->ioaddr + reg); writew((val >> 16) & 0xFFFF, pdata->ioaddr + reg + 2); return; } BUG(); } static inline void __smsc911x_reg_write_shift(struct smsc911x_data *pdata, u32 reg, u32 val) { if (pdata->config.flags & SMSC911X_USE_32BIT) { writel(val, pdata->ioaddr + __smsc_shift(pdata, reg)); return; } if (pdata->config.flags & SMSC911X_USE_16BIT) { writew(val & 0xFFFF, pdata->ioaddr + __smsc_shift(pdata, reg)); writew((val >> 16) & 0xFFFF, pdata->ioaddr + __smsc_shift(pdata, reg + 2)); return; } BUG(); } static inline void smsc911x_reg_write(struct smsc911x_data *pdata, u32 reg, u32 val) { unsigned long flags; spin_lock_irqsave(&pdata->dev_lock, flags); pdata->ops->reg_write(pdata, reg, val); spin_unlock_irqrestore(&pdata->dev_lock, flags); } /* Writes a packet to the TX_DATA_FIFO */ static inline void smsc911x_tx_writefifo(struct smsc911x_data *pdata, unsigned int *buf, unsigned int wordcount) { unsigned long flags; spin_lock_irqsave(&pdata->dev_lock, flags); if (pdata->config.flags & SMSC911X_SWAP_FIFO) { while (wordcount--) __smsc911x_reg_write(pdata, TX_DATA_FIFO, swab32(*buf++)); goto out; } if (pdata->config.flags & SMSC911X_USE_32BIT) { iowrite32_rep(pdata->ioaddr + TX_DATA_FIFO, buf, wordcount); goto out; } if (pdata->config.flags & SMSC911X_USE_16BIT) { while (wordcount--) __smsc911x_reg_write(pdata, TX_DATA_FIFO, *buf++); goto out; } BUG(); out: spin_unlock_irqrestore(&pdata->dev_lock, flags); } /* Writes a packet to the TX_DATA_FIFO - shifted version */ static inline void smsc911x_tx_writefifo_shift(struct smsc911x_data *pdata, unsigned int *buf, unsigned int wordcount) { unsigned long flags; spin_lock_irqsave(&pdata->dev_lock, flags); if (pdata->config.flags & SMSC911X_SWAP_FIFO) { while (wordcount--) __smsc911x_reg_write_shift(pdata, TX_DATA_FIFO, swab32(*buf++)); goto out; } if (pdata->config.flags & SMSC911X_USE_32BIT) { iowrite32_rep(pdata->ioaddr + __smsc_shift(pdata, TX_DATA_FIFO), buf, wordcount); goto out; } if (pdata->config.flags & SMSC911X_USE_16BIT) { while (wordcount--) __smsc911x_reg_write_shift(pdata, TX_DATA_FIFO, *buf++); goto out; } BUG(); out: spin_unlock_irqrestore(&pdata->dev_lock, flags); } /* Reads a packet out of the RX_DATA_FIFO */ static inline void smsc911x_rx_readfifo(struct smsc911x_data *pdata, unsigned int *buf, unsigned int wordcount) { unsigned long flags; spin_lock_irqsave(&pdata->dev_lock, flags); if (pdata->config.flags & SMSC911X_SWAP_FIFO) { while (wordcount--) *buf++ = swab32(__smsc911x_reg_read(pdata, RX_DATA_FIFO)); goto out; } if (pdata->config.flags & SMSC911X_USE_32BIT) { ioread32_rep(pdata->ioaddr + RX_DATA_FIFO, buf, wordcount); goto out; } if (pdata->config.flags & SMSC911X_USE_16BIT) { while (wordcount--) *buf++ = __smsc911x_reg_read(pdata, RX_DATA_FIFO); goto out; } BUG(); out: spin_unlock_irqrestore(&pdata->dev_lock, flags); } /* Reads a packet out of the RX_DATA_FIFO - shifted version */ static inline void smsc911x_rx_readfifo_shift(struct smsc911x_data *pdata, unsigned int *buf, unsigned int wordcount) { unsigned long flags; spin_lock_irqsave(&pdata->dev_lock, flags); if (pdata->config.flags & SMSC911X_SWAP_FIFO) { while (wordcount--) *buf++ = swab32(__smsc911x_reg_read_shift(pdata, RX_DATA_FIFO)); goto out; } if (pdata->config.flags & SMSC911X_USE_32BIT) { ioread32_rep(pdata->ioaddr + __smsc_shift(pdata, RX_DATA_FIFO), buf, wordcount); goto out; } if (pdata->config.flags & SMSC911X_USE_16BIT) { while (wordcount--) *buf++ = __smsc911x_reg_read_shift(pdata, RX_DATA_FIFO); goto out; } BUG(); out: spin_unlock_irqrestore(&pdata->dev_lock, flags); } /* * enable regulator and clock resources. */ static int smsc911x_enable_resources(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct smsc911x_data *pdata = netdev_priv(ndev); int ret = 0; ret = regulator_bulk_enable(ARRAY_SIZE(pdata->supplies), pdata->supplies); if (ret) netdev_err(ndev, "failed to enable regulators %d\n", ret); if (!IS_ERR(pdata->clk)) { ret = clk_prepare_enable(pdata->clk); if (ret < 0) netdev_err(ndev, "failed to enable clock %d\n", ret); } return ret; } /* * disable resources, currently just regulators. */ static int smsc911x_disable_resources(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct smsc911x_data *pdata = netdev_priv(ndev); int ret = 0; ret = regulator_bulk_disable(ARRAY_SIZE(pdata->supplies), pdata->supplies); if (!IS_ERR(pdata->clk)) clk_disable_unprepare(pdata->clk); return ret; } /* * Request resources, currently just regulators. * * The SMSC911x has two power pins: vddvario and vdd33a, in designs where * these are not always-on we need to request regulators to be turned on * before we can try to access the device registers. */ static int smsc911x_request_resources(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct smsc911x_data *pdata = netdev_priv(ndev); int ret = 0; /* Request regulators */ pdata->supplies[0].supply = "vdd33a"; pdata->supplies[1].supply = "vddvario"; ret = regulator_bulk_get(&pdev->dev, ARRAY_SIZE(pdata->supplies), pdata->supplies); if (ret) { /* * Retry on deferrals, else just report the error * and try to continue. */ if (ret == -EPROBE_DEFER) return ret; netdev_err(ndev, "couldn't get regulators %d\n", ret); } /* Request optional RESET GPIO */ pdata->reset_gpiod = devm_gpiod_get_optional(&pdev->dev, "reset", GPIOD_OUT_LOW); /* Request clock */ pdata->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(pdata->clk)) dev_dbg(&pdev->dev, "couldn't get clock %li\n", PTR_ERR(pdata->clk)); return ret; } /* * Free resources, currently just regulators. * */ static void smsc911x_free_resources(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct smsc911x_data *pdata = netdev_priv(ndev); /* Free regulators */ regulator_bulk_free(ARRAY_SIZE(pdata->supplies), pdata->supplies); /* Free clock */ if (!IS_ERR(pdata->clk)) { clk_put(pdata->clk); pdata->clk = NULL; } } /* waits for MAC not busy, with timeout. Only called by smsc911x_mac_read * and smsc911x_mac_write, so assumes mac_lock is held */ static int smsc911x_mac_complete(struct smsc911x_data *pdata) { int i; u32 val; SMSC_ASSERT_MAC_LOCK(pdata); for (i = 0; i < 40; i++) { val = smsc911x_reg_read(pdata, MAC_CSR_CMD); if (!(val & MAC_CSR_CMD_CSR_BUSY_)) return 0; } SMSC_WARN(pdata, hw, "Timed out waiting for MAC not BUSY. " "MAC_CSR_CMD: 0x%08X", val); return -EIO; } /* Fetches a MAC register value. Assumes mac_lock is acquired */ static u32 smsc911x_mac_read(struct smsc911x_data *pdata, unsigned int offset) { unsigned int temp; SMSC_ASSERT_MAC_LOCK(pdata); temp = smsc911x_reg_read(pdata, MAC_CSR_CMD); if (unlikely(temp & MAC_CSR_CMD_CSR_BUSY_)) { SMSC_WARN(pdata, hw, "MAC busy at entry"); return 0xFFFFFFFF; } /* Send the MAC cmd */ smsc911x_reg_write(pdata, MAC_CSR_CMD, ((offset & 0xFF) | MAC_CSR_CMD_CSR_BUSY_ | MAC_CSR_CMD_R_NOT_W_)); /* Workaround for hardware read-after-write restriction */ temp = smsc911x_reg_read(pdata, BYTE_TEST); /* Wait for the read to complete */ if (likely(smsc911x_mac_complete(pdata) == 0)) return smsc911x_reg_read(pdata, MAC_CSR_DATA); SMSC_WARN(pdata, hw, "MAC busy after read"); return 0xFFFFFFFF; } /* Set a mac register, mac_lock must be acquired before calling */ static void smsc911x_mac_write(struct smsc911x_data *pdata, unsigned int offset, u32 val) { unsigned int temp; SMSC_ASSERT_MAC_LOCK(pdata); temp = smsc911x_reg_read(pdata, MAC_CSR_CMD); if (unlikely(temp & MAC_CSR_CMD_CSR_BUSY_)) { SMSC_WARN(pdata, hw, "smsc911x_mac_write failed, MAC busy at entry"); return; } /* Send data to write */ smsc911x_reg_write(pdata, MAC_CSR_DATA, val); /* Write the actual data */ smsc911x_reg_write(pdata, MAC_CSR_CMD, ((offset & 0xFF) | MAC_CSR_CMD_CSR_BUSY_)); /* Workaround for hardware read-after-write restriction */ temp = smsc911x_reg_read(pdata, BYTE_TEST); /* Wait for the write to complete */ if (likely(smsc911x_mac_complete(pdata) == 0)) return; SMSC_WARN(pdata, hw, "smsc911x_mac_write failed, MAC busy after write"); } /* Get a phy register */ static int smsc911x_mii_read(struct mii_bus *bus, int phyaddr, int regidx) { struct smsc911x_data *pdata = (struct smsc911x_data *)bus->priv; unsigned long flags; unsigned int addr; int i, reg; pm_runtime_get_sync(bus->parent); spin_lock_irqsave(&pdata->mac_lock, flags); /* Confirm MII not busy */ if (unlikely(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) { SMSC_WARN(pdata, hw, "MII is busy in smsc911x_mii_read???"); reg = -EIO; goto out; } /* Set the address, index & direction (read from PHY) */ addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6); smsc911x_mac_write(pdata, MII_ACC, addr); /* Wait for read to complete w/ timeout */ for (i = 0; i < 100; i++) if (!(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) { reg = smsc911x_mac_read(pdata, MII_DATA); goto out; } SMSC_WARN(pdata, hw, "Timed out waiting for MII read to finish"); reg = -EIO; out: spin_unlock_irqrestore(&pdata->mac_lock, flags); pm_runtime_put(bus->parent); return reg; } /* Set a phy register */ static int smsc911x_mii_write(struct mii_bus *bus, int phyaddr, int regidx, u16 val) { struct smsc911x_data *pdata = (struct smsc911x_data *)bus->priv; unsigned long flags; unsigned int addr; int i, reg; pm_runtime_get_sync(bus->parent); spin_lock_irqsave(&pdata->mac_lock, flags); /* Confirm MII not busy */ if (unlikely(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) { SMSC_WARN(pdata, hw, "MII is busy in smsc911x_mii_write???"); reg = -EIO; goto out; } /* Put the data to write in the MAC */ smsc911x_mac_write(pdata, MII_DATA, val); /* Set the address, index & direction (write to PHY) */ addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) | MII_ACC_MII_WRITE_; smsc911x_mac_write(pdata, MII_ACC, addr); /* Wait for write to complete w/ timeout */ for (i = 0; i < 100; i++) if (!(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) { reg = 0; goto out; } SMSC_WARN(pdata, hw, "Timed out waiting for MII write to finish"); reg = -EIO; out: spin_unlock_irqrestore(&pdata->mac_lock, flags); pm_runtime_put(bus->parent); return reg; } /* Switch to external phy. Assumes tx and rx are stopped. */ static void smsc911x_phy_enable_external(struct smsc911x_data *pdata) { unsigned int hwcfg = smsc911x_reg_read(pdata, HW_CFG); /* Disable phy clocks to the MAC */ hwcfg &= (~HW_CFG_PHY_CLK_SEL_); hwcfg |= HW_CFG_PHY_CLK_SEL_CLK_DIS_; smsc911x_reg_write(pdata, HW_CFG, hwcfg); udelay(10); /* Enough time for clocks to stop */ /* Switch to external phy */ hwcfg |= HW_CFG_EXT_PHY_EN_; smsc911x_reg_write(pdata, HW_CFG, hwcfg); /* Enable phy clocks to the MAC */ hwcfg &= (~HW_CFG_PHY_CLK_SEL_); hwcfg |= HW_CFG_PHY_CLK_SEL_EXT_PHY_; smsc911x_reg_write(pdata, HW_CFG, hwcfg); udelay(10); /* Enough time for clocks to restart */ hwcfg |= HW_CFG_SMI_SEL_; smsc911x_reg_write(pdata, HW_CFG, hwcfg); } /* Autodetects and enables external phy if present on supported chips. * autodetection can be overridden by specifying SMSC911X_FORCE_INTERNAL_PHY * or SMSC911X_FORCE_EXTERNAL_PHY in the platform_data flags. */ static void smsc911x_phy_initialise_external(struct smsc911x_data *pdata) { unsigned int hwcfg = smsc911x_reg_read(pdata, HW_CFG); if (pdata->config.flags & SMSC911X_FORCE_INTERNAL_PHY) { SMSC_TRACE(pdata, hw, "Forcing internal PHY"); pdata->using_extphy = 0; } else if (pdata->config.flags & SMSC911X_FORCE_EXTERNAL_PHY) { SMSC_TRACE(pdata, hw, "Forcing external PHY"); smsc911x_phy_enable_external(pdata); pdata->using_extphy = 1; } else if (hwcfg & HW_CFG_EXT_PHY_DET_) { SMSC_TRACE(pdata, hw, "HW_CFG EXT_PHY_DET set, using external PHY"); smsc911x_phy_enable_external(pdata); pdata->using_extphy = 1; } else { SMSC_TRACE(pdata, hw, "HW_CFG EXT_PHY_DET clear, using internal PHY"); pdata->using_extphy = 0; } } /* Fetches a tx status out of the status fifo */ static unsigned int smsc911x_tx_get_txstatus(struct smsc911x_data *pdata) { unsigned int result = smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TSUSED_; if (result != 0) result = smsc911x_reg_read(pdata, TX_STATUS_FIFO); return result; } /* Fetches the next rx status */ static unsigned int smsc911x_rx_get_rxstatus(struct smsc911x_data *pdata) { unsigned int result = smsc911x_reg_read(pdata, RX_FIFO_INF) & RX_FIFO_INF_RXSUSED_; if (result != 0) result = smsc911x_reg_read(pdata, RX_STATUS_FIFO); return result; } #ifdef USE_PHY_WORK_AROUND static int smsc911x_phy_check_loopbackpkt(struct smsc911x_data *pdata) { unsigned int tries; u32 wrsz; u32 rdsz; ulong bufp; for (tries = 0; tries < 10; tries++) { unsigned int txcmd_a; unsigned int txcmd_b; unsigned int status; unsigned int pktlength; unsigned int i; /* Zero-out rx packet memory */ memset(pdata->loopback_rx_pkt, 0, MIN_PACKET_SIZE); /* Write tx packet to 118 */ txcmd_a = (u32)((ulong)pdata->loopback_tx_pkt & 0x03) << 16; txcmd_a |= TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_; txcmd_a |= MIN_PACKET_SIZE; txcmd_b = MIN_PACKET_SIZE << 16 | MIN_PACKET_SIZE; smsc911x_reg_write(pdata, TX_DATA_FIFO, txcmd_a); smsc911x_reg_write(pdata, TX_DATA_FIFO, txcmd_b); bufp = (ulong)pdata->loopback_tx_pkt & (~0x3); wrsz = MIN_PACKET_SIZE + 3; wrsz += (u32)((ulong)pdata->loopback_tx_pkt & 0x3); wrsz >>= 2; pdata->ops->tx_writefifo(pdata, (unsigned int *)bufp, wrsz); /* Wait till transmit is done */ i = 60; do { udelay(5); status = smsc911x_tx_get_txstatus(pdata); } while ((i--) && (!status)); if (!status) { SMSC_WARN(pdata, hw, "Failed to transmit during loopback test"); continue; } if (status & TX_STS_ES_) { SMSC_WARN(pdata, hw, "Transmit encountered errors during loopback test"); continue; } /* Wait till receive is done */ i = 60; do { udelay(5); status = smsc911x_rx_get_rxstatus(pdata); } while ((i--) && (!status)); if (!status) { SMSC_WARN(pdata, hw, "Failed to receive during loopback test"); continue; } if (status & RX_STS_ES_) { SMSC_WARN(pdata, hw, "Receive encountered errors during loopback test"); continue; } pktlength = ((status & 0x3FFF0000UL) >> 16); bufp = (ulong)pdata->loopback_rx_pkt; rdsz = pktlength + 3; rdsz += (u32)((ulong)pdata->loopback_rx_pkt & 0x3); rdsz >>= 2; pdata->ops->rx_readfifo(pdata, (unsigned int *)bufp, rdsz); if (pktlength != (MIN_PACKET_SIZE + 4)) { SMSC_WARN(pdata, hw, "Unexpected packet size " "during loop back test, size=%d, will retry", pktlength); } else { unsigned int j; int mismatch = 0; for (j = 0; j < MIN_PACKET_SIZE; j++) { if (pdata->loopback_tx_pkt[j] != pdata->loopback_rx_pkt[j]) { mismatch = 1; break; } } if (!mismatch) { SMSC_TRACE(pdata, hw, "Successfully verified " "loopback packet"); return 0; } else { SMSC_WARN(pdata, hw, "Data mismatch " "during loop back test, will retry"); } } } return -EIO; } static int smsc911x_phy_reset(struct smsc911x_data *pdata) { unsigned int temp; unsigned int i = 100000; temp = smsc911x_reg_read(pdata, PMT_CTRL); smsc911x_reg_write(pdata, PMT_CTRL, temp | PMT_CTRL_PHY_RST_); do { msleep(1); temp = smsc911x_reg_read(pdata, PMT_CTRL); } while ((i--) && (temp & PMT_CTRL_PHY_RST_)); if (unlikely(temp & PMT_CTRL_PHY_RST_)) { SMSC_WARN(pdata, hw, "PHY reset failed to complete"); return -EIO; } /* Extra delay required because the phy may not be completed with * its reset when BMCR_RESET is cleared. Specs say 256 uS is * enough delay but using 1ms here to be safe */ msleep(1); return 0; } static int smsc911x_phy_loopbacktest(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); struct phy_device *phy_dev = dev->phydev; int result = -EIO; unsigned int i, val; unsigned long flags; /* Initialise tx packet using broadcast destination address */ eth_broadcast_addr(pdata->loopback_tx_pkt); /* Use incrementing source address */ for (i = 6; i < 12; i++) pdata->loopback_tx_pkt[i] = (char)i; /* Set length type field */ pdata->loopback_tx_pkt[12] = 0x00; pdata->loopback_tx_pkt[13] = 0x00; for (i = 14; i < MIN_PACKET_SIZE; i++) pdata->loopback_tx_pkt[i] = (char)i; val = smsc911x_reg_read(pdata, HW_CFG); val &= HW_CFG_TX_FIF_SZ_; val |= HW_CFG_SF_; smsc911x_reg_write(pdata, HW_CFG, val); smsc911x_reg_write(pdata, TX_CFG, TX_CFG_TX_ON_); smsc911x_reg_write(pdata, RX_CFG, (u32)((ulong)pdata->loopback_rx_pkt & 0x03) << 8); for (i = 0; i < 10; i++) { /* Set PHY to 10/FD, no ANEG, and loopback mode */ smsc911x_mii_write(phy_dev->mdio.bus, phy_dev->mdio.addr, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX); /* Enable MAC tx/rx, FD */ spin_lock_irqsave(&pdata->mac_lock, flags); smsc911x_mac_write(pdata, MAC_CR, MAC_CR_FDPX_ | MAC_CR_TXEN_ | MAC_CR_RXEN_); spin_unlock_irqrestore(&pdata->mac_lock, flags); if (smsc911x_phy_check_loopbackpkt(pdata) == 0) { result = 0; break; } pdata->resetcount++; /* Disable MAC rx */ spin_lock_irqsave(&pdata->mac_lock, flags); smsc911x_mac_write(pdata, MAC_CR, 0); spin_unlock_irqrestore(&pdata->mac_lock, flags); smsc911x_phy_reset(pdata); } /* Disable MAC */ spin_lock_irqsave(&pdata->mac_lock, flags); smsc911x_mac_write(pdata, MAC_CR, 0); spin_unlock_irqrestore(&pdata->mac_lock, flags); /* Cancel PHY loopback mode */ smsc911x_mii_write(phy_dev->mdio.bus, phy_dev->mdio.addr, MII_BMCR, 0); smsc911x_reg_write(pdata, TX_CFG, 0); smsc911x_reg_write(pdata, RX_CFG, 0); return result; } #endif /* USE_PHY_WORK_AROUND */ static void smsc911x_phy_update_flowcontrol(struct smsc911x_data *pdata) { struct net_device *ndev = pdata->dev; struct phy_device *phy_dev = ndev->phydev; u32 afc = smsc911x_reg_read(pdata, AFC_CFG); u32 flow; unsigned long flags; if (phy_dev->duplex == DUPLEX_FULL) { u16 lcladv = phy_read(phy_dev, MII_ADVERTISE); u16 rmtadv = phy_read(phy_dev, MII_LPA); u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv); if (cap & FLOW_CTRL_RX) flow = 0xFFFF0002; else flow = 0; if (cap & FLOW_CTRL_TX) afc |= 0xF; else afc &= ~0xF; SMSC_TRACE(pdata, hw, "rx pause %s, tx pause %s", (cap & FLOW_CTRL_RX ? "enabled" : "disabled"), (cap & FLOW_CTRL_TX ? "enabled" : "disabled")); } else { SMSC_TRACE(pdata, hw, "half duplex"); flow = 0; afc |= 0xF; } spin_lock_irqsave(&pdata->mac_lock, flags); smsc911x_mac_write(pdata, FLOW, flow); spin_unlock_irqrestore(&pdata->mac_lock, flags); smsc911x_reg_write(pdata, AFC_CFG, afc); } /* Update link mode if anything has changed. Called periodically when the * PHY is in polling mode, even if nothing has changed. */ static void smsc911x_phy_adjust_link(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); struct phy_device *phy_dev = dev->phydev; unsigned long flags; int carrier; if (phy_dev->duplex != pdata->last_duplex) { unsigned int mac_cr; SMSC_TRACE(pdata, hw, "duplex state has changed"); spin_lock_irqsave(&pdata->mac_lock, flags); mac_cr = smsc911x_mac_read(pdata, MAC_CR); if (phy_dev->duplex) { SMSC_TRACE(pdata, hw, "configuring for full duplex mode"); mac_cr |= MAC_CR_FDPX_; } else { SMSC_TRACE(pdata, hw, "configuring for half duplex mode"); mac_cr &= ~MAC_CR_FDPX_; } smsc911x_mac_write(pdata, MAC_CR, mac_cr); spin_unlock_irqrestore(&pdata->mac_lock, flags); smsc911x_phy_update_flowcontrol(pdata); pdata->last_duplex = phy_dev->duplex; } carrier = netif_carrier_ok(dev); if (carrier != pdata->last_carrier) { SMSC_TRACE(pdata, hw, "carrier state has changed"); if (carrier) { SMSC_TRACE(pdata, hw, "configuring for carrier OK"); if ((pdata->gpio_orig_setting & GPIO_CFG_LED1_EN_) && (!pdata->using_extphy)) { /* Restore original GPIO configuration */ pdata->gpio_setting = pdata->gpio_orig_setting; smsc911x_reg_write(pdata, GPIO_CFG, pdata->gpio_setting); } } else { SMSC_TRACE(pdata, hw, "configuring for no carrier"); /* Check global setting that LED1 * usage is 10/100 indicator */ pdata->gpio_setting = smsc911x_reg_read(pdata, GPIO_CFG); if ((pdata->gpio_setting & GPIO_CFG_LED1_EN_) && (!pdata->using_extphy)) { /* Force 10/100 LED off, after saving * original GPIO configuration */ pdata->gpio_orig_setting = pdata->gpio_setting; pdata->gpio_setting &= ~GPIO_CFG_LED1_EN_; pdata->gpio_setting |= (GPIO_CFG_GPIOBUF0_ | GPIO_CFG_GPIODIR0_ | GPIO_CFG_GPIOD0_); smsc911x_reg_write(pdata, GPIO_CFG, pdata->gpio_setting); } } pdata->last_carrier = carrier; } } static int smsc911x_mii_probe(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); struct phy_device *phydev; int ret; /* find the first phy */ phydev = phy_find_first(pdata->mii_bus); if (!phydev) { netdev_err(dev, "no PHY found\n"); return -ENODEV; } SMSC_TRACE(pdata, probe, "PHY: addr %d, phy_id 0x%08X", phydev->mdio.addr, phydev->phy_id); ret = phy_connect_direct(dev, phydev, &smsc911x_phy_adjust_link, pdata->config.phy_interface); if (ret) { netdev_err(dev, "Could not attach to PHY\n"); return ret; } phy_attached_info(phydev); phy_set_max_speed(phydev, SPEED_100); /* mask with MAC supported features */ phy_support_asym_pause(phydev); pdata->last_duplex = -1; pdata->last_carrier = -1; #ifdef USE_PHY_WORK_AROUND if (smsc911x_phy_loopbacktest(dev) < 0) { SMSC_WARN(pdata, hw, "Failed Loop Back Test"); phy_disconnect(phydev); return -ENODEV; } SMSC_TRACE(pdata, hw, "Passed Loop Back Test"); #endif /* USE_PHY_WORK_AROUND */ SMSC_TRACE(pdata, hw, "phy initialised successfully"); return 0; } static int smsc911x_mii_init(struct platform_device *pdev, struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); struct phy_device *phydev; int err = -ENXIO; pdata->mii_bus = mdiobus_alloc(); if (!pdata->mii_bus) { err = -ENOMEM; goto err_out_1; } pdata->mii_bus->name = SMSC_MDIONAME; snprintf(pdata->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", pdev->name, pdev->id); pdata->mii_bus->priv = pdata; pdata->mii_bus->read = smsc911x_mii_read; pdata->mii_bus->write = smsc911x_mii_write; pdata->mii_bus->parent = &pdev->dev; switch (pdata->idrev & 0xFFFF0000) { case 0x01170000: case 0x01150000: case 0x117A0000: case 0x115A0000: /* External PHY supported, try to autodetect */ smsc911x_phy_initialise_external(pdata); break; default: SMSC_TRACE(pdata, hw, "External PHY is not supported, " "using internal PHY"); pdata->using_extphy = 0; break; } if (!pdata->using_extphy) { /* Mask all PHYs except ID 1 (internal) */ pdata->mii_bus->phy_mask = ~(1 << 1); } if (mdiobus_register(pdata->mii_bus)) { SMSC_WARN(pdata, probe, "Error registering mii bus"); goto err_out_free_bus_2; } phydev = phy_find_first(pdata->mii_bus); if (phydev) phydev->mac_managed_pm = true; return 0; err_out_free_bus_2: mdiobus_free(pdata->mii_bus); err_out_1: return err; } /* Gets the number of tx statuses in the fifo */ static unsigned int smsc911x_tx_get_txstatcount(struct smsc911x_data *pdata) { return (smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TSUSED_) >> 16; } /* Reads tx statuses and increments counters where necessary */ static void smsc911x_tx_update_txcounters(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); unsigned int tx_stat; while ((tx_stat = smsc911x_tx_get_txstatus(pdata)) != 0) { if (unlikely(tx_stat & 0x80000000)) { /* In this driver the packet tag is used as the packet * length. Since a packet length can never reach the * size of 0x8000, this bit is reserved. It is worth * noting that the "reserved bit" in the warning above * does not reference a hardware defined reserved bit * but rather a driver defined one. */ SMSC_WARN(pdata, hw, "Packet tag reserved bit is high"); } else { if (unlikely(tx_stat & TX_STS_ES_)) { dev->stats.tx_errors++; } else { dev->stats.tx_packets++; dev->stats.tx_bytes += (tx_stat >> 16); } if (unlikely(tx_stat & TX_STS_EXCESS_COL_)) { dev->stats.collisions += 16; dev->stats.tx_aborted_errors += 1; } else { dev->stats.collisions += ((tx_stat >> 3) & 0xF); } if (unlikely(tx_stat & TX_STS_LOST_CARRIER_)) dev->stats.tx_carrier_errors += 1; if (unlikely(tx_stat & TX_STS_LATE_COL_)) { dev->stats.collisions++; dev->stats.tx_aborted_errors++; } } } } /* Increments the Rx error counters */ static void smsc911x_rx_counterrors(struct net_device *dev, unsigned int rxstat) { int crc_err = 0; if (unlikely(rxstat & RX_STS_ES_)) { dev->stats.rx_errors++; if (unlikely(rxstat & RX_STS_CRC_ERR_)) { dev->stats.rx_crc_errors++; crc_err = 1; } } if (likely(!crc_err)) { if (unlikely((rxstat & RX_STS_FRAME_TYPE_) && (rxstat & RX_STS_LENGTH_ERR_))) dev->stats.rx_length_errors++; if (rxstat & RX_STS_MCAST_) dev->stats.multicast++; } } /* Quickly dumps bad packets */ static void smsc911x_rx_fastforward(struct smsc911x_data *pdata, unsigned int pktwords) { if (likely(pktwords >= 4)) { unsigned int timeout = 500; unsigned int val; smsc911x_reg_write(pdata, RX_DP_CTRL, RX_DP_CTRL_RX_FFWD_); do { udelay(1); val = smsc911x_reg_read(pdata, RX_DP_CTRL); } while ((val & RX_DP_CTRL_RX_FFWD_) && --timeout); if (unlikely(timeout == 0)) SMSC_WARN(pdata, hw, "Timed out waiting for " "RX FFWD to finish, RX_DP_CTRL: 0x%08X", val); } else { while (pktwords--) smsc911x_reg_read(pdata, RX_DATA_FIFO); } } /* NAPI poll function */ static int smsc911x_poll(struct napi_struct *napi, int budget) { struct smsc911x_data *pdata = container_of(napi, struct smsc911x_data, napi); struct net_device *dev = pdata->dev; int npackets = 0; while (npackets < budget) { unsigned int pktlength; unsigned int pktwords; struct sk_buff *skb; unsigned int rxstat = smsc911x_rx_get_rxstatus(pdata); if (!rxstat) { unsigned int temp; /* We processed all packets available. Tell NAPI it can * stop polling then re-enable rx interrupts */ smsc911x_reg_write(pdata, INT_STS, INT_STS_RSFL_); napi_complete(napi); temp = smsc911x_reg_read(pdata, INT_EN); temp |= INT_EN_RSFL_EN_; smsc911x_reg_write(pdata, INT_EN, temp); break; } /* Count packet for NAPI scheduling, even if it has an error. * Error packets still require cycles to discard */ npackets++; pktlength = ((rxstat & 0x3FFF0000) >> 16); pktwords = (pktlength + NET_IP_ALIGN + 3) >> 2; smsc911x_rx_counterrors(dev, rxstat); if (unlikely(rxstat & RX_STS_ES_)) { SMSC_WARN(pdata, rx_err, "Discarding packet with error bit set"); /* Packet has an error, discard it and continue with * the next */ smsc911x_rx_fastforward(pdata, pktwords); dev->stats.rx_dropped++; continue; } skb = netdev_alloc_skb(dev, pktwords << 2); if (unlikely(!skb)) { SMSC_WARN(pdata, rx_err, "Unable to allocate skb for rx packet"); /* Drop the packet and stop this polling iteration */ smsc911x_rx_fastforward(pdata, pktwords); dev->stats.rx_dropped++; break; } pdata->ops->rx_readfifo(pdata, (unsigned int *)skb->data, pktwords); /* Align IP on 16B boundary */ skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, pktlength - 4); skb->protocol = eth_type_trans(skb, dev); skb_checksum_none_assert(skb); netif_receive_skb(skb); /* Update counters */ dev->stats.rx_packets++; dev->stats.rx_bytes += (pktlength - 4); } /* Return total received packets */ return npackets; } /* Returns hash bit number for given MAC address * Example: * 01 00 5E 00 00 01 -> returns bit number 31 */ static unsigned int smsc911x_hash(char addr[ETH_ALEN]) { return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f; } static void smsc911x_rx_multicast_update(struct smsc911x_data *pdata) { /* Performs the multicast & mac_cr update. This is called when * safe on the current hardware, and with the mac_lock held */ unsigned int mac_cr; SMSC_ASSERT_MAC_LOCK(pdata); mac_cr = smsc911x_mac_read(pdata, MAC_CR); mac_cr |= pdata->set_bits_mask; mac_cr &= ~(pdata->clear_bits_mask); smsc911x_mac_write(pdata, MAC_CR, mac_cr); smsc911x_mac_write(pdata, HASHH, pdata->hashhi); smsc911x_mac_write(pdata, HASHL, pdata->hashlo); SMSC_TRACE(pdata, hw, "maccr 0x%08X, HASHH 0x%08X, HASHL 0x%08X", mac_cr, pdata->hashhi, pdata->hashlo); } static void smsc911x_rx_multicast_update_workaround(struct smsc911x_data *pdata) { unsigned int mac_cr; /* This function is only called for older LAN911x devices * (revA or revB), where MAC_CR, HASHH and HASHL should not * be modified during Rx - newer devices immediately update the * registers. * * This is called from interrupt context */ spin_lock(&pdata->mac_lock); /* Check Rx has stopped */ if (smsc911x_mac_read(pdata, MAC_CR) & MAC_CR_RXEN_) SMSC_WARN(pdata, drv, "Rx not stopped"); /* Perform the update - safe to do now Rx has stopped */ smsc911x_rx_multicast_update(pdata); /* Re-enable Rx */ mac_cr = smsc911x_mac_read(pdata, MAC_CR); mac_cr |= MAC_CR_RXEN_; smsc911x_mac_write(pdata, MAC_CR, mac_cr); pdata->multicast_update_pending = 0; spin_unlock(&pdata->mac_lock); } static int smsc911x_phy_general_power_up(struct smsc911x_data *pdata) { struct net_device *ndev = pdata->dev; struct phy_device *phy_dev = ndev->phydev; int rc = 0; if (!phy_dev) return rc; /* If the internal PHY is in General Power-Down mode, all, except the * management interface, is powered-down and stays in that condition as * long as Phy register bit 0.11 is HIGH. * * In that case, clear the bit 0.11, so the PHY powers up and we can * access to the phy registers. */ rc = phy_read(phy_dev, MII_BMCR); if (rc < 0) { SMSC_WARN(pdata, drv, "Failed reading PHY control reg"); return rc; } /* If the PHY general power-down bit is not set is not necessary to * disable the general power down-mode. */ if (rc & BMCR_PDOWN) { rc = phy_write(phy_dev, MII_BMCR, rc & ~BMCR_PDOWN); if (rc < 0) { SMSC_WARN(pdata, drv, "Failed writing PHY control reg"); return rc; } usleep_range(1000, 1500); } return 0; } static int smsc911x_phy_disable_energy_detect(struct smsc911x_data *pdata) { struct net_device *ndev = pdata->dev; struct phy_device *phy_dev = ndev->phydev; int rc = 0; if (!phy_dev) return rc; rc = phy_read(phy_dev, MII_LAN83C185_CTRL_STATUS); if (rc < 0) { SMSC_WARN(pdata, drv, "Failed reading PHY control reg"); return rc; } /* Only disable if energy detect mode is already enabled */ if (rc & MII_LAN83C185_EDPWRDOWN) { /* Disable energy detect mode for this SMSC Transceivers */ rc = phy_write(phy_dev, MII_LAN83C185_CTRL_STATUS, rc & (~MII_LAN83C185_EDPWRDOWN)); if (rc < 0) { SMSC_WARN(pdata, drv, "Failed writing PHY control reg"); return rc; } /* Allow PHY to wakeup */ mdelay(2); } return 0; } static int smsc911x_phy_enable_energy_detect(struct smsc911x_data *pdata) { struct net_device *ndev = pdata->dev; struct phy_device *phy_dev = ndev->phydev; int rc = 0; if (!phy_dev) return rc; rc = phy_read(phy_dev, MII_LAN83C185_CTRL_STATUS); if (rc < 0) { SMSC_WARN(pdata, drv, "Failed reading PHY control reg"); return rc; } /* Only enable if energy detect mode is already disabled */ if (!(rc & MII_LAN83C185_EDPWRDOWN)) { /* Enable energy detect mode for this SMSC Transceivers */ rc = phy_write(phy_dev, MII_LAN83C185_CTRL_STATUS, rc | MII_LAN83C185_EDPWRDOWN); if (rc < 0) { SMSC_WARN(pdata, drv, "Failed writing PHY control reg"); return rc; } } return 0; } static int smsc911x_soft_reset(struct smsc911x_data *pdata) { unsigned int timeout; unsigned int temp; int ret; unsigned int reset_offset = HW_CFG; unsigned int reset_mask = HW_CFG_SRST_; /* * Make sure to power-up the PHY chip before doing a reset, otherwise * the reset fails. */ ret = smsc911x_phy_general_power_up(pdata); if (ret) { SMSC_WARN(pdata, drv, "Failed to power-up the PHY chip"); return ret; } /* * LAN9210/LAN9211/LAN9220/LAN9221 chips have an internal PHY that * are initialized in a Energy Detect Power-Down mode that prevents * the MAC chip to be software reseted. So we have to wakeup the PHY * before. */ if (pdata->generation == 4) { ret = smsc911x_phy_disable_energy_detect(pdata); if (ret) { SMSC_WARN(pdata, drv, "Failed to wakeup the PHY chip"); return ret; } } if ((pdata->idrev & 0xFFFF0000) == LAN9250) { /* special reset for LAN9250 */ reset_offset = RESET_CTL; reset_mask = RESET_CTL_DIGITAL_RST_; } /* Reset the LAN911x */ smsc911x_reg_write(pdata, reset_offset, reset_mask); /* verify reset bit is cleared */ timeout = 10; do { udelay(10); temp = smsc911x_reg_read(pdata, reset_offset); } while ((--timeout) && (temp & reset_mask)); if (unlikely(temp & reset_mask)) { SMSC_WARN(pdata, drv, "Failed to complete reset"); return -EIO; } if (pdata->generation == 4) { ret = smsc911x_phy_enable_energy_detect(pdata); if (ret) { SMSC_WARN(pdata, drv, "Failed to wakeup the PHY chip"); return ret; } } return 0; } /* Sets the device MAC address to dev_addr, called with mac_lock held */ static void smsc911x_set_hw_mac_address(struct smsc911x_data *pdata, const u8 dev_addr[6]) { u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4]; u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) | (dev_addr[1] << 8) | dev_addr[0]; SMSC_ASSERT_MAC_LOCK(pdata); smsc911x_mac_write(pdata, ADDRH, mac_high16); smsc911x_mac_write(pdata, ADDRL, mac_low32); } static void smsc911x_disable_irq_chip(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); smsc911x_reg_write(pdata, INT_EN, 0); smsc911x_reg_write(pdata, INT_STS, 0xFFFFFFFF); } static irqreturn_t smsc911x_irqhandler(int irq, void *dev_id) { struct net_device *dev = dev_id; struct smsc911x_data *pdata = netdev_priv(dev); u32 intsts = smsc911x_reg_read(pdata, INT_STS); u32 inten = smsc911x_reg_read(pdata, INT_EN); int serviced = IRQ_NONE; u32 temp; if (unlikely(intsts & inten & INT_STS_SW_INT_)) { temp = smsc911x_reg_read(pdata, INT_EN); temp &= (~INT_EN_SW_INT_EN_); smsc911x_reg_write(pdata, INT_EN, temp); smsc911x_reg_write(pdata, INT_STS, INT_STS_SW_INT_); pdata->software_irq_signal = 1; smp_wmb(); serviced = IRQ_HANDLED; } if (unlikely(intsts & inten & INT_STS_RXSTOP_INT_)) { /* Called when there is a multicast update scheduled and * it is now safe to complete the update */ SMSC_TRACE(pdata, intr, "RX Stop interrupt"); smsc911x_reg_write(pdata, INT_STS, INT_STS_RXSTOP_INT_); if (pdata->multicast_update_pending) smsc911x_rx_multicast_update_workaround(pdata); serviced = IRQ_HANDLED; } if (intsts & inten & INT_STS_TDFA_) { temp = smsc911x_reg_read(pdata, FIFO_INT); temp |= FIFO_INT_TX_AVAIL_LEVEL_; smsc911x_reg_write(pdata, FIFO_INT, temp); smsc911x_reg_write(pdata, INT_STS, INT_STS_TDFA_); netif_wake_queue(dev); serviced = IRQ_HANDLED; } if (unlikely(intsts & inten & INT_STS_RXE_)) { SMSC_TRACE(pdata, intr, "RX Error interrupt"); smsc911x_reg_write(pdata, INT_STS, INT_STS_RXE_); serviced = IRQ_HANDLED; } if (likely(intsts & inten & INT_STS_RSFL_)) { if (likely(napi_schedule_prep(&pdata->napi))) { /* Disable Rx interrupts */ temp = smsc911x_reg_read(pdata, INT_EN); temp &= (~INT_EN_RSFL_EN_); smsc911x_reg_write(pdata, INT_EN, temp); /* Schedule a NAPI poll */ __napi_schedule(&pdata->napi); } else { SMSC_WARN(pdata, rx_err, "napi_schedule_prep failed"); } serviced = IRQ_HANDLED; } return serviced; } static int smsc911x_open(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); unsigned int timeout; unsigned int temp; unsigned int intcfg; int retval; int irq_flags; pm_runtime_get_sync(dev->dev.parent); /* find and start the given phy */ if (!dev->phydev) { retval = smsc911x_mii_probe(dev); if (retval < 0) { SMSC_WARN(pdata, probe, "Error starting phy"); goto out; } } /* Reset the LAN911x */ retval = smsc911x_soft_reset(pdata); if (retval) { SMSC_WARN(pdata, hw, "soft reset failed"); goto mii_free_out; } smsc911x_reg_write(pdata, HW_CFG, 0x00050000); smsc911x_reg_write(pdata, AFC_CFG, 0x006E3740); /* Increase the legal frame size of VLAN tagged frames to 1522 bytes */ spin_lock_irq(&pdata->mac_lock); smsc911x_mac_write(pdata, VLAN1, ETH_P_8021Q); spin_unlock_irq(&pdata->mac_lock); /* Make sure EEPROM has finished loading before setting GPIO_CFG */ timeout = 50; while ((smsc911x_reg_read(pdata, E2P_CMD) & E2P_CMD_EPC_BUSY_) && --timeout) { udelay(10); } if (unlikely(timeout == 0)) SMSC_WARN(pdata, ifup, "Timed out waiting for EEPROM busy bit to clear"); smsc911x_reg_write(pdata, GPIO_CFG, 0x70070000); /* The soft reset above cleared the device's MAC address, * restore it from local copy (set in probe) */ spin_lock_irq(&pdata->mac_lock); smsc911x_set_hw_mac_address(pdata, dev->dev_addr); spin_unlock_irq(&pdata->mac_lock); /* Initialise irqs, but leave all sources disabled */ smsc911x_disable_irq_chip(dev); /* Set interrupt deassertion to 100uS */ intcfg = ((10 << 24) | INT_CFG_IRQ_EN_); if (pdata->config.irq_polarity) { SMSC_TRACE(pdata, ifup, "irq polarity: active high"); intcfg |= INT_CFG_IRQ_POL_; } else { SMSC_TRACE(pdata, ifup, "irq polarity: active low"); } if (pdata->config.irq_type) { SMSC_TRACE(pdata, ifup, "irq type: push-pull"); intcfg |= INT_CFG_IRQ_TYPE_; } else { SMSC_TRACE(pdata, ifup, "irq type: open drain"); } smsc911x_reg_write(pdata, INT_CFG, intcfg); SMSC_TRACE(pdata, ifup, "Testing irq handler using IRQ %d", dev->irq); pdata->software_irq_signal = 0; smp_wmb(); irq_flags = irq_get_trigger_type(dev->irq); retval = request_irq(dev->irq, smsc911x_irqhandler, irq_flags | IRQF_SHARED, dev->name, dev); if (retval) { SMSC_WARN(pdata, probe, "Unable to claim requested irq: %d", dev->irq); goto mii_free_out; } temp = smsc911x_reg_read(pdata, INT_EN); temp |= INT_EN_SW_INT_EN_; smsc911x_reg_write(pdata, INT_EN, temp); timeout = 1000; while (timeout--) { if (pdata->software_irq_signal) break; msleep(1); } if (!pdata->software_irq_signal) { netdev_warn(dev, "ISR failed signaling test (IRQ %d)\n", dev->irq); retval = -ENODEV; goto irq_stop_out; } SMSC_TRACE(pdata, ifup, "IRQ handler passed test using IRQ %d", dev->irq); netdev_info(dev, "SMSC911x/921x identified at %#08lx, IRQ: %d\n", (unsigned long)pdata->ioaddr, dev->irq); /* Reset the last known duplex and carrier */ pdata->last_duplex = -1; pdata->last_carrier = -1; /* Bring the PHY up */ phy_start(dev->phydev); temp = smsc911x_reg_read(pdata, HW_CFG); /* Preserve TX FIFO size and external PHY configuration */ temp &= (HW_CFG_TX_FIF_SZ_|0x00000FFF); temp |= HW_CFG_SF_; smsc911x_reg_write(pdata, HW_CFG, temp); temp = smsc911x_reg_read(pdata, FIFO_INT); temp |= FIFO_INT_TX_AVAIL_LEVEL_; temp &= ~(FIFO_INT_RX_STS_LEVEL_); smsc911x_reg_write(pdata, FIFO_INT, temp); /* set RX Data offset to 2 bytes for alignment */ smsc911x_reg_write(pdata, RX_CFG, (NET_IP_ALIGN << 8)); /* enable NAPI polling before enabling RX interrupts */ napi_enable(&pdata->napi); temp = smsc911x_reg_read(pdata, INT_EN); temp |= (INT_EN_TDFA_EN_ | INT_EN_RSFL_EN_ | INT_EN_RXSTOP_INT_EN_); smsc911x_reg_write(pdata, INT_EN, temp); spin_lock_irq(&pdata->mac_lock); temp = smsc911x_mac_read(pdata, MAC_CR); temp |= (MAC_CR_TXEN_ | MAC_CR_RXEN_ | MAC_CR_HBDIS_); smsc911x_mac_write(pdata, MAC_CR, temp); spin_unlock_irq(&pdata->mac_lock); smsc911x_reg_write(pdata, TX_CFG, TX_CFG_TX_ON_); netif_start_queue(dev); return 0; irq_stop_out: free_irq(dev->irq, dev); mii_free_out: phy_disconnect(dev->phydev); out: pm_runtime_put(dev->dev.parent); return retval; } /* Entry point for stopping the interface */ static int smsc911x_stop(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); unsigned int temp; /* Disable all device interrupts */ temp = smsc911x_reg_read(pdata, INT_CFG); temp &= ~INT_CFG_IRQ_EN_; smsc911x_reg_write(pdata, INT_CFG, temp); /* Stop Tx and Rx polling */ netif_stop_queue(dev); napi_disable(&pdata->napi); /* At this point all Rx and Tx activity is stopped */ dev->stats.rx_dropped += smsc911x_reg_read(pdata, RX_DROP); smsc911x_tx_update_txcounters(dev); free_irq(dev->irq, dev); /* Bring the PHY down */ if (dev->phydev) { phy_stop(dev->phydev); phy_disconnect(dev->phydev); } netif_carrier_off(dev); pm_runtime_put(dev->dev.parent); SMSC_TRACE(pdata, ifdown, "Interface stopped"); return 0; } /* Entry point for transmitting a packet */ static netdev_tx_t smsc911x_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); unsigned int freespace; unsigned int tx_cmd_a; unsigned int tx_cmd_b; unsigned int temp; u32 wrsz; ulong bufp; freespace = smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TDFREE_; if (unlikely(freespace < TX_FIFO_LOW_THRESHOLD)) SMSC_WARN(pdata, tx_err, "Tx data fifo low, space available: %d", freespace); /* Word alignment adjustment */ tx_cmd_a = (u32)((ulong)skb->data & 0x03) << 16; tx_cmd_a |= TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_; tx_cmd_a |= (unsigned int)skb->len; tx_cmd_b = ((unsigned int)skb->len) << 16; tx_cmd_b |= (unsigned int)skb->len; smsc911x_reg_write(pdata, TX_DATA_FIFO, tx_cmd_a); smsc911x_reg_write(pdata, TX_DATA_FIFO, tx_cmd_b); bufp = (ulong)skb->data & (~0x3); wrsz = (u32)skb->len + 3; wrsz += (u32)((ulong)skb->data & 0x3); wrsz >>= 2; pdata->ops->tx_writefifo(pdata, (unsigned int *)bufp, wrsz); freespace -= (skb->len + 32); skb_tx_timestamp(skb); dev_consume_skb_any(skb); if (unlikely(smsc911x_tx_get_txstatcount(pdata) >= 30)) smsc911x_tx_update_txcounters(dev); if (freespace < TX_FIFO_LOW_THRESHOLD) { netif_stop_queue(dev); temp = smsc911x_reg_read(pdata, FIFO_INT); temp &= 0x00FFFFFF; temp |= 0x32000000; smsc911x_reg_write(pdata, FIFO_INT, temp); } return NETDEV_TX_OK; } /* Entry point for getting status counters */ static struct net_device_stats *smsc911x_get_stats(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); smsc911x_tx_update_txcounters(dev); dev->stats.rx_dropped += smsc911x_reg_read(pdata, RX_DROP); return &dev->stats; } /* Entry point for setting addressing modes */ static void smsc911x_set_multicast_list(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); unsigned long flags; if (dev->flags & IFF_PROMISC) { /* Enabling promiscuous mode */ pdata->set_bits_mask = MAC_CR_PRMS_; pdata->clear_bits_mask = (MAC_CR_MCPAS_ | MAC_CR_HPFILT_); pdata->hashhi = 0; pdata->hashlo = 0; } else if (dev->flags & IFF_ALLMULTI) { /* Enabling all multicast mode */ pdata->set_bits_mask = MAC_CR_MCPAS_; pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_HPFILT_); pdata->hashhi = 0; pdata->hashlo = 0; } else if (!netdev_mc_empty(dev)) { /* Enabling specific multicast addresses */ unsigned int hash_high = 0; unsigned int hash_low = 0; struct netdev_hw_addr *ha; pdata->set_bits_mask = MAC_CR_HPFILT_; pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_MCPAS_); netdev_for_each_mc_addr(ha, dev) { unsigned int bitnum = smsc911x_hash(ha->addr); unsigned int mask = 0x01 << (bitnum & 0x1F); if (bitnum & 0x20) hash_high |= mask; else hash_low |= mask; } pdata->hashhi = hash_high; pdata->hashlo = hash_low; } else { /* Enabling local MAC address only */ pdata->set_bits_mask = 0; pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_); pdata->hashhi = 0; pdata->hashlo = 0; } spin_lock_irqsave(&pdata->mac_lock, flags); if (pdata->generation <= 1) { /* Older hardware revision - cannot change these flags while * receiving data */ if (!pdata->multicast_update_pending) { unsigned int temp; SMSC_TRACE(pdata, hw, "scheduling mcast update"); pdata->multicast_update_pending = 1; /* Request the hardware to stop, then perform the * update when we get an RX_STOP interrupt */ temp = smsc911x_mac_read(pdata, MAC_CR); temp &= ~(MAC_CR_RXEN_); smsc911x_mac_write(pdata, MAC_CR, temp); } else { /* There is another update pending, this should now * use the newer values */ } } else { /* Newer hardware revision - can write immediately */ smsc911x_rx_multicast_update(pdata); } spin_unlock_irqrestore(&pdata->mac_lock, flags); } #ifdef CONFIG_NET_POLL_CONTROLLER static void smsc911x_poll_controller(struct net_device *dev) { disable_irq(dev->irq); smsc911x_irqhandler(0, dev); enable_irq(dev->irq); } #endif /* CONFIG_NET_POLL_CONTROLLER */ static int smsc911x_set_mac_address(struct net_device *dev, void *p) { struct smsc911x_data *pdata = netdev_priv(dev); struct sockaddr *addr = p; /* On older hardware revisions we cannot change the mac address * registers while receiving data. Newer devices can safely change * this at any time. */ if (pdata->generation <= 1 && netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(dev, addr->sa_data); spin_lock_irq(&pdata->mac_lock); smsc911x_set_hw_mac_address(pdata, dev->dev_addr); spin_unlock_irq(&pdata->mac_lock); netdev_info(dev, "MAC Address: %pM\n", dev->dev_addr); return 0; } static void smsc911x_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, SMSC_CHIPNAME, sizeof(info->driver)); strscpy(info->version, SMSC_DRV_VERSION, sizeof(info->version)); strscpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info)); } static u32 smsc911x_ethtool_getmsglevel(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); return pdata->msg_enable; } static void smsc911x_ethtool_setmsglevel(struct net_device *dev, u32 level) { struct smsc911x_data *pdata = netdev_priv(dev); pdata->msg_enable = level; } static int smsc911x_ethtool_getregslen(struct net_device *dev) { return (((E2P_DATA - ID_REV) / 4 + 1) + (WUCSR - MAC_CR) + 1 + 32) * sizeof(u32); } static void smsc911x_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs, void *buf) { struct smsc911x_data *pdata = netdev_priv(dev); struct phy_device *phy_dev = dev->phydev; unsigned long flags; unsigned int i; unsigned int j = 0; u32 *data = buf; regs->version = pdata->idrev; for (i = ID_REV; i <= E2P_DATA; i += (sizeof(u32))) data[j++] = smsc911x_reg_read(pdata, i); for (i = MAC_CR; i <= WUCSR; i++) { spin_lock_irqsave(&pdata->mac_lock, flags); data[j++] = smsc911x_mac_read(pdata, i); spin_unlock_irqrestore(&pdata->mac_lock, flags); } for (i = 0; i <= 31; i++) data[j++] = smsc911x_mii_read(phy_dev->mdio.bus, phy_dev->mdio.addr, i); } static void smsc911x_eeprom_enable_access(struct smsc911x_data *pdata) { unsigned int temp = smsc911x_reg_read(pdata, GPIO_CFG); temp &= ~GPIO_CFG_EEPR_EN_; smsc911x_reg_write(pdata, GPIO_CFG, temp); msleep(1); } static int smsc911x_eeprom_send_cmd(struct smsc911x_data *pdata, u32 op) { int timeout = 100; u32 e2cmd; SMSC_TRACE(pdata, drv, "op 0x%08x", op); if (smsc911x_reg_read(pdata, E2P_CMD) & E2P_CMD_EPC_BUSY_) { SMSC_WARN(pdata, drv, "Busy at start"); return -EBUSY; } e2cmd = op | E2P_CMD_EPC_BUSY_; smsc911x_reg_write(pdata, E2P_CMD, e2cmd); do { msleep(1); e2cmd = smsc911x_reg_read(pdata, E2P_CMD); } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout)); if (!timeout) { SMSC_TRACE(pdata, drv, "TIMED OUT"); return -EAGAIN; } if (e2cmd & E2P_CMD_EPC_TIMEOUT_) { SMSC_TRACE(pdata, drv, "Error occurred during eeprom operation"); return -EINVAL; } return 0; } static int smsc911x_eeprom_read_location(struct smsc911x_data *pdata, u8 address, u8 *data) { u32 op = E2P_CMD_EPC_CMD_READ_ | address; int ret; SMSC_TRACE(pdata, drv, "address 0x%x", address); ret = smsc911x_eeprom_send_cmd(pdata, op); if (!ret) data[address] = smsc911x_reg_read(pdata, E2P_DATA); return ret; } static int smsc911x_eeprom_write_location(struct smsc911x_data *pdata, u8 address, u8 data) { u32 op = E2P_CMD_EPC_CMD_ERASE_ | address; int ret; SMSC_TRACE(pdata, drv, "address 0x%x, data 0x%x", address, data); ret = smsc911x_eeprom_send_cmd(pdata, op); if (!ret) { op = E2P_CMD_EPC_CMD_WRITE_ | address; smsc911x_reg_write(pdata, E2P_DATA, (u32)data); /* Workaround for hardware read-after-write restriction */ smsc911x_reg_read(pdata, BYTE_TEST); ret = smsc911x_eeprom_send_cmd(pdata, op); } return ret; } static int smsc911x_ethtool_get_eeprom_len(struct net_device *dev) { return SMSC911X_EEPROM_SIZE; } static int smsc911x_ethtool_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct smsc911x_data *pdata = netdev_priv(dev); u8 eeprom_data[SMSC911X_EEPROM_SIZE]; int len; int i; smsc911x_eeprom_enable_access(pdata); len = min(eeprom->len, SMSC911X_EEPROM_SIZE); for (i = 0; i < len; i++) { int ret = smsc911x_eeprom_read_location(pdata, i, eeprom_data); if (ret < 0) { eeprom->len = 0; return ret; } } memcpy(data, &eeprom_data[eeprom->offset], len); eeprom->len = len; return 0; } static int smsc911x_ethtool_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { int ret; struct smsc911x_data *pdata = netdev_priv(dev); smsc911x_eeprom_enable_access(pdata); smsc911x_eeprom_send_cmd(pdata, E2P_CMD_EPC_CMD_EWEN_); ret = smsc911x_eeprom_write_location(pdata, eeprom->offset, *data); smsc911x_eeprom_send_cmd(pdata, E2P_CMD_EPC_CMD_EWDS_); /* Single byte write, according to man page */ eeprom->len = 1; return ret; } static const struct ethtool_ops smsc911x_ethtool_ops = { .get_link = ethtool_op_get_link, .get_drvinfo = smsc911x_ethtool_getdrvinfo, .nway_reset = phy_ethtool_nway_reset, .get_msglevel = smsc911x_ethtool_getmsglevel, .set_msglevel = smsc911x_ethtool_setmsglevel, .get_regs_len = smsc911x_ethtool_getregslen, .get_regs = smsc911x_ethtool_getregs, .get_eeprom_len = smsc911x_ethtool_get_eeprom_len, .get_eeprom = smsc911x_ethtool_get_eeprom, .set_eeprom = smsc911x_ethtool_set_eeprom, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static const struct net_device_ops smsc911x_netdev_ops = { .ndo_open = smsc911x_open, .ndo_stop = smsc911x_stop, .ndo_start_xmit = smsc911x_hard_start_xmit, .ndo_get_stats = smsc911x_get_stats, .ndo_set_rx_mode = smsc911x_set_multicast_list, .ndo_eth_ioctl = phy_do_ioctl_running, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = smsc911x_set_mac_address, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = smsc911x_poll_controller, #endif }; /* copies the current mac address from hardware to dev->dev_addr */ static void smsc911x_read_mac_address(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); u32 mac_high16 = smsc911x_mac_read(pdata, ADDRH); u32 mac_low32 = smsc911x_mac_read(pdata, ADDRL); u8 addr[ETH_ALEN]; addr[0] = (u8)(mac_low32); addr[1] = (u8)(mac_low32 >> 8); addr[2] = (u8)(mac_low32 >> 16); addr[3] = (u8)(mac_low32 >> 24); addr[4] = (u8)(mac_high16); addr[5] = (u8)(mac_high16 >> 8); eth_hw_addr_set(dev, addr); } /* Initializing private device structures, only called from probe */ static int smsc911x_init(struct net_device *dev) { struct smsc911x_data *pdata = netdev_priv(dev); unsigned int byte_test, mask; unsigned int to = 100; SMSC_TRACE(pdata, probe, "Driver Parameters:"); SMSC_TRACE(pdata, probe, "LAN base: 0x%08lX", (unsigned long)pdata->ioaddr); SMSC_TRACE(pdata, probe, "IRQ: %d", dev->irq); SMSC_TRACE(pdata, probe, "PHY will be autodetected."); spin_lock_init(&pdata->dev_lock); spin_lock_init(&pdata->mac_lock); if (pdata->ioaddr == NULL) { SMSC_WARN(pdata, probe, "pdata->ioaddr: 0x00000000"); return -ENODEV; } /* * poll the READY bit in PMT_CTRL. Any other access to the device is * forbidden while this bit isn't set. Try for 100ms * * Note that this test is done before the WORD_SWAP register is * programmed. So in some configurations the READY bit is at 16 before * WORD_SWAP is written to. This issue is worked around by waiting * until either bit 0 or bit 16 gets set in PMT_CTRL. * * SMSC has confirmed that checking bit 16 (marked as reserved in * the datasheet) is fine since these bits "will either never be set * or can only go high after READY does (so also indicate the device * is ready)". */ mask = PMT_CTRL_READY_ | swahw32(PMT_CTRL_READY_); while (!(smsc911x_reg_read(pdata, PMT_CTRL) & mask) && --to) udelay(1000); if (to == 0) { netdev_err(dev, "Device not READY in 100ms aborting\n"); return -ENODEV; } /* Check byte ordering */ byte_test = smsc911x_reg_read(pdata, BYTE_TEST); SMSC_TRACE(pdata, probe, "BYTE_TEST: 0x%08X", byte_test); if (byte_test == 0x43218765) { SMSC_TRACE(pdata, probe, "BYTE_TEST looks swapped, " "applying WORD_SWAP"); smsc911x_reg_write(pdata, WORD_SWAP, 0xffffffff); /* 1 dummy read of BYTE_TEST is needed after a write to * WORD_SWAP before its contents are valid */ byte_test = smsc911x_reg_read(pdata, BYTE_TEST); byte_test = smsc911x_reg_read(pdata, BYTE_TEST); } if (byte_test != 0x87654321) { SMSC_WARN(pdata, drv, "BYTE_TEST: 0x%08X", byte_test); if (((byte_test >> 16) & 0xFFFF) == (byte_test & 0xFFFF)) { SMSC_WARN(pdata, probe, "top 16 bits equal to bottom 16 bits"); SMSC_TRACE(pdata, probe, "This may mean the chip is set " "for 32 bit while the bus is reading 16 bit"); } return -ENODEV; } /* Default generation to zero (all workarounds apply) */ pdata->generation = 0; pdata->idrev = smsc911x_reg_read(pdata, ID_REV); switch (pdata->idrev & 0xFFFF0000) { case LAN9118: case LAN9117: case LAN9116: case LAN9115: case LAN89218: /* LAN911[5678] family */ pdata->generation = pdata->idrev & 0x0000FFFF; break; case LAN9218: case LAN9217: case LAN9216: case LAN9215: /* LAN921[5678] family */ pdata->generation = 3; break; case LAN9210: case LAN9211: case LAN9220: case LAN9221: case LAN9250: /* LAN9210/LAN9211/LAN9220/LAN9221/LAN9250 */ pdata->generation = 4; break; default: SMSC_WARN(pdata, probe, "LAN911x not identified, idrev: 0x%08X", pdata->idrev); return -ENODEV; } SMSC_TRACE(pdata, probe, "LAN911x identified, idrev: 0x%08X, generation: %d", pdata->idrev, pdata->generation); if (pdata->generation == 0) SMSC_WARN(pdata, probe, "This driver is not intended for this chip revision"); /* workaround for platforms without an eeprom, where the mac address * is stored elsewhere and set by the bootloader. This saves the * mac address before resetting the device */ if (pdata->config.flags & SMSC911X_SAVE_MAC_ADDRESS) { spin_lock_irq(&pdata->mac_lock); smsc911x_read_mac_address(dev); spin_unlock_irq(&pdata->mac_lock); } /* Reset the LAN911x */ if (smsc911x_phy_reset(pdata) || smsc911x_soft_reset(pdata)) return -ENODEV; dev->flags |= IFF_MULTICAST; netif_napi_add_weight(dev, &pdata->napi, smsc911x_poll, SMSC_NAPI_WEIGHT); dev->netdev_ops = &smsc911x_netdev_ops; dev->ethtool_ops = &smsc911x_ethtool_ops; return 0; } static int smsc911x_drv_remove(struct platform_device *pdev) { struct net_device *dev; struct smsc911x_data *pdata; struct resource *res; dev = platform_get_drvdata(pdev); BUG_ON(!dev); pdata = netdev_priv(dev); BUG_ON(!pdata); BUG_ON(!pdata->ioaddr); SMSC_TRACE(pdata, ifdown, "Stopping driver"); unregister_netdev(dev); mdiobus_unregister(pdata->mii_bus); mdiobus_free(pdata->mii_bus); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smsc911x-memory"); if (!res) res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, resource_size(res)); iounmap(pdata->ioaddr); (void)smsc911x_disable_resources(pdev); smsc911x_free_resources(pdev); free_netdev(dev); pm_runtime_disable(&pdev->dev); return 0; } /* standard register acces */ static const struct smsc911x_ops standard_smsc911x_ops = { .reg_read = __smsc911x_reg_read, .reg_write = __smsc911x_reg_write, .rx_readfifo = smsc911x_rx_readfifo, .tx_writefifo = smsc911x_tx_writefifo, }; /* shifted register access */ static const struct smsc911x_ops shifted_smsc911x_ops = { .reg_read = __smsc911x_reg_read_shift, .reg_write = __smsc911x_reg_write_shift, .rx_readfifo = smsc911x_rx_readfifo_shift, .tx_writefifo = smsc911x_tx_writefifo_shift, }; static int smsc911x_probe_config(struct smsc911x_platform_config *config, struct device *dev) { int phy_interface; u32 width = 0; int err; phy_interface = device_get_phy_mode(dev); if (phy_interface < 0) phy_interface = PHY_INTERFACE_MODE_NA; config->phy_interface = phy_interface; device_get_mac_address(dev, config->mac); err = device_property_read_u32(dev, "reg-io-width", &width); if (err == -ENXIO) return err; if (!err && width == 4) config->flags |= SMSC911X_USE_32BIT; else config->flags |= SMSC911X_USE_16BIT; device_property_read_u32(dev, "reg-shift", &config->shift); if (device_property_present(dev, "smsc,irq-active-high")) config->irq_polarity = SMSC911X_IRQ_POLARITY_ACTIVE_HIGH; if (device_property_present(dev, "smsc,irq-push-pull")) config->irq_type = SMSC911X_IRQ_TYPE_PUSH_PULL; if (device_property_present(dev, "smsc,force-internal-phy")) config->flags |= SMSC911X_FORCE_INTERNAL_PHY; if (device_property_present(dev, "smsc,force-external-phy")) config->flags |= SMSC911X_FORCE_EXTERNAL_PHY; if (device_property_present(dev, "smsc,save-mac-address")) config->flags |= SMSC911X_SAVE_MAC_ADDRESS; return 0; } static int smsc911x_drv_probe(struct platform_device *pdev) { struct net_device *dev; struct smsc911x_data *pdata; struct smsc911x_platform_config *config = dev_get_platdata(&pdev->dev); struct resource *res; int res_size, irq; int retval; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smsc911x-memory"); if (!res) res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { pr_warn("Could not allocate resource\n"); retval = -ENODEV; goto out_0; } res_size = resource_size(res); irq = platform_get_irq(pdev, 0); if (irq == -EPROBE_DEFER) { retval = -EPROBE_DEFER; goto out_0; } else if (irq < 0) { pr_warn("Could not allocate irq resource\n"); retval = -ENODEV; goto out_0; } if (!request_mem_region(res->start, res_size, SMSC_CHIPNAME)) { retval = -EBUSY; goto out_0; } dev = alloc_etherdev(sizeof(struct smsc911x_data)); if (!dev) { retval = -ENOMEM; goto out_release_io_1; } SET_NETDEV_DEV(dev, &pdev->dev); pdata = netdev_priv(dev); dev->irq = irq; pdata->ioaddr = ioremap(res->start, res_size); if (!pdata->ioaddr) { retval = -ENOMEM; goto out_ioremap_fail; } pdata->dev = dev; pdata->msg_enable = ((1 << debug) - 1); platform_set_drvdata(pdev, dev); retval = smsc911x_request_resources(pdev); if (retval) goto out_request_resources_fail; retval = smsc911x_enable_resources(pdev); if (retval) goto out_enable_resources_fail; if (pdata->ioaddr == NULL) { SMSC_WARN(pdata, probe, "Error smsc911x base address invalid"); retval = -ENOMEM; goto out_disable_resources; } retval = smsc911x_probe_config(&pdata->config, &pdev->dev); if (retval && config) { /* copy config parameters across to pdata */ memcpy(&pdata->config, config, sizeof(pdata->config)); retval = 0; } if (retval) { SMSC_WARN(pdata, probe, "Error smsc911x config not found"); goto out_disable_resources; } /* assume standard, non-shifted, access to HW registers */ pdata->ops = &standard_smsc911x_ops; /* apply the right access if shifting is needed */ if (pdata->config.shift) pdata->ops = &shifted_smsc911x_ops; pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); retval = smsc911x_init(dev); if (retval < 0) goto out_init_fail; netif_carrier_off(dev); retval = smsc911x_mii_init(pdev, dev); if (retval) { SMSC_WARN(pdata, probe, "Error %i initialising mii", retval); goto out_init_fail; } retval = register_netdev(dev); if (retval) { SMSC_WARN(pdata, probe, "Error %i registering device", retval); goto out_init_fail; } else { SMSC_TRACE(pdata, probe, "Network interface: \"%s\"", dev->name); } spin_lock_irq(&pdata->mac_lock); /* Check if mac address has been specified when bringing interface up */ if (is_valid_ether_addr(dev->dev_addr)) { smsc911x_set_hw_mac_address(pdata, dev->dev_addr); SMSC_TRACE(pdata, probe, "MAC Address is specified by configuration"); } else if (is_valid_ether_addr(pdata->config.mac)) { eth_hw_addr_set(dev, pdata->config.mac); SMSC_TRACE(pdata, probe, "MAC Address specified by platform data"); } else { /* Try reading mac address from device. if EEPROM is present * it will already have been set */ smsc_get_mac(dev); if (is_valid_ether_addr(dev->dev_addr)) { /* eeprom values are valid so use them */ SMSC_TRACE(pdata, probe, "Mac Address is read from LAN911x EEPROM"); } else { /* eeprom values are invalid, generate random MAC */ eth_hw_addr_random(dev); smsc911x_set_hw_mac_address(pdata, dev->dev_addr); SMSC_TRACE(pdata, probe, "MAC Address is set to eth_random_addr"); } } spin_unlock_irq(&pdata->mac_lock); pm_runtime_put(&pdev->dev); netdev_info(dev, "MAC Address: %pM\n", dev->dev_addr); return 0; out_init_fail: pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); out_disable_resources: (void)smsc911x_disable_resources(pdev); out_enable_resources_fail: smsc911x_free_resources(pdev); out_request_resources_fail: iounmap(pdata->ioaddr); out_ioremap_fail: free_netdev(dev); out_release_io_1: release_mem_region(res->start, resource_size(res)); out_0: return retval; } #ifdef CONFIG_PM /* This implementation assumes the devices remains powered on its VDDVARIO * pins during suspend. */ /* TODO: implement freeze/thaw callbacks for hibernation.*/ static int smsc911x_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct smsc911x_data *pdata = netdev_priv(ndev); if (netif_running(ndev)) { netif_stop_queue(ndev); netif_device_detach(ndev); if (!device_may_wakeup(dev)) phy_stop(ndev->phydev); } /* enable wake on LAN, energy detection and the external PME * signal. */ smsc911x_reg_write(pdata, PMT_CTRL, PMT_CTRL_PM_MODE_D1_ | PMT_CTRL_WOL_EN_ | PMT_CTRL_ED_EN_ | PMT_CTRL_PME_EN_); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); return 0; } static int smsc911x_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct smsc911x_data *pdata = netdev_priv(ndev); unsigned int to = 100; pm_runtime_enable(dev); pm_runtime_resume(dev); /* Note 3.11 from the datasheet: * "When the LAN9220 is in a power saving state, a write of any * data to the BYTE_TEST register will wake-up the device." */ smsc911x_reg_write(pdata, BYTE_TEST, 0); /* poll the READY bit in PMT_CTRL. Any other access to the device is * forbidden while this bit isn't set. Try for 100ms and return -EIO * if it failed. */ while (!(smsc911x_reg_read(pdata, PMT_CTRL) & PMT_CTRL_READY_) && --to) udelay(1000); if (to == 0) return -EIO; if (netif_running(ndev)) { netif_device_attach(ndev); netif_start_queue(ndev); if (!device_may_wakeup(dev)) phy_start(ndev->phydev); } return 0; } static const struct dev_pm_ops smsc911x_pm_ops = { .suspend = smsc911x_suspend, .resume = smsc911x_resume, }; #define SMSC911X_PM_OPS (&smsc911x_pm_ops) #else #define SMSC911X_PM_OPS NULL #endif #ifdef CONFIG_OF static const struct of_device_id smsc911x_dt_ids[] = { { .compatible = "smsc,lan9115", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, smsc911x_dt_ids); #endif #ifdef CONFIG_ACPI static const struct acpi_device_id smsc911x_acpi_match[] = { { "ARMH9118", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, smsc911x_acpi_match); #endif static struct platform_driver smsc911x_driver = { .probe = smsc911x_drv_probe, .remove = smsc911x_drv_remove, .driver = { .name = SMSC_CHIPNAME, .pm = SMSC911X_PM_OPS, .of_match_table = of_match_ptr(smsc911x_dt_ids), .acpi_match_table = ACPI_PTR(smsc911x_acpi_match), }, }; /* Entry point for loading the module */ static int __init smsc911x_init_module(void) { SMSC_INITIALIZE(); return platform_driver_register(&smsc911x_driver); } /* entry point for unloading the module */ static void __exit smsc911x_cleanup_module(void) { platform_driver_unregister(&smsc911x_driver); } module_init(smsc911x_init_module); module_exit(smsc911x_cleanup_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1