Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steve Glendinning | 7491 | 90.33% | 9 | 16.67% |
Joe Perches | 453 | 5.46% | 2 | 3.70% |
Christophe Jaillet | 58 | 0.70% | 1 | 1.85% |
François Romieu | 53 | 0.64% | 1 | 1.85% |
Philippe Reynes | 35 | 0.42% | 2 | 3.70% |
Vaibhav Gupta | 32 | 0.39% | 1 | 1.85% |
Andrew Lunn | 25 | 0.30% | 6 | 11.11% |
Ben Boeckel | 23 | 0.28% | 1 | 1.85% |
Jakub Kiciński | 21 | 0.25% | 2 | 3.70% |
Rasesh Mody | 15 | 0.18% | 1 | 1.85% |
Jiri Pirko | 15 | 0.18% | 4 | 7.41% |
Richard Cochran | 10 | 0.12% | 2 | 3.70% |
Petri Gynther | 6 | 0.07% | 1 | 1.85% |
Benoit Taine | 6 | 0.07% | 1 | 1.85% |
Stephen Hemminger | 6 | 0.07% | 2 | 3.70% |
Roel Kluin | 6 | 0.07% | 1 | 1.85% |
Rick Jones | 6 | 0.07% | 1 | 1.85% |
Yang Hongyang | 4 | 0.05% | 1 | 1.85% |
Wolfram Sang | 3 | 0.04% | 1 | 1.85% |
Alexey Dobriyan | 3 | 0.04% | 1 | 1.85% |
Eric Dumazet | 3 | 0.04% | 1 | 1.85% |
Paul Gortmaker | 3 | 0.04% | 1 | 1.85% |
caihuoqing | 3 | 0.04% | 1 | 1.85% |
Kay Sievers | 2 | 0.02% | 1 | 1.85% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.85% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 1.85% |
Linus Torvalds | 1 | 0.01% | 1 | 1.85% |
Daniel Mack | 1 | 0.01% | 1 | 1.85% |
Danny Kukawka | 1 | 0.01% | 1 | 1.85% |
Florian Fainelli | 1 | 0.01% | 1 | 1.85% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.85% |
Heiner Kallweit | 1 | 0.01% | 1 | 1.85% |
Ben Hutchings | 1 | 0.01% | 1 | 1.85% |
Total | 8293 | 54 |
// SPDX-License-Identifier: GPL-2.0-or-later /*************************************************************************** * * Copyright (C) 2007,2008 SMSC * *************************************************************************** */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/phy.h> #include <linux/pci.h> #include <linux/if_vlan.h> #include <linux/dma-mapping.h> #include <linux/crc32.h> #include <linux/slab.h> #include <linux/module.h> #include <asm/unaligned.h> #include "smsc9420.h" #define DRV_NAME "smsc9420" #define DRV_MDIONAME "smsc9420-mdio" #define DRV_DESCRIPTION "SMSC LAN9420 driver" #define DRV_VERSION "1.01" MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); struct smsc9420_dma_desc { u32 status; u32 length; u32 buffer1; u32 buffer2; }; struct smsc9420_ring_info { struct sk_buff *skb; dma_addr_t mapping; }; struct smsc9420_pdata { void __iomem *ioaddr; struct pci_dev *pdev; struct net_device *dev; struct smsc9420_dma_desc *rx_ring; struct smsc9420_dma_desc *tx_ring; struct smsc9420_ring_info *tx_buffers; struct smsc9420_ring_info *rx_buffers; dma_addr_t rx_dma_addr; dma_addr_t tx_dma_addr; int tx_ring_head, tx_ring_tail; int rx_ring_head, rx_ring_tail; spinlock_t int_lock; spinlock_t phy_lock; struct napi_struct napi; bool software_irq_signal; bool rx_csum; u32 msg_enable; struct mii_bus *mii_bus; int last_duplex; int last_carrier; }; static const struct pci_device_id smsc9420_id_table[] = { { PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, }, { 0, } }; MODULE_DEVICE_TABLE(pci, smsc9420_id_table); #define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) static uint smsc_debug; static uint debug = -1; module_param(debug, uint, 0); MODULE_PARM_DESC(debug, "debug level"); static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset) { return ioread32(pd->ioaddr + offset); } static inline void smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value) { iowrite32(value, pd->ioaddr + offset); } static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd) { /* to ensure PCI write completion, we must perform a PCI read */ smsc9420_reg_read(pd, ID_REV); } static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx) { struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv; unsigned long flags; u32 addr; int i, reg = -EIO; spin_lock_irqsave(&pd->phy_lock, flags); /* confirm MII not busy */ if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) { netif_warn(pd, drv, pd->dev, "MII is busy???\n"); goto out; } /* set the address, index & direction (read from PHY) */ addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) | MII_ACCESS_MII_READ_; smsc9420_reg_write(pd, MII_ACCESS, addr); /* wait for read to complete with 50us timeout */ for (i = 0; i < 5; i++) { if (!(smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) { reg = (u16)smsc9420_reg_read(pd, MII_DATA); goto out; } udelay(10); } netif_warn(pd, drv, pd->dev, "MII busy timeout!\n"); out: spin_unlock_irqrestore(&pd->phy_lock, flags); return reg; } static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx, u16 val) { struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv; unsigned long flags; u32 addr; int i, reg = -EIO; spin_lock_irqsave(&pd->phy_lock, flags); /* confirm MII not busy */ if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) { netif_warn(pd, drv, pd->dev, "MII is busy???\n"); goto out; } /* put the data to write in the MAC */ smsc9420_reg_write(pd, MII_DATA, (u32)val); /* set the address, index & direction (write to PHY) */ addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) | MII_ACCESS_MII_WRITE_; smsc9420_reg_write(pd, MII_ACCESS, addr); /* wait for write to complete with 50us timeout */ for (i = 0; i < 5; i++) { if (!(smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) { reg = 0; goto out; } udelay(10); } netif_warn(pd, drv, pd->dev, "MII busy timeout!\n"); out: spin_unlock_irqrestore(&pd->phy_lock, flags); return reg; } /* Returns hash bit number for given MAC address * Example: * 01 00 5E 00 00 01 -> returns bit number 31 */ static u32 smsc9420_hash(u8 addr[ETH_ALEN]) { return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f; } static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd) { int timeout = 100000; BUG_ON(!pd); if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) { netif_dbg(pd, drv, pd->dev, "%s: Eeprom busy\n", __func__); return -EIO; } smsc9420_reg_write(pd, E2P_CMD, (E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_)); do { udelay(10); if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_)) return 0; } while (timeout--); netif_warn(pd, drv, pd->dev, "%s: Eeprom timed out\n", __func__); return -EIO; } static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct smsc9420_pdata *pd = netdev_priv(netdev); strscpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver)); strscpy(drvinfo->bus_info, pci_name(pd->pdev), sizeof(drvinfo->bus_info)); strscpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); } static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev) { struct smsc9420_pdata *pd = netdev_priv(netdev); return pd->msg_enable; } static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data) { struct smsc9420_pdata *pd = netdev_priv(netdev); pd->msg_enable = data; } static int smsc9420_ethtool_getregslen(struct net_device *dev) { /* all smsc9420 registers plus all phy registers */ return 0x100 + (32 * sizeof(u32)); } static void smsc9420_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs, void *buf) { struct smsc9420_pdata *pd = netdev_priv(dev); struct phy_device *phy_dev = dev->phydev; unsigned int i, j = 0; u32 *data = buf; regs->version = smsc9420_reg_read(pd, ID_REV); for (i = 0; i < 0x100; i += (sizeof(u32))) data[j++] = smsc9420_reg_read(pd, i); // cannot read phy registers if the net device is down if (!phy_dev) return; for (i = 0; i <= 31; i++) data[j++] = smsc9420_mii_read(phy_dev->mdio.bus, phy_dev->mdio.addr, i); } static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd) { unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG); temp &= ~GPIO_CFG_EEPR_EN_; smsc9420_reg_write(pd, GPIO_CFG, temp); msleep(1); } static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op) { int timeout = 100; u32 e2cmd; netif_dbg(pd, hw, pd->dev, "op 0x%08x\n", op); if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) { netif_warn(pd, hw, pd->dev, "Busy at start\n"); return -EBUSY; } e2cmd = op | E2P_CMD_EPC_BUSY_; smsc9420_reg_write(pd, E2P_CMD, e2cmd); do { msleep(1); e2cmd = smsc9420_reg_read(pd, E2P_CMD); } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout)); if (!timeout) { netif_info(pd, hw, pd->dev, "TIMED OUT\n"); return -EAGAIN; } if (e2cmd & E2P_CMD_EPC_TIMEOUT_) { netif_info(pd, hw, pd->dev, "Error occurred during eeprom operation\n"); return -EINVAL; } return 0; } static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd, u8 address, u8 *data) { u32 op = E2P_CMD_EPC_CMD_READ_ | address; int ret; netif_dbg(pd, hw, pd->dev, "address 0x%x\n", address); ret = smsc9420_eeprom_send_cmd(pd, op); if (!ret) data[address] = smsc9420_reg_read(pd, E2P_DATA); return ret; } static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd, u8 address, u8 data) { u32 op = E2P_CMD_EPC_CMD_ERASE_ | address; int ret; netif_dbg(pd, hw, pd->dev, "address 0x%x, data 0x%x\n", address, data); ret = smsc9420_eeprom_send_cmd(pd, op); if (!ret) { op = E2P_CMD_EPC_CMD_WRITE_ | address; smsc9420_reg_write(pd, E2P_DATA, (u32)data); ret = smsc9420_eeprom_send_cmd(pd, op); } return ret; } static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev) { return SMSC9420_EEPROM_SIZE; } static int smsc9420_ethtool_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct smsc9420_pdata *pd = netdev_priv(dev); u8 eeprom_data[SMSC9420_EEPROM_SIZE]; int len, i; smsc9420_eeprom_enable_access(pd); len = min(eeprom->len, SMSC9420_EEPROM_SIZE); for (i = 0; i < len; i++) { int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data); if (ret < 0) { eeprom->len = 0; return ret; } } memcpy(data, &eeprom_data[eeprom->offset], len); eeprom->magic = SMSC9420_EEPROM_MAGIC; eeprom->len = len; return 0; } static int smsc9420_ethtool_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct smsc9420_pdata *pd = netdev_priv(dev); int ret; if (eeprom->magic != SMSC9420_EEPROM_MAGIC) return -EINVAL; smsc9420_eeprom_enable_access(pd); smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_); ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data); smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_); /* Single byte write, according to man page */ eeprom->len = 1; return ret; } static const struct ethtool_ops smsc9420_ethtool_ops = { .get_drvinfo = smsc9420_ethtool_get_drvinfo, .get_msglevel = smsc9420_ethtool_get_msglevel, .set_msglevel = smsc9420_ethtool_set_msglevel, .nway_reset = phy_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_eeprom_len = smsc9420_ethtool_get_eeprom_len, .get_eeprom = smsc9420_ethtool_get_eeprom, .set_eeprom = smsc9420_ethtool_set_eeprom, .get_regs_len = smsc9420_ethtool_getregslen, .get_regs = smsc9420_ethtool_getregs, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; /* Sets the device MAC address to dev_addr */ static void smsc9420_set_mac_address(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); const u8 *dev_addr = dev->dev_addr; u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4]; u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) | (dev_addr[1] << 8) | dev_addr[0]; smsc9420_reg_write(pd, ADDRH, mac_high16); smsc9420_reg_write(pd, ADDRL, mac_low32); } static void smsc9420_check_mac_address(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); u8 addr[ETH_ALEN]; /* Check if mac address has been specified when bringing interface up */ if (is_valid_ether_addr(dev->dev_addr)) { smsc9420_set_mac_address(dev); netif_dbg(pd, probe, pd->dev, "MAC Address is specified by configuration\n"); } else { /* Try reading mac address from device. if EEPROM is present * it will already have been set */ u32 mac_high16 = smsc9420_reg_read(pd, ADDRH); u32 mac_low32 = smsc9420_reg_read(pd, ADDRL); addr[0] = (u8)(mac_low32); addr[1] = (u8)(mac_low32 >> 8); addr[2] = (u8)(mac_low32 >> 16); addr[3] = (u8)(mac_low32 >> 24); addr[4] = (u8)(mac_high16); addr[5] = (u8)(mac_high16 >> 8); if (is_valid_ether_addr(addr)) { /* eeprom values are valid so use them */ eth_hw_addr_set(dev, addr); netif_dbg(pd, probe, pd->dev, "Mac Address is read from EEPROM\n"); } else { /* eeprom values are invalid, generate random MAC */ eth_hw_addr_random(dev); smsc9420_set_mac_address(dev); netif_dbg(pd, probe, pd->dev, "MAC Address is set to random\n"); } } } static void smsc9420_stop_tx(struct smsc9420_pdata *pd) { u32 dmac_control, mac_cr, dma_intr_ena; int timeout = 1000; /* disable TX DMAC */ dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL); dmac_control &= (~DMAC_CONTROL_ST_); smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control); /* Wait max 10ms for transmit process to stop */ while (--timeout) { if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_) break; udelay(10); } if (!timeout) netif_warn(pd, ifdown, pd->dev, "TX DMAC failed to stop\n"); /* ACK Tx DMAC stop bit */ smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_); /* mask TX DMAC interrupts */ dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA); dma_intr_ena &= ~(DMAC_INTR_ENA_TX_); smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena); smsc9420_pci_flush_write(pd); /* stop MAC TX */ mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_); smsc9420_reg_write(pd, MAC_CR, mac_cr); smsc9420_pci_flush_write(pd); } static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd) { int i; BUG_ON(!pd->tx_ring); if (!pd->tx_buffers) return; for (i = 0; i < TX_RING_SIZE; i++) { struct sk_buff *skb = pd->tx_buffers[i].skb; if (skb) { BUG_ON(!pd->tx_buffers[i].mapping); dma_unmap_single(&pd->pdev->dev, pd->tx_buffers[i].mapping, skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(skb); } pd->tx_ring[i].status = 0; pd->tx_ring[i].length = 0; pd->tx_ring[i].buffer1 = 0; pd->tx_ring[i].buffer2 = 0; } wmb(); kfree(pd->tx_buffers); pd->tx_buffers = NULL; pd->tx_ring_head = 0; pd->tx_ring_tail = 0; } static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd) { int i; BUG_ON(!pd->rx_ring); if (!pd->rx_buffers) return; for (i = 0; i < RX_RING_SIZE; i++) { if (pd->rx_buffers[i].skb) dev_kfree_skb_any(pd->rx_buffers[i].skb); if (pd->rx_buffers[i].mapping) dma_unmap_single(&pd->pdev->dev, pd->rx_buffers[i].mapping, PKT_BUF_SZ, DMA_FROM_DEVICE); pd->rx_ring[i].status = 0; pd->rx_ring[i].length = 0; pd->rx_ring[i].buffer1 = 0; pd->rx_ring[i].buffer2 = 0; } wmb(); kfree(pd->rx_buffers); pd->rx_buffers = NULL; pd->rx_ring_head = 0; pd->rx_ring_tail = 0; } static void smsc9420_stop_rx(struct smsc9420_pdata *pd) { int timeout = 1000; u32 mac_cr, dmac_control, dma_intr_ena; /* mask RX DMAC interrupts */ dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA); dma_intr_ena &= (~DMAC_INTR_ENA_RX_); smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena); smsc9420_pci_flush_write(pd); /* stop RX MAC prior to stoping DMA */ mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_); smsc9420_reg_write(pd, MAC_CR, mac_cr); smsc9420_pci_flush_write(pd); /* stop RX DMAC */ dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL); dmac_control &= (~DMAC_CONTROL_SR_); smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control); smsc9420_pci_flush_write(pd); /* wait up to 10ms for receive to stop */ while (--timeout) { if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_) break; udelay(10); } if (!timeout) netif_warn(pd, ifdown, pd->dev, "RX DMAC did not stop! timeout\n"); /* ACK the Rx DMAC stop bit */ smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_); } static irqreturn_t smsc9420_isr(int irq, void *dev_id) { struct smsc9420_pdata *pd = dev_id; u32 int_cfg, int_sts, int_ctl; irqreturn_t ret = IRQ_NONE; ulong flags; BUG_ON(!pd); BUG_ON(!pd->ioaddr); int_cfg = smsc9420_reg_read(pd, INT_CFG); /* check if it's our interrupt */ if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) != (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) return IRQ_NONE; int_sts = smsc9420_reg_read(pd, INT_STAT); if (likely(INT_STAT_DMAC_INT_ & int_sts)) { u32 status = smsc9420_reg_read(pd, DMAC_STATUS); u32 ints_to_clear = 0; if (status & DMAC_STS_TX_) { ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_); netif_wake_queue(pd->dev); } if (status & DMAC_STS_RX_) { /* mask RX DMAC interrupts */ u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA); dma_intr_ena &= (~DMAC_INTR_ENA_RX_); smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena); smsc9420_pci_flush_write(pd); ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_); napi_schedule(&pd->napi); } if (ints_to_clear) smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear); ret = IRQ_HANDLED; } if (unlikely(INT_STAT_SW_INT_ & int_sts)) { /* mask software interrupt */ spin_lock_irqsave(&pd->int_lock, flags); int_ctl = smsc9420_reg_read(pd, INT_CTL); int_ctl &= (~INT_CTL_SW_INT_EN_); smsc9420_reg_write(pd, INT_CTL, int_ctl); spin_unlock_irqrestore(&pd->int_lock, flags); smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_); pd->software_irq_signal = true; smp_wmb(); ret = IRQ_HANDLED; } /* to ensure PCI write completion, we must perform a PCI read */ smsc9420_pci_flush_write(pd); return ret; } #ifdef CONFIG_NET_POLL_CONTROLLER static void smsc9420_poll_controller(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); const int irq = pd->pdev->irq; disable_irq(irq); smsc9420_isr(0, dev); enable_irq(irq); } #endif /* CONFIG_NET_POLL_CONTROLLER */ static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd) { smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_); smsc9420_reg_read(pd, BUS_MODE); udelay(2); if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_) netif_warn(pd, drv, pd->dev, "Software reset not cleared\n"); } static int smsc9420_stop(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); u32 int_cfg; ulong flags; BUG_ON(!pd); BUG_ON(!dev->phydev); /* disable master interrupt */ spin_lock_irqsave(&pd->int_lock, flags); int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_); smsc9420_reg_write(pd, INT_CFG, int_cfg); spin_unlock_irqrestore(&pd->int_lock, flags); netif_tx_disable(dev); napi_disable(&pd->napi); smsc9420_stop_tx(pd); smsc9420_free_tx_ring(pd); smsc9420_stop_rx(pd); smsc9420_free_rx_ring(pd); free_irq(pd->pdev->irq, pd); smsc9420_dmac_soft_reset(pd); phy_stop(dev->phydev); phy_disconnect(dev->phydev); mdiobus_unregister(pd->mii_bus); mdiobus_free(pd->mii_bus); return 0; } static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status) { if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) { dev->stats.rx_errors++; if (desc_status & RDES0_DESCRIPTOR_ERROR_) dev->stats.rx_over_errors++; else if (desc_status & (RDES0_FRAME_TOO_LONG_ | RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_)) dev->stats.rx_frame_errors++; else if (desc_status & RDES0_CRC_ERROR_) dev->stats.rx_crc_errors++; } if (unlikely(desc_status & RDES0_LENGTH_ERROR_)) dev->stats.rx_length_errors++; if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) && (desc_status & RDES0_FIRST_DESCRIPTOR_)))) dev->stats.rx_length_errors++; if (desc_status & RDES0_MULTICAST_FRAME_) dev->stats.multicast++; } static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index, const u32 status) { struct net_device *dev = pd->dev; struct sk_buff *skb; u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_) >> RDES0_FRAME_LENGTH_SHFT_; /* remove crc from packet lendth */ packet_length -= 4; if (pd->rx_csum) packet_length -= 2; dev->stats.rx_packets++; dev->stats.rx_bytes += packet_length; dma_unmap_single(&pd->pdev->dev, pd->rx_buffers[index].mapping, PKT_BUF_SZ, DMA_FROM_DEVICE); pd->rx_buffers[index].mapping = 0; skb = pd->rx_buffers[index].skb; pd->rx_buffers[index].skb = NULL; if (pd->rx_csum) { u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) + NET_IP_ALIGN + packet_length + 4); put_unaligned_le16(hw_csum, &skb->csum); skb->ip_summed = CHECKSUM_COMPLETE; } skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, packet_length); skb->protocol = eth_type_trans(skb, dev); netif_receive_skb(skb); } static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index) { struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ); dma_addr_t mapping; BUG_ON(pd->rx_buffers[index].skb); BUG_ON(pd->rx_buffers[index].mapping); if (unlikely(!skb)) return -ENOMEM; mapping = dma_map_single(&pd->pdev->dev, skb_tail_pointer(skb), PKT_BUF_SZ, DMA_FROM_DEVICE); if (dma_mapping_error(&pd->pdev->dev, mapping)) { dev_kfree_skb_any(skb); netif_warn(pd, rx_err, pd->dev, "dma_map_single failed!\n"); return -ENOMEM; } pd->rx_buffers[index].skb = skb; pd->rx_buffers[index].mapping = mapping; pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN; pd->rx_ring[index].status = RDES0_OWN_; wmb(); return 0; } static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd) { while (pd->rx_ring_tail != pd->rx_ring_head) { if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail)) break; pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE; } } static int smsc9420_rx_poll(struct napi_struct *napi, int budget) { struct smsc9420_pdata *pd = container_of(napi, struct smsc9420_pdata, napi); struct net_device *dev = pd->dev; u32 drop_frame_cnt, dma_intr_ena, status; int work_done; for (work_done = 0; work_done < budget; work_done++) { rmb(); status = pd->rx_ring[pd->rx_ring_head].status; /* stop if DMAC owns this dma descriptor */ if (status & RDES0_OWN_) break; smsc9420_rx_count_stats(dev, status); smsc9420_rx_handoff(pd, pd->rx_ring_head, status); pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE; smsc9420_alloc_new_rx_buffers(pd); } drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR); dev->stats.rx_dropped += (drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF); /* Kick RXDMA */ smsc9420_reg_write(pd, RX_POLL_DEMAND, 1); smsc9420_pci_flush_write(pd); if (work_done < budget) { napi_complete_done(&pd->napi, work_done); /* re-enable RX DMA interrupts */ dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA); dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_); smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena); smsc9420_pci_flush_write(pd); } return work_done; } static void smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length) { if (unlikely(status & TDES0_ERROR_SUMMARY_)) { dev->stats.tx_errors++; if (status & (TDES0_EXCESSIVE_DEFERRAL_ | TDES0_EXCESSIVE_COLLISIONS_)) dev->stats.tx_aborted_errors++; if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_)) dev->stats.tx_carrier_errors++; } else { dev->stats.tx_packets++; dev->stats.tx_bytes += (length & 0x7FF); } if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) { dev->stats.collisions += 16; } else { dev->stats.collisions += (status & TDES0_COLLISION_COUNT_MASK_) >> TDES0_COLLISION_COUNT_SHFT_; } if (unlikely(status & TDES0_HEARTBEAT_FAIL_)) dev->stats.tx_heartbeat_errors++; } /* Check for completed dma transfers, update stats and free skbs */ static void smsc9420_complete_tx(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); while (pd->tx_ring_tail != pd->tx_ring_head) { int index = pd->tx_ring_tail; u32 status, length; rmb(); status = pd->tx_ring[index].status; length = pd->tx_ring[index].length; /* Check if DMA still owns this descriptor */ if (unlikely(TDES0_OWN_ & status)) break; smsc9420_tx_update_stats(dev, status, length); BUG_ON(!pd->tx_buffers[index].skb); BUG_ON(!pd->tx_buffers[index].mapping); dma_unmap_single(&pd->pdev->dev, pd->tx_buffers[index].mapping, pd->tx_buffers[index].skb->len, DMA_TO_DEVICE); pd->tx_buffers[index].mapping = 0; dev_kfree_skb_any(pd->tx_buffers[index].skb); pd->tx_buffers[index].skb = NULL; pd->tx_ring[index].buffer1 = 0; wmb(); pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE; } } static netdev_tx_t smsc9420_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); dma_addr_t mapping; int index = pd->tx_ring_head; u32 tmp_desc1; bool about_to_take_last_desc = (((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail); smsc9420_complete_tx(dev); rmb(); BUG_ON(pd->tx_ring[index].status & TDES0_OWN_); BUG_ON(pd->tx_buffers[index].skb); BUG_ON(pd->tx_buffers[index].mapping); mapping = dma_map_single(&pd->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&pd->pdev->dev, mapping)) { netif_warn(pd, tx_err, pd->dev, "dma_map_single failed, dropping packet\n"); return NETDEV_TX_BUSY; } pd->tx_buffers[index].skb = skb; pd->tx_buffers[index].mapping = mapping; tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF)); if (unlikely(about_to_take_last_desc)) { tmp_desc1 |= TDES1_IC_; netif_stop_queue(pd->dev); } /* check if we are at the last descriptor and need to set EOR */ if (unlikely(index == (TX_RING_SIZE - 1))) tmp_desc1 |= TDES1_TER_; pd->tx_ring[index].buffer1 = mapping; pd->tx_ring[index].length = tmp_desc1; wmb(); /* increment head */ pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE; /* assign ownership to DMAC */ pd->tx_ring[index].status = TDES0_OWN_; wmb(); skb_tx_timestamp(skb); /* kick the DMA */ smsc9420_reg_write(pd, TX_POLL_DEMAND, 1); smsc9420_pci_flush_write(pd); return NETDEV_TX_OK; } static struct net_device_stats *smsc9420_get_stats(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR); dev->stats.rx_dropped += (counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF); return &dev->stats; } static void smsc9420_set_multicast_list(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); u32 mac_cr = smsc9420_reg_read(pd, MAC_CR); if (dev->flags & IFF_PROMISC) { netif_dbg(pd, hw, pd->dev, "Promiscuous Mode Enabled\n"); mac_cr |= MAC_CR_PRMS_; mac_cr &= (~MAC_CR_MCPAS_); mac_cr &= (~MAC_CR_HPFILT_); } else if (dev->flags & IFF_ALLMULTI) { netif_dbg(pd, hw, pd->dev, "Receive all Multicast Enabled\n"); mac_cr &= (~MAC_CR_PRMS_); mac_cr |= MAC_CR_MCPAS_; mac_cr &= (~MAC_CR_HPFILT_); } else if (!netdev_mc_empty(dev)) { struct netdev_hw_addr *ha; u32 hash_lo = 0, hash_hi = 0; netif_dbg(pd, hw, pd->dev, "Multicast filter enabled\n"); netdev_for_each_mc_addr(ha, dev) { u32 bit_num = smsc9420_hash(ha->addr); u32 mask = 1 << (bit_num & 0x1F); if (bit_num & 0x20) hash_hi |= mask; else hash_lo |= mask; } smsc9420_reg_write(pd, HASHH, hash_hi); smsc9420_reg_write(pd, HASHL, hash_lo); mac_cr &= (~MAC_CR_PRMS_); mac_cr &= (~MAC_CR_MCPAS_); mac_cr |= MAC_CR_HPFILT_; } else { netif_dbg(pd, hw, pd->dev, "Receive own packets only\n"); smsc9420_reg_write(pd, HASHH, 0); smsc9420_reg_write(pd, HASHL, 0); mac_cr &= (~MAC_CR_PRMS_); mac_cr &= (~MAC_CR_MCPAS_); mac_cr &= (~MAC_CR_HPFILT_); } smsc9420_reg_write(pd, MAC_CR, mac_cr); smsc9420_pci_flush_write(pd); } static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd) { struct net_device *dev = pd->dev; struct phy_device *phy_dev = dev->phydev; u32 flow; if (phy_dev->duplex == DUPLEX_FULL) { u16 lcladv = phy_read(phy_dev, MII_ADVERTISE); u16 rmtadv = phy_read(phy_dev, MII_LPA); u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv); if (cap & FLOW_CTRL_RX) flow = 0xFFFF0002; else flow = 0; netif_info(pd, link, pd->dev, "rx pause %s, tx pause %s\n", cap & FLOW_CTRL_RX ? "enabled" : "disabled", cap & FLOW_CTRL_TX ? "enabled" : "disabled"); } else { netif_info(pd, link, pd->dev, "half duplex\n"); flow = 0; } smsc9420_reg_write(pd, FLOW, flow); } /* Update link mode if anything has changed. Called periodically when the * PHY is in polling mode, even if nothing has changed. */ static void smsc9420_phy_adjust_link(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); struct phy_device *phy_dev = dev->phydev; int carrier; if (phy_dev->duplex != pd->last_duplex) { u32 mac_cr = smsc9420_reg_read(pd, MAC_CR); if (phy_dev->duplex) { netif_dbg(pd, link, pd->dev, "full duplex mode\n"); mac_cr |= MAC_CR_FDPX_; } else { netif_dbg(pd, link, pd->dev, "half duplex mode\n"); mac_cr &= ~MAC_CR_FDPX_; } smsc9420_reg_write(pd, MAC_CR, mac_cr); smsc9420_phy_update_flowcontrol(pd); pd->last_duplex = phy_dev->duplex; } carrier = netif_carrier_ok(dev); if (carrier != pd->last_carrier) { if (carrier) netif_dbg(pd, link, pd->dev, "carrier OK\n"); else netif_dbg(pd, link, pd->dev, "no carrier\n"); pd->last_carrier = carrier; } } static int smsc9420_mii_probe(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); struct phy_device *phydev = NULL; BUG_ON(dev->phydev); /* Device only supports internal PHY at address 1 */ phydev = mdiobus_get_phy(pd->mii_bus, 1); if (!phydev) { netdev_err(dev, "no PHY found at address 1\n"); return -ENODEV; } phydev = phy_connect(dev, phydev_name(phydev), smsc9420_phy_adjust_link, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { netdev_err(dev, "Could not attach to PHY\n"); return PTR_ERR(phydev); } phy_set_max_speed(phydev, SPEED_100); /* mask with MAC supported features */ phy_support_asym_pause(phydev); phy_attached_info(phydev); pd->last_duplex = -1; pd->last_carrier = -1; return 0; } static int smsc9420_mii_init(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); int err = -ENXIO; pd->mii_bus = mdiobus_alloc(); if (!pd->mii_bus) { err = -ENOMEM; goto err_out_1; } pd->mii_bus->name = DRV_MDIONAME; snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x", (pd->pdev->bus->number << 8) | pd->pdev->devfn); pd->mii_bus->priv = pd; pd->mii_bus->read = smsc9420_mii_read; pd->mii_bus->write = smsc9420_mii_write; /* Mask all PHYs except ID 1 (internal) */ pd->mii_bus->phy_mask = ~(1 << 1); if (mdiobus_register(pd->mii_bus)) { netif_warn(pd, probe, pd->dev, "Error registering mii bus\n"); goto err_out_free_bus_2; } if (smsc9420_mii_probe(dev) < 0) { netif_warn(pd, probe, pd->dev, "Error probing mii bus\n"); goto err_out_unregister_bus_3; } return 0; err_out_unregister_bus_3: mdiobus_unregister(pd->mii_bus); err_out_free_bus_2: mdiobus_free(pd->mii_bus); err_out_1: return err; } static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd) { int i; BUG_ON(!pd->tx_ring); pd->tx_buffers = kmalloc_array(TX_RING_SIZE, sizeof(struct smsc9420_ring_info), GFP_KERNEL); if (!pd->tx_buffers) return -ENOMEM; /* Initialize the TX Ring */ for (i = 0; i < TX_RING_SIZE; i++) { pd->tx_buffers[i].skb = NULL; pd->tx_buffers[i].mapping = 0; pd->tx_ring[i].status = 0; pd->tx_ring[i].length = 0; pd->tx_ring[i].buffer1 = 0; pd->tx_ring[i].buffer2 = 0; } pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_; wmb(); pd->tx_ring_head = 0; pd->tx_ring_tail = 0; smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr); smsc9420_pci_flush_write(pd); return 0; } static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd) { int i; BUG_ON(!pd->rx_ring); pd->rx_buffers = kmalloc_array(RX_RING_SIZE, sizeof(struct smsc9420_ring_info), GFP_KERNEL); if (pd->rx_buffers == NULL) goto out; /* initialize the rx ring */ for (i = 0; i < RX_RING_SIZE; i++) { pd->rx_ring[i].status = 0; pd->rx_ring[i].length = PKT_BUF_SZ; pd->rx_ring[i].buffer2 = 0; pd->rx_buffers[i].skb = NULL; pd->rx_buffers[i].mapping = 0; } pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_); /* now allocate the entire ring of skbs */ for (i = 0; i < RX_RING_SIZE; i++) { if (smsc9420_alloc_rx_buffer(pd, i)) { netif_warn(pd, ifup, pd->dev, "failed to allocate rx skb %d\n", i); goto out_free_rx_skbs; } } pd->rx_ring_head = 0; pd->rx_ring_tail = 0; smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q); netif_dbg(pd, ifup, pd->dev, "VLAN1 = 0x%08x\n", smsc9420_reg_read(pd, VLAN1)); if (pd->rx_csum) { /* Enable RX COE */ u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN; smsc9420_reg_write(pd, COE_CR, coe); netif_dbg(pd, ifup, pd->dev, "COE_CR = 0x%08x\n", coe); } smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr); smsc9420_pci_flush_write(pd); return 0; out_free_rx_skbs: smsc9420_free_rx_ring(pd); out: return -ENOMEM; } static int smsc9420_open(struct net_device *dev) { struct smsc9420_pdata *pd = netdev_priv(dev); u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl; const int irq = pd->pdev->irq; unsigned long flags; int result = 0, timeout; if (!is_valid_ether_addr(dev->dev_addr)) { netif_warn(pd, ifup, pd->dev, "dev_addr is not a valid MAC address\n"); result = -EADDRNOTAVAIL; goto out_0; } netif_carrier_off(dev); /* disable, mask and acknowledge all interrupts */ spin_lock_irqsave(&pd->int_lock, flags); int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_); smsc9420_reg_write(pd, INT_CFG, int_cfg); smsc9420_reg_write(pd, INT_CTL, 0); spin_unlock_irqrestore(&pd->int_lock, flags); smsc9420_reg_write(pd, DMAC_INTR_ENA, 0); smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF); smsc9420_pci_flush_write(pd); result = request_irq(irq, smsc9420_isr, IRQF_SHARED, DRV_NAME, pd); if (result) { netif_warn(pd, ifup, pd->dev, "Unable to use IRQ = %d\n", irq); result = -ENODEV; goto out_0; } smsc9420_dmac_soft_reset(pd); /* make sure MAC_CR is sane */ smsc9420_reg_write(pd, MAC_CR, 0); smsc9420_set_mac_address(dev); /* Configure GPIO pins to drive LEDs */ smsc9420_reg_write(pd, GPIO_CFG, (GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_)); bus_mode = BUS_MODE_DMA_BURST_LENGTH_16; #ifdef __BIG_ENDIAN bus_mode |= BUS_MODE_DBO_; #endif smsc9420_reg_write(pd, BUS_MODE, bus_mode); smsc9420_pci_flush_write(pd); /* set bus master bridge arbitration priority for Rx and TX DMA */ smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1); smsc9420_reg_write(pd, DMAC_CONTROL, (DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_)); smsc9420_pci_flush_write(pd); /* test the IRQ connection to the ISR */ netif_dbg(pd, ifup, pd->dev, "Testing ISR using IRQ %d\n", irq); pd->software_irq_signal = false; spin_lock_irqsave(&pd->int_lock, flags); /* configure interrupt deassertion timer and enable interrupts */ int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_; int_cfg &= ~(INT_CFG_INT_DEAS_MASK); int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK); smsc9420_reg_write(pd, INT_CFG, int_cfg); /* unmask software interrupt */ int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_; smsc9420_reg_write(pd, INT_CTL, int_ctl); spin_unlock_irqrestore(&pd->int_lock, flags); smsc9420_pci_flush_write(pd); timeout = 1000; while (timeout--) { if (pd->software_irq_signal) break; msleep(1); } /* disable interrupts */ spin_lock_irqsave(&pd->int_lock, flags); int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_); smsc9420_reg_write(pd, INT_CFG, int_cfg); spin_unlock_irqrestore(&pd->int_lock, flags); if (!pd->software_irq_signal) { netif_warn(pd, ifup, pd->dev, "ISR failed signaling test\n"); result = -ENODEV; goto out_free_irq_1; } netif_dbg(pd, ifup, pd->dev, "ISR passed test using IRQ %d\n", irq); result = smsc9420_alloc_tx_ring(pd); if (result) { netif_warn(pd, ifup, pd->dev, "Failed to Initialize tx dma ring\n"); result = -ENOMEM; goto out_free_irq_1; } result = smsc9420_alloc_rx_ring(pd); if (result) { netif_warn(pd, ifup, pd->dev, "Failed to Initialize rx dma ring\n"); result = -ENOMEM; goto out_free_tx_ring_2; } result = smsc9420_mii_init(dev); if (result) { netif_warn(pd, ifup, pd->dev, "Failed to initialize Phy\n"); result = -ENODEV; goto out_free_rx_ring_3; } /* Bring the PHY up */ phy_start(dev->phydev); napi_enable(&pd->napi); /* start tx and rx */ mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_; smsc9420_reg_write(pd, MAC_CR, mac_cr); dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL); dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_; smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control); smsc9420_pci_flush_write(pd); dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA); dma_intr_ena |= (DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_); smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena); smsc9420_pci_flush_write(pd); netif_wake_queue(dev); smsc9420_reg_write(pd, RX_POLL_DEMAND, 1); /* enable interrupts */ spin_lock_irqsave(&pd->int_lock, flags); int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_; smsc9420_reg_write(pd, INT_CFG, int_cfg); spin_unlock_irqrestore(&pd->int_lock, flags); return 0; out_free_rx_ring_3: smsc9420_free_rx_ring(pd); out_free_tx_ring_2: smsc9420_free_tx_ring(pd); out_free_irq_1: free_irq(irq, pd); out_0: return result; } static int __maybe_unused smsc9420_suspend(struct device *dev_d) { struct net_device *dev = dev_get_drvdata(dev_d); struct smsc9420_pdata *pd = netdev_priv(dev); u32 int_cfg; ulong flags; /* disable interrupts */ spin_lock_irqsave(&pd->int_lock, flags); int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_); smsc9420_reg_write(pd, INT_CFG, int_cfg); spin_unlock_irqrestore(&pd->int_lock, flags); if (netif_running(dev)) { netif_tx_disable(dev); smsc9420_stop_tx(pd); smsc9420_free_tx_ring(pd); napi_disable(&pd->napi); smsc9420_stop_rx(pd); smsc9420_free_rx_ring(pd); free_irq(pd->pdev->irq, pd); netif_device_detach(dev); } device_wakeup_disable(dev_d); return 0; } static int __maybe_unused smsc9420_resume(struct device *dev_d) { struct net_device *dev = dev_get_drvdata(dev_d); int err; pci_set_master(to_pci_dev(dev_d)); device_wakeup_disable(dev_d); err = 0; if (netif_running(dev)) { /* FIXME: gross. It looks like ancient PM relic.*/ err = smsc9420_open(dev); netif_device_attach(dev); } return err; } static const struct net_device_ops smsc9420_netdev_ops = { .ndo_open = smsc9420_open, .ndo_stop = smsc9420_stop, .ndo_start_xmit = smsc9420_hard_start_xmit, .ndo_get_stats = smsc9420_get_stats, .ndo_set_rx_mode = smsc9420_set_multicast_list, .ndo_eth_ioctl = phy_do_ioctl_running, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = smsc9420_poll_controller, #endif /* CONFIG_NET_POLL_CONTROLLER */ }; static int smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct net_device *dev; struct smsc9420_pdata *pd; void __iomem *virt_addr; int result = 0; u32 id_rev; pr_info("%s version %s\n", DRV_DESCRIPTION, DRV_VERSION); /* First do the PCI initialisation */ result = pci_enable_device(pdev); if (unlikely(result)) { pr_err("Cannot enable smsc9420\n"); goto out_0; } pci_set_master(pdev); dev = alloc_etherdev(sizeof(*pd)); if (!dev) goto out_disable_pci_device_1; SET_NETDEV_DEV(dev, &pdev->dev); if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) { netdev_err(dev, "Cannot find PCI device base address\n"); goto out_free_netdev_2; } if ((pci_request_regions(pdev, DRV_NAME))) { netdev_err(dev, "Cannot obtain PCI resources, aborting\n"); goto out_free_netdev_2; } if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { netdev_err(dev, "No usable DMA configuration, aborting\n"); goto out_free_regions_3; } virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR), pci_resource_len(pdev, SMSC_BAR)); if (!virt_addr) { netdev_err(dev, "Cannot map device registers, aborting\n"); goto out_free_regions_3; } /* registers are double mapped with 0 offset for LE and 0x200 for BE */ virt_addr += LAN9420_CPSR_ENDIAN_OFFSET; pd = netdev_priv(dev); /* pci descriptors are created in the PCI consistent area */ pd->rx_ring = dma_alloc_coherent(&pdev->dev, sizeof(struct smsc9420_dma_desc) * (RX_RING_SIZE + TX_RING_SIZE), &pd->rx_dma_addr, GFP_KERNEL); if (!pd->rx_ring) goto out_free_io_4; /* descriptors are aligned due to the nature of dma_alloc_coherent */ pd->tx_ring = (pd->rx_ring + RX_RING_SIZE); pd->tx_dma_addr = pd->rx_dma_addr + sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE; pd->pdev = pdev; pd->dev = dev; pd->ioaddr = virt_addr; pd->msg_enable = smsc_debug; pd->rx_csum = true; netif_dbg(pd, probe, pd->dev, "lan_base=0x%08lx\n", (ulong)virt_addr); id_rev = smsc9420_reg_read(pd, ID_REV); switch (id_rev & 0xFFFF0000) { case 0x94200000: netif_info(pd, probe, pd->dev, "LAN9420 identified, ID_REV=0x%08X\n", id_rev); break; default: netif_warn(pd, probe, pd->dev, "LAN9420 NOT identified\n"); netif_warn(pd, probe, pd->dev, "ID_REV=0x%08X\n", id_rev); goto out_free_dmadesc_5; } smsc9420_dmac_soft_reset(pd); smsc9420_eeprom_reload(pd); smsc9420_check_mac_address(dev); dev->netdev_ops = &smsc9420_netdev_ops; dev->ethtool_ops = &smsc9420_ethtool_ops; netif_napi_add(dev, &pd->napi, smsc9420_rx_poll); result = register_netdev(dev); if (result) { netif_warn(pd, probe, pd->dev, "error %i registering device\n", result); goto out_free_dmadesc_5; } pci_set_drvdata(pdev, dev); spin_lock_init(&pd->int_lock); spin_lock_init(&pd->phy_lock); dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr); return 0; out_free_dmadesc_5: dma_free_coherent(&pdev->dev, sizeof(struct smsc9420_dma_desc) * (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr); out_free_io_4: iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET); out_free_regions_3: pci_release_regions(pdev); out_free_netdev_2: free_netdev(dev); out_disable_pci_device_1: pci_disable_device(pdev); out_0: return -ENODEV; } static void smsc9420_remove(struct pci_dev *pdev) { struct net_device *dev; struct smsc9420_pdata *pd; dev = pci_get_drvdata(pdev); if (!dev) return; pd = netdev_priv(dev); unregister_netdev(dev); /* tx_buffers and rx_buffers are freed in stop */ BUG_ON(pd->tx_buffers); BUG_ON(pd->rx_buffers); BUG_ON(!pd->tx_ring); BUG_ON(!pd->rx_ring); dma_free_coherent(&pdev->dev, sizeof(struct smsc9420_dma_desc) * (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr); iounmap(pd->ioaddr - LAN9420_CPSR_ENDIAN_OFFSET); pci_release_regions(pdev); free_netdev(dev); pci_disable_device(pdev); } static SIMPLE_DEV_PM_OPS(smsc9420_pm_ops, smsc9420_suspend, smsc9420_resume); static struct pci_driver smsc9420_driver = { .name = DRV_NAME, .id_table = smsc9420_id_table, .probe = smsc9420_probe, .remove = smsc9420_remove, .driver.pm = &smsc9420_pm_ops, }; static int __init smsc9420_init_module(void) { smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT); return pci_register_driver(&smsc9420_driver); } static void __exit smsc9420_exit_module(void) { pci_unregister_driver(&smsc9420_driver); } module_init(smsc9420_init_module); module_exit(smsc9420_exit_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1