Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andy Gospodarek | 9765 | 92.01% | 1 | 1.41% |
Joe Perches | 122 | 1.15% | 4 | 5.63% |
Ben Hutchings | 118 | 1.11% | 5 | 7.04% |
François Romieu | 103 | 0.97% | 2 | 2.82% |
Stephen Hemminger | 60 | 0.57% | 3 | 4.23% |
Christophe Jaillet | 58 | 0.55% | 2 | 2.82% |
Philippe Reynes | 57 | 0.54% | 1 | 1.41% |
Wang Chen | 50 | 0.47% | 1 | 1.41% |
Jiri Pirko | 31 | 0.29% | 7 | 9.86% |
Eric Dumazet | 26 | 0.24% | 5 | 7.04% |
Jakub Kiciński | 25 | 0.24% | 3 | 4.23% |
Florian Fainelli | 20 | 0.19% | 1 | 1.41% |
Tobias Klauser | 19 | 0.18% | 1 | 1.41% |
Patrick McHardy | 18 | 0.17% | 3 | 4.23% |
Jarod Wilson | 13 | 0.12% | 1 | 1.41% |
Hao Chen | 12 | 0.11% | 1 | 1.41% |
Arnd Bergmann | 10 | 0.09% | 1 | 1.41% |
Pradeep A. Dalvi | 10 | 0.09% | 1 | 1.41% |
Yufeng Mo | 10 | 0.09% | 1 | 1.41% |
Colin Ian King | 8 | 0.08% | 2 | 2.82% |
Jesse Brandeburg | 8 | 0.08% | 1 | 1.41% |
Ian Campbell | 6 | 0.06% | 2 | 2.82% |
Benoit Taine | 6 | 0.06% | 1 | 1.41% |
Michał Mirosław | 6 | 0.06% | 1 | 1.41% |
Florian Westphal | 5 | 0.05% | 2 | 2.82% |
Florin Malita | 5 | 0.05% | 1 | 1.41% |
Jeff Garzik | 5 | 0.05% | 1 | 1.41% |
Jia-Ju Bai | 5 | 0.05% | 1 | 1.41% |
Dan Carpenter | 4 | 0.04% | 1 | 1.41% |
Wolfram Sang | 4 | 0.04% | 1 | 1.41% |
Yang Hongyang | 4 | 0.04% | 1 | 1.41% |
Uwe Kleine-König | 3 | 0.03% | 1 | 1.41% |
David Decotigny | 3 | 0.03% | 1 | 1.41% |
Wilfried Klaebe | 3 | 0.03% | 1 | 1.41% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.41% |
Alejandro Martinez Ruiz | 2 | 0.02% | 1 | 1.41% |
Thiago Farina | 1 | 0.01% | 1 | 1.41% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.41% |
Matthew Wilcox | 1 | 0.01% | 1 | 1.41% |
Masanari Iida | 1 | 0.01% | 1 | 1.41% |
Geert Uytterhoeven | 1 | 0.01% | 1 | 1.41% |
Wei Yang | 1 | 0.01% | 1 | 1.41% |
Linus Torvalds | 1 | 0.01% | 1 | 1.41% |
Total | 10613 | 71 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Tehuti Networks(R) Network Driver * ethtool interface implementation * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved */ /* * RX HW/SW interaction overview * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * There are 2 types of RX communication channels between driver and NIC. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds * info about buffer's location, size and ID. An ID field is used to identify a * buffer when it's returned with data via RXD Fifo (see below) * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is * filled by HW and is readen by SW. Each descriptor holds status and ID. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data, * via dma moves it into host memory, builds new RXD descriptor with same ID, * pushes it into RXD Fifo and raises interrupt to indicate new RX data. * * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos. * One holds 1.5K packets and another - 26K packets. Depending on incoming * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is * filled with data, HW builds new RXD descriptor for it and push it into single * RXD Fifo. * * RX SW Data Structures * ~~~~~~~~~~~~~~~~~~~~~ * skb db - used to keep track of all skbs owned by SW and their dma addresses. * For RX case, ownership lasts from allocating new empty skb for RXF until * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own * skb db. Implemented as array with bitmask. * fifo - keeps info about fifo's size and location, relevant HW registers, * usage and skb db. Each RXD and RXF Fifo has its own fifo structure. * Implemented as simple struct. * * RX SW Execution Flow * ~~~~~~~~~~~~~~~~~~~~ * Upon initialization (ifconfig up) driver creates RX fifos and initializes * relevant registers. At the end of init phase, driver enables interrupts. * NIC sees that there is no RXF buffers and raises * RD_INTR interrupt, isr fills skbs and Rx begins. * Driver has two receive operation modes: * NAPI - interrupt-driven mixed with polling * interrupt-driven only * * Interrupt-driven only flow is following. When buffer is ready, HW raises * interrupt and isr is called. isr collects all available packets * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit. * Rx buffer allocation note * ~~~~~~~~~~~~~~~~~~~~~~~~~ * Driver cares to feed such amount of RxF descriptors that respective amount of * RxD descriptors can not fill entire RxD fifo. The main reason is lack of * overflow check in Bordeaux for RxD fifo free/used size. * FIXME: this is NOT fully implemented, more work should be done * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "tehuti.h" static const struct pci_device_id bdx_pci_tbl[] = { { PCI_VDEVICE(TEHUTI, 0x3009), }, { PCI_VDEVICE(TEHUTI, 0x3010), }, { PCI_VDEVICE(TEHUTI, 0x3014), }, { 0 } }; MODULE_DEVICE_TABLE(pci, bdx_pci_tbl); /* Definitions needed by ISR or NAPI functions */ static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f); static void bdx_tx_cleanup(struct bdx_priv *priv); static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget); /* Definitions needed by FW loading */ static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size); /* Definitions needed by hw_start */ static int bdx_tx_init(struct bdx_priv *priv); static int bdx_rx_init(struct bdx_priv *priv); /* Definitions needed by bdx_close */ static void bdx_rx_free(struct bdx_priv *priv); static void bdx_tx_free(struct bdx_priv *priv); /* Definitions needed by bdx_probe */ static void bdx_set_ethtool_ops(struct net_device *netdev); /************************************************************************* * Print Info * *************************************************************************/ static void print_hw_id(struct pci_dev *pdev) { struct pci_nic *nic = pci_get_drvdata(pdev); u16 pci_link_status = 0; u16 pci_ctrl = 0; pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status); pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl); pr_info("%s%s\n", BDX_NIC_NAME, nic->port_num == 1 ? "" : ", 2-Port"); pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n", readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF, readl(nic->regs + FPGA_SEED), GET_LINK_STATUS_LANES(pci_link_status), GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl)); } static void print_fw_id(struct pci_nic *nic) { pr_info("fw 0x%x\n", readl(nic->regs + FW_VER)); } static void print_eth_id(struct net_device *ndev) { netdev_info(ndev, "%s, Port %c\n", BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B'); } /************************************************************************* * Code * *************************************************************************/ #define bdx_enable_interrupts(priv) \ do { WRITE_REG(priv, regIMR, IR_RUN); } while (0) #define bdx_disable_interrupts(priv) \ do { WRITE_REG(priv, regIMR, 0); } while (0) /** * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication. * @priv: NIC private structure * @f: fifo to initialize * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB * @reg_CFG0: offsets of registers relative to base address * @reg_CFG1: offsets of registers relative to base address * @reg_RPTR: offsets of registers relative to base address * @reg_WPTR: offsets of registers relative to base address * * 1K extra space is allocated at the end of the fifo to simplify * processing of descriptors that wraps around fifo's end * * Returns 0 on success, negative value on failure * */ static int bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type, u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR) { u16 memsz = FIFO_SIZE * (1 << fsz_type); memset(f, 0, sizeof(struct fifo)); /* dma_alloc_coherent gives us 4k-aligned memory */ f->va = dma_alloc_coherent(&priv->pdev->dev, memsz + FIFO_EXTRA_SPACE, &f->da, GFP_ATOMIC); if (!f->va) { pr_err("dma_alloc_coherent failed\n"); RET(-ENOMEM); } f->reg_CFG0 = reg_CFG0; f->reg_CFG1 = reg_CFG1; f->reg_RPTR = reg_RPTR; f->reg_WPTR = reg_WPTR; f->rptr = 0; f->wptr = 0; f->memsz = memsz; f->size_mask = memsz - 1; WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type)); WRITE_REG(priv, reg_CFG1, H32_64(f->da)); RET(0); } /** * bdx_fifo_free - free all resources used by fifo * @priv: NIC private structure * @f: fifo to release */ static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f) { ENTER; if (f->va) { dma_free_coherent(&priv->pdev->dev, f->memsz + FIFO_EXTRA_SPACE, f->va, f->da); f->va = NULL; } RET(); } /** * bdx_link_changed - notifies OS about hw link state. * @priv: hw adapter structure */ static void bdx_link_changed(struct bdx_priv *priv) { u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT; if (!link) { if (netif_carrier_ok(priv->ndev)) { netif_stop_queue(priv->ndev); netif_carrier_off(priv->ndev); netdev_err(priv->ndev, "Link Down\n"); } } else { if (!netif_carrier_ok(priv->ndev)) { netif_wake_queue(priv->ndev); netif_carrier_on(priv->ndev); netdev_err(priv->ndev, "Link Up\n"); } } } static void bdx_isr_extra(struct bdx_priv *priv, u32 isr) { if (isr & IR_RX_FREE_0) { bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); DBG("RX_FREE_0\n"); } if (isr & IR_LNKCHG0) bdx_link_changed(priv); if (isr & IR_PCIE_LINK) netdev_err(priv->ndev, "PCI-E Link Fault\n"); if (isr & IR_PCIE_TOUT) netdev_err(priv->ndev, "PCI-E Time Out\n"); } /** * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC * @irq: interrupt number * @dev: network device * * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise * * It reads ISR register to know interrupt reasons, and proceed them one by one. * Reasons of interest are: * RX_DESC - new packet has arrived and RXD fifo holds its descriptor * RX_FREE - number of free Rx buffers in RXF fifo gets low * TX_FREE - packet was transmited and RXF fifo holds its descriptor */ static irqreturn_t bdx_isr_napi(int irq, void *dev) { struct net_device *ndev = dev; struct bdx_priv *priv = netdev_priv(ndev); u32 isr; ENTER; isr = (READ_REG(priv, regISR) & IR_RUN); if (unlikely(!isr)) { bdx_enable_interrupts(priv); return IRQ_NONE; /* Not our interrupt */ } if (isr & IR_EXTRA) bdx_isr_extra(priv, isr); if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) { if (likely(napi_schedule_prep(&priv->napi))) { __napi_schedule(&priv->napi); RET(IRQ_HANDLED); } else { /* NOTE: we get here if intr has slipped into window * between these lines in bdx_poll: * bdx_enable_interrupts(priv); * return 0; * currently intrs are disabled (since we read ISR), * and we have failed to register next poll. * so we read the regs to trigger chip * and allow further interupts. */ READ_REG(priv, regTXF_WPTR_0); READ_REG(priv, regRXD_WPTR_0); } } bdx_enable_interrupts(priv); RET(IRQ_HANDLED); } static int bdx_poll(struct napi_struct *napi, int budget) { struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi); int work_done; ENTER; bdx_tx_cleanup(priv); work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget); if ((work_done < budget) || (priv->napi_stop++ >= 30)) { DBG("rx poll is done. backing to isr-driven\n"); /* from time to time we exit to let NAPI layer release * device lock and allow waiting tasks (eg rmmod) to advance) */ priv->napi_stop = 0; napi_complete_done(napi, work_done); bdx_enable_interrupts(priv); } return work_done; } /** * bdx_fw_load - loads firmware to NIC * @priv: NIC private structure * * Firmware is loaded via TXD fifo, so it must be initialized first. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC * can have few of them). So all drivers use semaphore register to choose one * that will actually load FW to NIC. */ static int bdx_fw_load(struct bdx_priv *priv) { const struct firmware *fw = NULL; int master, i; int rc; ENTER; master = READ_REG(priv, regINIT_SEMAPHORE); if (!READ_REG(priv, regINIT_STATUS) && master) { rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev); if (rc) goto out; bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size); mdelay(100); } for (i = 0; i < 200; i++) { if (READ_REG(priv, regINIT_STATUS)) { rc = 0; goto out; } mdelay(2); } rc = -EIO; out: if (master) WRITE_REG(priv, regINIT_SEMAPHORE, 1); release_firmware(fw); if (rc) { netdev_err(priv->ndev, "firmware loading failed\n"); if (rc == -EIO) DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n", READ_REG(priv, regVPC), READ_REG(priv, regVIC), READ_REG(priv, regINIT_STATUS), i); RET(rc); } else { DBG("%s: firmware loading success\n", priv->ndev->name); RET(0); } } static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv) { u32 val; ENTER; DBG("mac0=%x mac1=%x mac2=%x\n", READ_REG(priv, regUNC_MAC0_A), READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A)); val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]); WRITE_REG(priv, regUNC_MAC2_A, val); val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]); WRITE_REG(priv, regUNC_MAC1_A, val); val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]); WRITE_REG(priv, regUNC_MAC0_A, val); DBG("mac0=%x mac1=%x mac2=%x\n", READ_REG(priv, regUNC_MAC0_A), READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A)); RET(); } /** * bdx_hw_start - inits registers and starts HW's Rx and Tx engines * @priv: NIC private structure */ static int bdx_hw_start(struct bdx_priv *priv) { int rc = -EIO; struct net_device *ndev = priv->ndev; ENTER; bdx_link_changed(priv); /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */ WRITE_REG(priv, regFRM_LENGTH, 0X3FE0); WRITE_REG(priv, regPAUSE_QUANT, 0x96); WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010); WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010); WRITE_REG(priv, regRX_FULLNESS, 0); WRITE_REG(priv, regTX_FULLNESS, 0); WRITE_REG(priv, regCTRLST, regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA); WRITE_REG(priv, regVGLB, 0); WRITE_REG(priv, regMAX_FRAME_A, priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL); DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */ WRITE_REG(priv, regRDINTCM0, priv->rdintcm); WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */ DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */ WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */ /* Enable timer interrupt once in 2 secs. */ /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */ bdx_restore_mac(priv->ndev, priv); WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN | GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB); #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED) rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE, ndev->name, ndev); if (rc) goto err_irq; bdx_enable_interrupts(priv); RET(0); err_irq: RET(rc); } static void bdx_hw_stop(struct bdx_priv *priv) { ENTER; bdx_disable_interrupts(priv); free_irq(priv->pdev->irq, priv->ndev); netif_carrier_off(priv->ndev); netif_stop_queue(priv->ndev); RET(); } static int bdx_hw_reset_direct(void __iomem *regs) { u32 val, i; ENTER; /* reset sequences: read, write 1, read, write 0 */ val = readl(regs + regCLKPLL); writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL); udelay(50); val = readl(regs + regCLKPLL); writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL); /* check that the PLLs are locked and reset ended */ for (i = 0; i < 70; i++, mdelay(10)) if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) { /* do any PCI-E read transaction */ readl(regs + regRXD_CFG0_0); return 0; } pr_err("HW reset failed\n"); return 1; /* failure */ } static int bdx_hw_reset(struct bdx_priv *priv) { u32 val, i; ENTER; if (priv->port == 0) { /* reset sequences: read, write 1, read, write 0 */ val = READ_REG(priv, regCLKPLL); WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8); udelay(50); val = READ_REG(priv, regCLKPLL); WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST); } /* check that the PLLs are locked and reset ended */ for (i = 0; i < 70; i++, mdelay(10)) if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) { /* do any PCI-E read transaction */ READ_REG(priv, regRXD_CFG0_0); return 0; } pr_err("HW reset failed\n"); return 1; /* failure */ } static int bdx_sw_reset(struct bdx_priv *priv) { int i; ENTER; /* 1. load MAC (obsolete) */ /* 2. disable Rx (and Tx) */ WRITE_REG(priv, regGMAC_RXF_A, 0); mdelay(100); /* 3. disable port */ WRITE_REG(priv, regDIS_PORT, 1); /* 4. disable queue */ WRITE_REG(priv, regDIS_QU, 1); /* 5. wait until hw is disabled */ for (i = 0; i < 50; i++) { if (READ_REG(priv, regRST_PORT) & 1) break; mdelay(10); } if (i == 50) netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n"); /* 6. disable intrs */ WRITE_REG(priv, regRDINTCM0, 0); WRITE_REG(priv, regTDINTCM0, 0); WRITE_REG(priv, regIMR, 0); READ_REG(priv, regISR); /* 7. reset queue */ WRITE_REG(priv, regRST_QU, 1); /* 8. reset port */ WRITE_REG(priv, regRST_PORT, 1); /* 9. zero all read and write pointers */ for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR); for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) WRITE_REG(priv, i, 0); /* 10. unseet port disable */ WRITE_REG(priv, regDIS_PORT, 0); /* 11. unset queue disable */ WRITE_REG(priv, regDIS_QU, 0); /* 12. unset queue reset */ WRITE_REG(priv, regRST_QU, 0); /* 13. unset port reset */ WRITE_REG(priv, regRST_PORT, 0); /* 14. enable Rx */ /* skiped. will be done later */ /* 15. save MAC (obsolete) */ for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10) DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR); RET(0); } /* bdx_reset - performs right type of reset depending on hw type */ static int bdx_reset(struct bdx_priv *priv) { ENTER; RET((priv->pdev->device == 0x3009) ? bdx_hw_reset(priv) : bdx_sw_reset(priv)); } /** * bdx_close - Disables a network interface * @ndev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. **/ static int bdx_close(struct net_device *ndev) { struct bdx_priv *priv = NULL; ENTER; priv = netdev_priv(ndev); napi_disable(&priv->napi); bdx_reset(priv); bdx_hw_stop(priv); bdx_rx_free(priv); bdx_tx_free(priv); RET(0); } /** * bdx_open - Called when a network interface is made active * @ndev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ static int bdx_open(struct net_device *ndev) { struct bdx_priv *priv; int rc; ENTER; priv = netdev_priv(ndev); bdx_reset(priv); if (netif_running(ndev)) netif_stop_queue(priv->ndev); if ((rc = bdx_tx_init(priv)) || (rc = bdx_rx_init(priv)) || (rc = bdx_fw_load(priv))) goto err; bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); rc = bdx_hw_start(priv); if (rc) goto err; napi_enable(&priv->napi); print_fw_id(priv->nic); RET(0); err: bdx_close(ndev); RET(rc); } static int bdx_range_check(struct bdx_priv *priv, u32 offset) { return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ? -EINVAL : 0; } static int bdx_siocdevprivate(struct net_device *ndev, struct ifreq *ifr, void __user *udata, int cmd) { struct bdx_priv *priv = netdev_priv(ndev); u32 data[3]; int error; ENTER; DBG("jiffies=%ld cmd=%d\n", jiffies, cmd); if (cmd != SIOCDEVPRIVATE) { error = copy_from_user(data, udata, sizeof(data)); if (error) { pr_err("can't copy from user\n"); RET(-EFAULT); } DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]); } else { return -EOPNOTSUPP; } if (!capable(CAP_SYS_RAWIO)) return -EPERM; switch (data[0]) { case BDX_OP_READ: error = bdx_range_check(priv, data[1]); if (error < 0) return error; data[2] = READ_REG(priv, data[1]); DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2], data[2]); error = copy_to_user(udata, data, sizeof(data)); if (error) RET(-EFAULT); break; case BDX_OP_WRITE: error = bdx_range_check(priv, data[1]); if (error < 0) return error; WRITE_REG(priv, data[1], data[2]); DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]); break; default: RET(-EOPNOTSUPP); } return 0; } /** * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid * @ndev: network device * @vid: VLAN vid * @enable: enable or disable vlan * * Passes VLAN filter table to hardware */ static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable) { struct bdx_priv *priv = netdev_priv(ndev); u32 reg, bit, val; ENTER; DBG2("vid=%d value=%d\n", (int)vid, enable); if (unlikely(vid >= 4096)) { pr_err("invalid VID: %u (> 4096)\n", vid); RET(); } reg = regVLAN_0 + (vid / 32) * 4; bit = 1 << vid % 32; val = READ_REG(priv, reg); DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit); if (enable) val |= bit; else val &= ~bit; DBG2("new val %x\n", val); WRITE_REG(priv, reg, val); RET(); } /** * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table * @ndev: network device * @proto: unused * @vid: VLAN vid to add */ static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { __bdx_vlan_rx_vid(ndev, vid, 1); return 0; } /** * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table * @ndev: network device * @proto: unused * @vid: VLAN vid to kill */ static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { __bdx_vlan_rx_vid(ndev, vid, 0); return 0; } /** * bdx_change_mtu - Change the Maximum Transfer Unit * @ndev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int bdx_change_mtu(struct net_device *ndev, int new_mtu) { ENTER; ndev->mtu = new_mtu; if (netif_running(ndev)) { bdx_close(ndev); bdx_open(ndev); } RET(0); } static void bdx_setmulti(struct net_device *ndev) { struct bdx_priv *priv = netdev_priv(ndev); u32 rxf_val = GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN; int i; ENTER; /* IMF - imperfect (hash) rx multicat filter */ /* PMF - perfect rx multicat filter */ /* FIXME: RXE(OFF) */ if (ndev->flags & IFF_PROMISC) { rxf_val |= GMAC_RX_FILTER_PRM; } else if (ndev->flags & IFF_ALLMULTI) { /* set IMF to accept all multicast frmaes */ for (i = 0; i < MAC_MCST_HASH_NUM; i++) WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0); } else if (!netdev_mc_empty(ndev)) { u8 hash; struct netdev_hw_addr *ha; u32 reg, val; /* set IMF to deny all multicast frames */ for (i = 0; i < MAC_MCST_HASH_NUM; i++) WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0); /* set PMF to deny all multicast frames */ for (i = 0; i < MAC_MCST_NUM; i++) { WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0); WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0); } /* use PMF to accept first MAC_MCST_NUM (15) addresses */ /* TBD: sort addresses and write them in ascending order * into RX_MAC_MCST regs. we skip this phase now and accept ALL * multicast frames throu IMF */ /* accept the rest of addresses throu IMF */ netdev_for_each_mc_addr(ha, ndev) { hash = 0; for (i = 0; i < ETH_ALEN; i++) hash ^= ha->addr[i]; reg = regRX_MCST_HASH0 + ((hash >> 5) << 2); val = READ_REG(priv, reg); val |= (1 << (hash % 32)); WRITE_REG(priv, reg, val); } } else { DBG("only own mac %d\n", netdev_mc_count(ndev)); rxf_val |= GMAC_RX_FILTER_AB; } WRITE_REG(priv, regGMAC_RXF_A, rxf_val); /* enable RX */ /* FIXME: RXE(ON) */ RET(); } static int bdx_set_mac(struct net_device *ndev, void *p) { struct bdx_priv *priv = netdev_priv(ndev); struct sockaddr *addr = p; ENTER; /* if (netif_running(dev)) return -EBUSY */ eth_hw_addr_set(ndev, addr->sa_data); bdx_restore_mac(ndev, priv); RET(0); } static int bdx_read_mac(struct bdx_priv *priv) { u16 macAddress[3], i; u8 addr[ETH_ALEN]; ENTER; macAddress[2] = READ_REG(priv, regUNC_MAC0_A); macAddress[2] = READ_REG(priv, regUNC_MAC0_A); macAddress[1] = READ_REG(priv, regUNC_MAC1_A); macAddress[1] = READ_REG(priv, regUNC_MAC1_A); macAddress[0] = READ_REG(priv, regUNC_MAC2_A); macAddress[0] = READ_REG(priv, regUNC_MAC2_A); for (i = 0; i < 3; i++) { addr[i * 2 + 1] = macAddress[i]; addr[i * 2] = macAddress[i] >> 8; } eth_hw_addr_set(priv->ndev, addr); RET(0); } static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg) { u64 val; val = READ_REG(priv, reg); val |= ((u64) READ_REG(priv, reg + 8)) << 32; return val; } /*Do the statistics-update work*/ static void bdx_update_stats(struct bdx_priv *priv) { struct bdx_stats *stats = &priv->hw_stats; u64 *stats_vector = (u64 *) stats; int i; int addr; /*Fill HW structure */ addr = 0x7200; /*First 12 statistics - 0x7200 - 0x72B0 */ for (i = 0; i < 12; i++) { stats_vector[i] = bdx_read_l2stat(priv, addr); addr += 0x10; } BDX_ASSERT(addr != 0x72C0); /* 0x72C0-0x72E0 RSRV */ addr = 0x72F0; for (; i < 16; i++) { stats_vector[i] = bdx_read_l2stat(priv, addr); addr += 0x10; } BDX_ASSERT(addr != 0x7330); /* 0x7330-0x7360 RSRV */ addr = 0x7370; for (; i < 19; i++) { stats_vector[i] = bdx_read_l2stat(priv, addr); addr += 0x10; } BDX_ASSERT(addr != 0x73A0); /* 0x73A0-0x73B0 RSRV */ addr = 0x73C0; for (; i < 23; i++) { stats_vector[i] = bdx_read_l2stat(priv, addr); addr += 0x10; } BDX_ASSERT(addr != 0x7400); BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i); } static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len, u16 rxd_vlan); static void print_rxfd(struct rxf_desc *rxfd); /************************************************************************* * Rx DB * *************************************************************************/ static void bdx_rxdb_destroy(struct rxdb *db) { vfree(db); } static struct rxdb *bdx_rxdb_create(int nelem) { struct rxdb *db; int i; db = vmalloc(sizeof(struct rxdb) + (nelem * sizeof(int)) + (nelem * sizeof(struct rx_map))); if (likely(db != NULL)) { db->stack = (int *)(db + 1); db->elems = (void *)(db->stack + nelem); db->nelem = nelem; db->top = nelem; for (i = 0; i < nelem; i++) db->stack[i] = nelem - i - 1; /* to make first allocs close to db struct*/ } return db; } static inline int bdx_rxdb_alloc_elem(struct rxdb *db) { BDX_ASSERT(db->top <= 0); return db->stack[--(db->top)]; } static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n) { BDX_ASSERT((n < 0) || (n >= db->nelem)); return db->elems + n; } static inline int bdx_rxdb_available(struct rxdb *db) { return db->top; } static inline void bdx_rxdb_free_elem(struct rxdb *db, int n) { BDX_ASSERT((n >= db->nelem) || (n < 0)); db->stack[(db->top)++] = n; } /************************************************************************* * Rx Init * *************************************************************************/ /** * bdx_rx_init - initialize RX all related HW and SW resources * @priv: NIC private structure * * Returns 0 on success, negative value on failure * * It creates rxf and rxd fifos, update relevant HW registers, preallocate * skb for rx. It assumes that Rx is desabled in HW * funcs are grouped for better cache usage * * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be * filled and packets will be dropped by nic without getting into host or * cousing interrupt. Anyway, in that condition, host has no chance to process * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles */ /* TBD: ensure proper packet size */ static int bdx_rx_init(struct bdx_priv *priv) { ENTER; if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size, regRXD_CFG0_0, regRXD_CFG1_0, regRXD_RPTR_0, regRXD_WPTR_0)) goto err_mem; if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size, regRXF_CFG0_0, regRXF_CFG1_0, regRXF_RPTR_0, regRXF_WPTR_0)) goto err_mem; priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz / sizeof(struct rxf_desc)); if (!priv->rxdb) goto err_mem; priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN; return 0; err_mem: netdev_err(priv->ndev, "Rx init failed\n"); return -ENOMEM; } /** * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo * @priv: NIC private structure * @f: RXF fifo */ static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f) { struct rx_map *dm; struct rxdb *db = priv->rxdb; u16 i; ENTER; DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db), db->nelem - bdx_rxdb_available(db)); while (bdx_rxdb_available(db) > 0) { i = bdx_rxdb_alloc_elem(db); dm = bdx_rxdb_addr_elem(db, i); dm->dma = 0; } for (i = 0; i < db->nelem; i++) { dm = bdx_rxdb_addr_elem(db, i); if (dm->dma) { dma_unmap_single(&priv->pdev->dev, dm->dma, f->m.pktsz, DMA_FROM_DEVICE); dev_kfree_skb(dm->skb); } } } /** * bdx_rx_free - release all Rx resources * @priv: NIC private structure * * It assumes that Rx is desabled in HW */ static void bdx_rx_free(struct bdx_priv *priv) { ENTER; if (priv->rxdb) { bdx_rx_free_skbs(priv, &priv->rxf_fifo0); bdx_rxdb_destroy(priv->rxdb); priv->rxdb = NULL; } bdx_fifo_free(priv, &priv->rxf_fifo0.m); bdx_fifo_free(priv, &priv->rxd_fifo0.m); RET(); } /************************************************************************* * Rx Engine * *************************************************************************/ /** * bdx_rx_alloc_skbs - fill rxf fifo with new skbs * @priv: nic's private structure * @f: RXF fifo that needs skbs * * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo. * skb's virtual and physical addresses are stored in skb db. * To calculate free space, func uses cached values of RPTR and WPTR * When needed, it also updates RPTR and WPTR. */ /* TBD: do not update WPTR if no desc were written */ static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f) { struct sk_buff *skb; struct rxf_desc *rxfd; struct rx_map *dm; int dno, delta, idx; struct rxdb *db = priv->rxdb; ENTER; dno = bdx_rxdb_available(db) - 1; while (dno > 0) { skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN); if (!skb) break; skb_reserve(skb, NET_IP_ALIGN); idx = bdx_rxdb_alloc_elem(db); dm = bdx_rxdb_addr_elem(db, idx); dm->dma = dma_map_single(&priv->pdev->dev, skb->data, f->m.pktsz, DMA_FROM_DEVICE); dm->skb = skb; rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr); rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */ rxfd->va_lo = idx; rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma)); rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma)); rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz); print_rxfd(rxfd); f->m.wptr += sizeof(struct rxf_desc); delta = f->m.wptr - f->m.memsz; if (unlikely(delta >= 0)) { f->m.wptr = delta; if (delta > 0) { memcpy(f->m.va, f->m.va + f->m.memsz, delta); DBG("wrapped descriptor\n"); } } dno--; } /*TBD: to do - delayed rxf wptr like in txd */ WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); RET(); } static inline void NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan, struct sk_buff *skb) { ENTER; DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1)); if (GET_RXD_VTAG(rxd_val1)) { DBG("%s: vlan rcv vlan '%x' vtag '%x'\n", priv->ndev->name, GET_RXD_VLAN_ID(rxd_vlan), GET_RXD_VTAG(rxd_val1)); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan)); } netif_receive_skb(skb); } static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd) { struct rxf_desc *rxfd; struct rx_map *dm; struct rxf_fifo *f; struct rxdb *db; int delta; ENTER; DBG("priv=%p rxdd=%p\n", priv, rxdd); f = &priv->rxf_fifo0; db = priv->rxdb; DBG("db=%p f=%p\n", db, f); dm = bdx_rxdb_addr_elem(db, rxdd->va_lo); DBG("dm=%p\n", dm); rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr); rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */ rxfd->va_lo = rxdd->va_lo; rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma)); rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma)); rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz); print_rxfd(rxfd); f->m.wptr += sizeof(struct rxf_desc); delta = f->m.wptr - f->m.memsz; if (unlikely(delta >= 0)) { f->m.wptr = delta; if (delta > 0) { memcpy(f->m.va, f->m.va + f->m.memsz, delta); DBG("wrapped descriptor\n"); } } RET(); } /** * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS * NOTE: a special treatment is given to non-continuous descriptors * that start near the end, wraps around and continue at the beginning. a second * part is copied right after the first, and then descriptor is interpreted as * normal. fifo has an extra space to allow such operations * @priv: nic's private structure * @f: RXF fifo that needs skbs * @budget: maximum number of packets to receive */ /* TBD: replace memcpy func call by explicite inline asm */ static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget) { struct net_device *ndev = priv->ndev; struct sk_buff *skb, *skb2; struct rxd_desc *rxdd; struct rx_map *dm; struct rxf_fifo *rxf_fifo; int tmp_len, size; int done = 0; int max_done = BDX_MAX_RX_DONE; struct rxdb *db = NULL; /* Unmarshalled descriptor - copy of descriptor in host order */ u32 rxd_val1; u16 len; u16 rxd_vlan; ENTER; max_done = budget; f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR; size = f->m.wptr - f->m.rptr; if (size < 0) size = f->m.memsz + size; /* size is negative :-) */ while (size > 0) { rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr); rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1); len = CPU_CHIP_SWAP16(rxdd->len); rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan); print_rxdd(rxdd, rxd_val1, len, rxd_vlan); tmp_len = GET_RXD_BC(rxd_val1) << 3; BDX_ASSERT(tmp_len <= 0); size -= tmp_len; if (size < 0) /* test for partially arrived descriptor */ break; f->m.rptr += tmp_len; tmp_len = f->m.rptr - f->m.memsz; if (unlikely(tmp_len >= 0)) { f->m.rptr = tmp_len; if (tmp_len > 0) { DBG("wrapped desc rptr=%d tmp_len=%d\n", f->m.rptr, tmp_len); memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len); } } if (unlikely(GET_RXD_ERR(rxd_val1))) { DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1)); ndev->stats.rx_errors++; bdx_recycle_skb(priv, rxdd); continue; } rxf_fifo = &priv->rxf_fifo0; db = priv->rxdb; dm = bdx_rxdb_addr_elem(db, rxdd->va_lo); skb = dm->skb; if (len < BDX_COPYBREAK && (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) { skb_reserve(skb2, NET_IP_ALIGN); /*skb_put(skb2, len); */ dma_sync_single_for_cpu(&priv->pdev->dev, dm->dma, rxf_fifo->m.pktsz, DMA_FROM_DEVICE); memcpy(skb2->data, skb->data, len); bdx_recycle_skb(priv, rxdd); skb = skb2; } else { dma_unmap_single(&priv->pdev->dev, dm->dma, rxf_fifo->m.pktsz, DMA_FROM_DEVICE); bdx_rxdb_free_elem(db, rxdd->va_lo); } ndev->stats.rx_bytes += len; skb_put(skb, len); skb->protocol = eth_type_trans(skb, ndev); /* Non-IP packets aren't checksum-offloaded */ if (GET_RXD_PKT_ID(rxd_val1) == 0) skb_checksum_none_assert(skb); else skb->ip_summed = CHECKSUM_UNNECESSARY; NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb); if (++done >= max_done) break; } ndev->stats.rx_packets += done; /* FIXME: do smth to minimize pci accesses */ WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR); bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0); RET(done); } /************************************************************************* * Debug / Temprorary Code * *************************************************************************/ static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len, u16 rxd_vlan) { DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n", GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1), GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1), GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1), GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan), GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo, rxdd->va_hi); } static void print_rxfd(struct rxf_desc *rxfd) { DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n" "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n", rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len); } /* * TX HW/SW interaction overview * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * There are 2 types of TX communication channels between driver and NIC. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets * 2) TX Data Fifo - TXD - holds descriptors of full buffers. * * Currently NIC supports TSO, checksuming and gather DMA * UFO and IP fragmentation is on the way * * RX SW Data Structures * ~~~~~~~~~~~~~~~~~~~~~ * txdb - used to keep track of all skbs owned by SW and their dma addresses. * For TX case, ownership lasts from geting packet via hard_xmit and until HW * acknowledges sent by TXF descriptors. * Implemented as cyclic buffer. * fifo - keeps info about fifo's size and location, relevant HW registers, * usage and skb db. Each RXD and RXF Fifo has its own fifo structure. * Implemented as simple struct. * * TX SW Execution Flow * ~~~~~~~~~~~~~~~~~~~~ * OS calls driver's hard_xmit method with packet to sent. * Driver creates DMA mappings, builds TXD descriptors and kicks HW * by updating TXD WPTR. * When packet is sent, HW write us TXF descriptor and SW frees original skb. * To prevent TXD fifo overflow without reading HW registers every time, * SW deploys "tx level" technique. * Upon strart up, tx level is initialized to TXD fifo length. * For every sent packet, SW gets its TXD descriptor sizei * (from precalculated array) and substructs it from tx level. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of * original TXD descriptor from txdb and adds it to tx level. * When Tx level drops under some predefined treshhold, the driver * stops the TX queue. When TX level rises above that level, * the tx queue is enabled again. * * This technique avoids eccessive reading of RPTR and WPTR registers. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput. */ /** * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap * @db: tx data base * @pptr: read or write pointer */ static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr) { BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */ BDX_ASSERT(*pptr != db->rptr && /* expect either read */ *pptr != db->wptr); /* or write pointer */ BDX_ASSERT(*pptr < db->start || /* pointer has to be */ *pptr >= db->end); /* in range */ ++*pptr; if (unlikely(*pptr == db->end)) *pptr = db->start; } /** * bdx_tx_db_inc_rptr - increment read pointer * @db: tx data base */ static inline void bdx_tx_db_inc_rptr(struct txdb *db) { BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */ __bdx_tx_db_ptr_next(db, &db->rptr); } /** * bdx_tx_db_inc_wptr - increment write pointer * @db: tx data base */ static inline void bdx_tx_db_inc_wptr(struct txdb *db) { __bdx_tx_db_ptr_next(db, &db->wptr); BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as a result of write */ } /** * bdx_tx_db_init - creates and initializes tx db * @d: tx data base * @sz_type: size of tx fifo * * Returns 0 on success, error code otherwise */ static int bdx_tx_db_init(struct txdb *d, int sz_type) { int memsz = FIFO_SIZE * (1 << (sz_type + 1)); d->start = vmalloc(memsz); if (!d->start) return -ENOMEM; /* * In order to differentiate between db is empty and db is full * states at least one element should always be empty in order to * avoid rptr == wptr which means db is empty */ d->size = memsz / sizeof(struct tx_map) - 1; d->end = d->start + d->size + 1; /* just after last element */ /* all dbs are created equally empty */ d->rptr = d->start; d->wptr = d->start; return 0; } /** * bdx_tx_db_close - closes tx db and frees all memory * @d: tx data base */ static void bdx_tx_db_close(struct txdb *d) { BDX_ASSERT(d == NULL); vfree(d->start); d->start = NULL; } /************************************************************************* * Tx Engine * *************************************************************************/ /* sizes of tx desc (including padding if needed) as function * of skb's frag number */ static struct { u16 bytes; u16 qwords; /* qword = 64 bit */ } txd_sizes[MAX_SKB_FRAGS + 1]; /** * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks * @priv: NIC private structure * @skb: socket buffer to map * @txdd: TX descriptor to use * * It makes dma mappings for skb's data blocks and writes them to PBL of * new tx descriptor. It also stores them in the tx db, so they could be * unmaped after data was sent. It is reponsibility of a caller to make * sure that there is enough space in the tx db. Last element holds pointer * to skb itself and marked with zero length */ static inline void bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb, struct txd_desc *txdd) { struct txdb *db = &priv->txdb; struct pbl *pbl = &txdd->pbl[0]; int nr_frags = skb_shinfo(skb)->nr_frags; int i; db->wptr->len = skb_headlen(skb); db->wptr->addr.dma = dma_map_single(&priv->pdev->dev, skb->data, db->wptr->len, DMA_TO_DEVICE); pbl->len = CPU_CHIP_SWAP32(db->wptr->len); pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma)); pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma)); DBG("=== pbl len: 0x%x ================\n", pbl->len); DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo); DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi); bdx_tx_db_inc_wptr(db); for (i = 0; i < nr_frags; i++) { const skb_frag_t *frag; frag = &skb_shinfo(skb)->frags[i]; db->wptr->len = skb_frag_size(frag); db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); pbl++; pbl->len = CPU_CHIP_SWAP32(db->wptr->len); pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma)); pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma)); bdx_tx_db_inc_wptr(db); } /* add skb clean up info. */ db->wptr->len = -txd_sizes[nr_frags].bytes; db->wptr->addr.skb = skb; bdx_tx_db_inc_wptr(db); } /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags * number of frags is used as index to fetch correct descriptors size, * instead of calculating it each time */ static void __init init_txd_sizes(void) { int i, lwords; /* 7 - is number of lwords in txd with one phys buffer * 3 - is number of lwords used for every additional phys buffer */ for (i = 0; i < MAX_SKB_FRAGS + 1; i++) { lwords = 7 + (i * 3); if (lwords & 1) lwords++; /* pad it with 1 lword */ txd_sizes[i].qwords = lwords >> 1; txd_sizes[i].bytes = lwords << 2; } } /* bdx_tx_init - initialize all Tx related stuff. * Namely, TXD and TXF fifos, database etc */ static int bdx_tx_init(struct bdx_priv *priv) { if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size, regTXD_CFG0_0, regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0)) goto err_mem; if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size, regTXF_CFG0_0, regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0)) goto err_mem; /* The TX db has to keep mappings for all packets sent (on TxD) * and not yet reclaimed (on TxF) */ if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size))) goto err_mem; priv->tx_level = BDX_MAX_TX_LEVEL; #ifdef BDX_DELAY_WPTR priv->tx_update_mark = priv->tx_level - 1024; #endif return 0; err_mem: netdev_err(priv->ndev, "Tx init failed\n"); return -ENOMEM; } /** * bdx_tx_space - calculates available space in TX fifo * @priv: NIC private structure * * Returns available space in TX fifo in bytes */ static inline int bdx_tx_space(struct bdx_priv *priv) { struct txd_fifo *f = &priv->txd_fifo0; int fsize; f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR; fsize = f->m.rptr - f->m.wptr; if (fsize <= 0) fsize = f->m.memsz + fsize; return fsize; } /** * bdx_tx_transmit - send packet to NIC * @skb: packet to send * @ndev: network device assigned to NIC * Return codes: * o NETDEV_TX_OK everything ok. * o NETDEV_TX_BUSY Cannot transmit packet, try later * Usually a bug, means queue start/stop flow control is broken in * the driver. Note: the driver must NOT put the skb in its DMA ring. */ static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb, struct net_device *ndev) { struct bdx_priv *priv = netdev_priv(ndev); struct txd_fifo *f = &priv->txd_fifo0; int txd_checksum = 7; /* full checksum */ int txd_lgsnd = 0; int txd_vlan_id = 0; int txd_vtag = 0; int txd_mss = 0; int nr_frags = skb_shinfo(skb)->nr_frags; struct txd_desc *txdd; int len; unsigned long flags; ENTER; local_irq_save(flags); spin_lock(&priv->tx_lock); /* build tx descriptor */ BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */ txdd = (struct txd_desc *)(f->m.va + f->m.wptr); if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) txd_checksum = 0; if (skb_shinfo(skb)->gso_size) { txd_mss = skb_shinfo(skb)->gso_size; txd_lgsnd = 1; DBG("skb %p skb len %d gso size = %d\n", skb, skb->len, txd_mss); } if (skb_vlan_tag_present(skb)) { /*Cut VLAN ID to 12 bits */ txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12); txd_vtag = 1; } txdd->length = CPU_CHIP_SWAP16(skb->len); txdd->mss = CPU_CHIP_SWAP16(txd_mss); txdd->txd_val1 = CPU_CHIP_SWAP32(TXD_W1_VAL (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag, txd_lgsnd, txd_vlan_id)); DBG("=== TxD desc =====================\n"); DBG("=== w1: 0x%x ================\n", txdd->txd_val1); DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length); bdx_tx_map_skb(priv, skb, txdd); /* increment TXD write pointer. In case of fifo wrapping copy reminder of the descriptor to the beginning */ f->m.wptr += txd_sizes[nr_frags].bytes; len = f->m.wptr - f->m.memsz; if (unlikely(len >= 0)) { f->m.wptr = len; if (len > 0) { BDX_ASSERT(len > f->m.memsz); memcpy(f->m.va, f->m.va + f->m.memsz, len); } } BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */ priv->tx_level -= txd_sizes[nr_frags].bytes; BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL); #ifdef BDX_DELAY_WPTR if (priv->tx_level > priv->tx_update_mark) { /* Force memory writes to complete before letting h/w know there are new descriptors to fetch. (might be needed on platforms like IA64) wmb(); */ WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); } else { if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) { priv->tx_noupd = 0; WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); } } #else /* Force memory writes to complete before letting h/w know there are new descriptors to fetch. (might be needed on platforms like IA64) wmb(); */ WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); #endif #ifdef BDX_LLTX netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */ #endif ndev->stats.tx_packets++; ndev->stats.tx_bytes += skb->len; if (priv->tx_level < BDX_MIN_TX_LEVEL) { DBG("%s: %s: TX Q STOP level %d\n", BDX_DRV_NAME, ndev->name, priv->tx_level); netif_stop_queue(ndev); } spin_unlock_irqrestore(&priv->tx_lock, flags); return NETDEV_TX_OK; } /** * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ. * @priv: bdx adapter * * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS * that those packets were sent */ static void bdx_tx_cleanup(struct bdx_priv *priv) { struct txf_fifo *f = &priv->txf_fifo0; struct txdb *db = &priv->txdb; int tx_level = 0; ENTER; f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK; BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */ while (f->m.wptr != f->m.rptr) { f->m.rptr += BDX_TXF_DESC_SZ; f->m.rptr &= f->m.size_mask; /* unmap all the fragments */ /* first has to come tx_maps containing dma */ BDX_ASSERT(db->rptr->len == 0); do { BDX_ASSERT(db->rptr->addr.dma == 0); dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma, db->rptr->len, DMA_TO_DEVICE); bdx_tx_db_inc_rptr(db); } while (db->rptr->len > 0); tx_level -= db->rptr->len; /* '-' koz len is negative */ /* now should come skb pointer - free it */ dev_consume_skb_irq(db->rptr->addr.skb); bdx_tx_db_inc_rptr(db); } /* let h/w know which TXF descriptors were cleaned */ BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz); WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR); /* We reclaimed resources, so in case the Q is stopped by xmit callback, * we resume the transmission and use tx_lock to synchronize with xmit.*/ spin_lock(&priv->tx_lock); priv->tx_level += tx_level; BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL); #ifdef BDX_DELAY_WPTR if (priv->tx_noupd) { priv->tx_noupd = 0; WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR, priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR); } #endif if (unlikely(netif_queue_stopped(priv->ndev) && netif_carrier_ok(priv->ndev) && (priv->tx_level >= BDX_MIN_TX_LEVEL))) { DBG("%s: %s: TX Q WAKE level %d\n", BDX_DRV_NAME, priv->ndev->name, priv->tx_level); netif_wake_queue(priv->ndev); } spin_unlock(&priv->tx_lock); } /** * bdx_tx_free_skbs - frees all skbs from TXD fifo. * @priv: NIC private structure * * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod */ static void bdx_tx_free_skbs(struct bdx_priv *priv) { struct txdb *db = &priv->txdb; ENTER; while (db->rptr != db->wptr) { if (likely(db->rptr->len)) dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma, db->rptr->len, DMA_TO_DEVICE); else dev_kfree_skb(db->rptr->addr.skb); bdx_tx_db_inc_rptr(db); } RET(); } /* bdx_tx_free - frees all Tx resources */ static void bdx_tx_free(struct bdx_priv *priv) { ENTER; bdx_tx_free_skbs(priv); bdx_fifo_free(priv, &priv->txd_fifo0.m); bdx_fifo_free(priv, &priv->txf_fifo0.m); bdx_tx_db_close(&priv->txdb); } /** * bdx_tx_push_desc - push descriptor to TxD fifo * @priv: NIC private structure * @data: desc's data * @size: desc's size * * Pushes desc to TxD fifo and overlaps it if needed. * NOTE: this func does not check for available space. this is responsibility * of the caller. Neither does it check that data size is smaller than * fifo size. */ static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size) { struct txd_fifo *f = &priv->txd_fifo0; int i = f->m.memsz - f->m.wptr; if (size == 0) return; if (i > size) { memcpy(f->m.va + f->m.wptr, data, size); f->m.wptr += size; } else { memcpy(f->m.va + f->m.wptr, data, i); f->m.wptr = size - i; memcpy(f->m.va, data + i, f->m.wptr); } WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR); } /** * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way * @priv: NIC private structure * @data: desc's data * @size: desc's size * * NOTE: this func does check for available space and, if necessary, waits for * NIC to read existing data before writing new one. */ static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size) { int timer = 0; ENTER; while (size > 0) { /* we substruct 8 because when fifo is full rptr == wptr which also means that fifo is empty, we can understand the difference, but could hw do the same ??? :) */ int avail = bdx_tx_space(priv) - 8; if (avail <= 0) { if (timer++ > 300) { /* prevent endless loop */ DBG("timeout while writing desc to TxD fifo\n"); break; } udelay(50); /* give hw a chance to clean fifo */ continue; } avail = min(avail, size); DBG("about to push %d bytes starting %p size %d\n", avail, data, size); bdx_tx_push_desc(priv, data, avail); size -= avail; data += avail; } RET(); } static const struct net_device_ops bdx_netdev_ops = { .ndo_open = bdx_open, .ndo_stop = bdx_close, .ndo_start_xmit = bdx_tx_transmit, .ndo_validate_addr = eth_validate_addr, .ndo_siocdevprivate = bdx_siocdevprivate, .ndo_set_rx_mode = bdx_setmulti, .ndo_change_mtu = bdx_change_mtu, .ndo_set_mac_address = bdx_set_mac, .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid, }; /** * bdx_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in bdx_pci_tbl * * Returns 0 on success, negative on failure * * bdx_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. * * functions and their order used as explained in * /usr/src/linux/Documentation/DMA-{API,mapping}.txt * */ /* TBD: netif_msg should be checked and implemented. I disable it for now */ static int bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *ndev; struct bdx_priv *priv; unsigned long pciaddr; u32 regionSize; struct pci_nic *nic; int err, port; ENTER; nic = vmalloc(sizeof(*nic)); if (!nic) RET(-ENOMEM); /************** pci *****************/ err = pci_enable_device(pdev); if (err) /* it triggers interrupt, dunno why. */ goto err_pci; /* it's not a problem though */ err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { pr_err("No usable DMA configuration, aborting\n"); goto err_dma; } err = pci_request_regions(pdev, BDX_DRV_NAME); if (err) goto err_dma; pci_set_master(pdev); pciaddr = pci_resource_start(pdev, 0); if (!pciaddr) { err = -EIO; pr_err("no MMIO resource\n"); goto err_out_res; } regionSize = pci_resource_len(pdev, 0); if (regionSize < BDX_REGS_SIZE) { err = -EIO; pr_err("MMIO resource (%x) too small\n", regionSize); goto err_out_res; } nic->regs = ioremap(pciaddr, regionSize); if (!nic->regs) { err = -EIO; pr_err("ioremap failed\n"); goto err_out_res; } if (pdev->irq < 2) { err = -EIO; pr_err("invalid irq (%d)\n", pdev->irq); goto err_out_iomap; } pci_set_drvdata(pdev, nic); if (pdev->device == 0x3014) nic->port_num = 2; else nic->port_num = 1; print_hw_id(pdev); bdx_hw_reset_direct(nic->regs); nic->irq_type = IRQ_INTX; #ifdef BDX_MSI if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) { err = pci_enable_msi(pdev); if (err) pr_err("Can't enable msi. error is %d\n", err); else nic->irq_type = IRQ_MSI; } else DBG("HW does not support MSI\n"); #endif /************** netdev **************/ for (port = 0; port < nic->port_num; port++) { ndev = alloc_etherdev(sizeof(struct bdx_priv)); if (!ndev) { err = -ENOMEM; goto err_out_iomap; } ndev->netdev_ops = &bdx_netdev_ops; ndev->tx_queue_len = BDX_NDEV_TXQ_LEN; bdx_set_ethtool_ops(ndev); /* ethtool interface */ /* these fields are used for info purposes only * so we can have them same for all ports of the board */ ndev->if_port = port; ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM | NETIF_F_HIGHDMA; ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX; /************** priv ****************/ priv = nic->priv[port] = netdev_priv(ndev); priv->pBdxRegs = nic->regs + port * 0x8000; priv->port = port; priv->pdev = pdev; priv->ndev = ndev; priv->nic = nic; priv->msg_enable = BDX_DEF_MSG_ENABLE; netif_napi_add(ndev, &priv->napi, bdx_poll); if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) { DBG("HW statistics not supported\n"); priv->stats_flag = 0; } else { priv->stats_flag = 1; } /* Initialize fifo sizes. */ priv->txd_size = 2; priv->txf_size = 2; priv->rxd_size = 2; priv->rxf_size = 3; /* Initialize the initial coalescing registers. */ priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12); priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12); /* ndev->xmit_lock spinlock is not used. * Private priv->tx_lock is used for synchronization * between transmit and TX irq cleanup. In addition * set multicast list callback has to use priv->tx_lock. */ #ifdef BDX_LLTX ndev->features |= NETIF_F_LLTX; #endif /* MTU range: 60 - 16384 */ ndev->min_mtu = ETH_ZLEN; ndev->max_mtu = BDX_MAX_MTU; spin_lock_init(&priv->tx_lock); /*bdx_hw_reset(priv); */ if (bdx_read_mac(priv)) { pr_err("load MAC address failed\n"); err = -EFAULT; goto err_out_iomap; } SET_NETDEV_DEV(ndev, &pdev->dev); err = register_netdev(ndev); if (err) { pr_err("register_netdev failed\n"); goto err_out_free; } netif_carrier_off(ndev); netif_stop_queue(ndev); print_eth_id(ndev); } RET(0); err_out_free: free_netdev(ndev); err_out_iomap: iounmap(nic->regs); err_out_res: pci_release_regions(pdev); err_dma: pci_disable_device(pdev); err_pci: vfree(nic); RET(err); } /****************** Ethtool interface *********************/ /* get strings for statistics counters */ static const char bdx_stat_names[][ETH_GSTRING_LEN] = { "InUCast", /* 0x7200 */ "InMCast", /* 0x7210 */ "InBCast", /* 0x7220 */ "InPkts", /* 0x7230 */ "InErrors", /* 0x7240 */ "InDropped", /* 0x7250 */ "FrameTooLong", /* 0x7260 */ "FrameSequenceErrors", /* 0x7270 */ "InVLAN", /* 0x7280 */ "InDroppedDFE", /* 0x7290 */ "InDroppedIntFull", /* 0x72A0 */ "InFrameAlignErrors", /* 0x72B0 */ /* 0x72C0-0x72E0 RSRV */ "OutUCast", /* 0x72F0 */ "OutMCast", /* 0x7300 */ "OutBCast", /* 0x7310 */ "OutPkts", /* 0x7320 */ /* 0x7330-0x7360 RSRV */ "OutVLAN", /* 0x7370 */ "InUCastOctects", /* 0x7380 */ "OutUCastOctects", /* 0x7390 */ /* 0x73A0-0x73B0 RSRV */ "InBCastOctects", /* 0x73C0 */ "OutBCastOctects", /* 0x73D0 */ "InOctects", /* 0x73E0 */ "OutOctects", /* 0x73F0 */ }; /* * bdx_get_link_ksettings - get device-specific settings * @netdev * @ecmd */ static int bdx_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *ecmd) { ethtool_link_ksettings_zero_link_mode(ecmd, supported); ethtool_link_ksettings_add_link_mode(ecmd, supported, 10000baseT_Full); ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE); ethtool_link_ksettings_zero_link_mode(ecmd, advertising); ethtool_link_ksettings_add_link_mode(ecmd, advertising, 10000baseT_Full); ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE); ecmd->base.speed = SPEED_10000; ecmd->base.duplex = DUPLEX_FULL; ecmd->base.port = PORT_FIBRE; ecmd->base.autoneg = AUTONEG_DISABLE; return 0; } /* * bdx_get_drvinfo - report driver information * @netdev * @drvinfo */ static void bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct bdx_priv *priv = netdev_priv(netdev); strscpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver)); strscpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version)); strscpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); strscpy(drvinfo->bus_info, pci_name(priv->pdev), sizeof(drvinfo->bus_info)); } /* * bdx_get_coalesce - get interrupt coalescing parameters * @netdev * @ecoal */ static int bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { u32 rdintcm; u32 tdintcm; struct bdx_priv *priv = netdev_priv(netdev); rdintcm = priv->rdintcm; tdintcm = priv->tdintcm; /* PCK_TH measures in multiples of FIFO bytes We translate to packets */ ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT; ecoal->rx_max_coalesced_frames = ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc)); ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT; ecoal->tx_max_coalesced_frames = ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ); /* adaptive parameters ignored */ return 0; } /* * bdx_set_coalesce - set interrupt coalescing parameters * @netdev * @ecoal */ static int bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { u32 rdintcm; u32 tdintcm; struct bdx_priv *priv = netdev_priv(netdev); int rx_coal; int tx_coal; int rx_max_coal; int tx_max_coal; /* Check for valid input */ rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT; tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT; rx_max_coal = ecoal->rx_max_coalesced_frames; tx_max_coal = ecoal->tx_max_coalesced_frames; /* Translate from packets to multiples of FIFO bytes */ rx_max_coal = (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1) / PCK_TH_MULT); tx_max_coal = (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1) / PCK_TH_MULT); if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) || (rx_max_coal > 0xF) || (tx_max_coal > 0xF)) return -EINVAL; rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm), GET_RXF_TH(priv->rdintcm), rx_max_coal); tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0, tx_max_coal); priv->rdintcm = rdintcm; priv->tdintcm = tdintcm; WRITE_REG(priv, regRDINTCM0, rdintcm); WRITE_REG(priv, regTDINTCM0, tdintcm); return 0; } /* Convert RX fifo size to number of pending packets */ static inline int bdx_rx_fifo_size_to_packets(int rx_size) { return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc); } /* Convert TX fifo size to number of pending packets */ static inline int bdx_tx_fifo_size_to_packets(int tx_size) { return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ; } /* * bdx_get_ringparam - report ring sizes * @netdev * @ring * @kernel_ring * @extack */ static void bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct bdx_priv *priv = netdev_priv(netdev); /*max_pending - the maximum-sized FIFO we allow */ ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3); ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3); ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size); ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size); } /* * bdx_set_ringparam - set ring sizes * @netdev * @ring * @kernel_ring * @extack */ static int bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct bdx_priv *priv = netdev_priv(netdev); int rx_size = 0; int tx_size = 0; for (; rx_size < 4; rx_size++) { if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending) break; } if (rx_size == 4) rx_size = 3; for (; tx_size < 4; tx_size++) { if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending) break; } if (tx_size == 4) tx_size = 3; /*Is there anything to do? */ if ((rx_size == priv->rxf_size) && (tx_size == priv->txd_size)) return 0; priv->rxf_size = rx_size; if (rx_size > 1) priv->rxd_size = rx_size - 1; else priv->rxd_size = rx_size; priv->txf_size = priv->txd_size = tx_size; if (netif_running(netdev)) { bdx_close(netdev); bdx_open(netdev); } return 0; } /* * bdx_get_strings - return a set of strings that describe the requested objects * @netdev * @data */ static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { switch (stringset) { case ETH_SS_STATS: memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names)); break; } } /* * bdx_get_sset_count - return number of statistics or tests * @netdev */ static int bdx_get_sset_count(struct net_device *netdev, int stringset) { struct bdx_priv *priv = netdev_priv(netdev); switch (stringset) { case ETH_SS_STATS: BDX_ASSERT(ARRAY_SIZE(bdx_stat_names) != sizeof(struct bdx_stats) / sizeof(u64)); return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0; } return -EINVAL; } /* * bdx_get_ethtool_stats - return device's hardware L2 statistics * @netdev * @stats * @data */ static void bdx_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct bdx_priv *priv = netdev_priv(netdev); if (priv->stats_flag) { /* Update stats from HW */ bdx_update_stats(priv); /* Copy data to user buffer */ memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats)); } } /* * bdx_set_ethtool_ops - ethtool interface implementation * @netdev */ static void bdx_set_ethtool_ops(struct net_device *netdev) { static const struct ethtool_ops bdx_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_USECS | ETHTOOL_COALESCE_MAX_FRAMES, .get_drvinfo = bdx_get_drvinfo, .get_link = ethtool_op_get_link, .get_coalesce = bdx_get_coalesce, .set_coalesce = bdx_set_coalesce, .get_ringparam = bdx_get_ringparam, .set_ringparam = bdx_set_ringparam, .get_strings = bdx_get_strings, .get_sset_count = bdx_get_sset_count, .get_ethtool_stats = bdx_get_ethtool_stats, .get_link_ksettings = bdx_get_link_ksettings, }; netdev->ethtool_ops = &bdx_ethtool_ops; } /** * bdx_remove - Device Removal Routine * @pdev: PCI device information struct * * bdx_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void bdx_remove(struct pci_dev *pdev) { struct pci_nic *nic = pci_get_drvdata(pdev); struct net_device *ndev; int port; for (port = 0; port < nic->port_num; port++) { ndev = nic->priv[port]->ndev; unregister_netdev(ndev); free_netdev(ndev); } /*bdx_hw_reset_direct(nic->regs); */ #ifdef BDX_MSI if (nic->irq_type == IRQ_MSI) pci_disable_msi(pdev); #endif iounmap(nic->regs); pci_release_regions(pdev); pci_disable_device(pdev); vfree(nic); RET(); } static struct pci_driver bdx_pci_driver = { .name = BDX_DRV_NAME, .id_table = bdx_pci_tbl, .probe = bdx_probe, .remove = bdx_remove, }; /* * print_driver_id - print parameters of the driver build */ static void __init print_driver_id(void) { pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION); pr_info("Options: hw_csum %s\n", BDX_MSI_STRING); } static int __init bdx_module_init(void) { ENTER; init_txd_sizes(); print_driver_id(); RET(pci_register_driver(&bdx_pci_driver)); } module_init(bdx_module_init); static void __exit bdx_module_exit(void) { ENTER; pci_unregister_driver(&bdx_pci_driver); RET(); } module_exit(bdx_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(BDX_DRV_DESC); MODULE_FIRMWARE("tehuti/bdx.bin");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1