Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Serge Semin | 2372 | 46.91% | 22 | 19.13% |
Kishon Vijay Abraham I | 525 | 10.38% | 15 | 13.04% |
Jingoo Han | 444 | 8.78% | 3 | 2.61% |
Rob Herring | 380 | 7.52% | 11 | 9.57% |
Vidya Sagar | 318 | 6.29% | 11 | 9.57% |
JiSheng Zhang | 142 | 2.81% | 4 | 3.48% |
Dilip Kota | 120 | 2.37% | 1 | 0.87% |
Gustavo Pimentel | 111 | 2.20% | 3 | 2.61% |
Joao Pinto | 109 | 2.16% | 3 | 2.61% |
Gabriele Paoloni | 86 | 1.70% | 3 | 2.61% |
Björn Helgaas | 80 | 1.58% | 6 | 5.22% |
Kunihiko Hayashi | 79 | 1.56% | 2 | 1.74% |
Hou Zhiqiang | 59 | 1.17% | 3 | 2.61% |
Xiaowei Bao | 47 | 0.93% | 2 | 1.74% |
Johan Hovold | 39 | 0.77% | 1 | 0.87% |
Alan Mikhak | 20 | 0.40% | 1 | 0.87% |
Pratyush Anand | 18 | 0.36% | 4 | 3.48% |
Seungwon Jeon | 16 | 0.32% | 1 | 0.87% |
Zhou Wang | 16 | 0.32% | 1 | 0.87% |
Stanimir Varbanov | 13 | 0.26% | 1 | 0.87% |
Andrey Smirnov | 13 | 0.26% | 2 | 1.74% |
Niklas Cassel | 12 | 0.24% | 2 | 1.74% |
Stephen Warren | 10 | 0.20% | 1 | 0.87% |
Murali Karicheri | 7 | 0.14% | 2 | 1.74% |
Yoshihiro Shimoda | 6 | 0.12% | 1 | 0.87% |
Luca Ceresoli | 5 | 0.10% | 1 | 0.87% |
Harro Haan | 2 | 0.04% | 1 | 0.87% |
caihuoqing | 1 | 0.02% | 1 | 0.87% |
Tim Harvey | 1 | 0.02% | 1 | 0.87% |
Shradha Todi | 1 | 0.02% | 1 | 0.87% |
Lorenzo Pieralisi | 1 | 0.02% | 1 | 0.87% |
Carlos Palminha | 1 | 0.02% | 1 | 0.87% |
Alexander A. Klimov | 1 | 0.02% | 1 | 0.87% |
Lucas Stach | 1 | 0.02% | 1 | 0.87% |
Total | 5056 | 115 |
// SPDX-License-Identifier: GPL-2.0 /* * Synopsys DesignWare PCIe host controller driver * * Copyright (C) 2013 Samsung Electronics Co., Ltd. * https://www.samsung.com * * Author: Jingoo Han <jg1.han@samsung.com> */ #include <linux/align.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma/edma.h> #include <linux/gpio/consumer.h> #include <linux/ioport.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/sizes.h> #include <linux/types.h> #include "../../pci.h" #include "pcie-designware.h" static const char * const dw_pcie_app_clks[DW_PCIE_NUM_APP_CLKS] = { [DW_PCIE_DBI_CLK] = "dbi", [DW_PCIE_MSTR_CLK] = "mstr", [DW_PCIE_SLV_CLK] = "slv", }; static const char * const dw_pcie_core_clks[DW_PCIE_NUM_CORE_CLKS] = { [DW_PCIE_PIPE_CLK] = "pipe", [DW_PCIE_CORE_CLK] = "core", [DW_PCIE_AUX_CLK] = "aux", [DW_PCIE_REF_CLK] = "ref", }; static const char * const dw_pcie_app_rsts[DW_PCIE_NUM_APP_RSTS] = { [DW_PCIE_DBI_RST] = "dbi", [DW_PCIE_MSTR_RST] = "mstr", [DW_PCIE_SLV_RST] = "slv", }; static const char * const dw_pcie_core_rsts[DW_PCIE_NUM_CORE_RSTS] = { [DW_PCIE_NON_STICKY_RST] = "non-sticky", [DW_PCIE_STICKY_RST] = "sticky", [DW_PCIE_CORE_RST] = "core", [DW_PCIE_PIPE_RST] = "pipe", [DW_PCIE_PHY_RST] = "phy", [DW_PCIE_HOT_RST] = "hot", [DW_PCIE_PWR_RST] = "pwr", }; static int dw_pcie_get_clocks(struct dw_pcie *pci) { int i, ret; for (i = 0; i < DW_PCIE_NUM_APP_CLKS; i++) pci->app_clks[i].id = dw_pcie_app_clks[i]; for (i = 0; i < DW_PCIE_NUM_CORE_CLKS; i++) pci->core_clks[i].id = dw_pcie_core_clks[i]; ret = devm_clk_bulk_get_optional(pci->dev, DW_PCIE_NUM_APP_CLKS, pci->app_clks); if (ret) return ret; return devm_clk_bulk_get_optional(pci->dev, DW_PCIE_NUM_CORE_CLKS, pci->core_clks); } static int dw_pcie_get_resets(struct dw_pcie *pci) { int i, ret; for (i = 0; i < DW_PCIE_NUM_APP_RSTS; i++) pci->app_rsts[i].id = dw_pcie_app_rsts[i]; for (i = 0; i < DW_PCIE_NUM_CORE_RSTS; i++) pci->core_rsts[i].id = dw_pcie_core_rsts[i]; ret = devm_reset_control_bulk_get_optional_shared(pci->dev, DW_PCIE_NUM_APP_RSTS, pci->app_rsts); if (ret) return ret; ret = devm_reset_control_bulk_get_optional_exclusive(pci->dev, DW_PCIE_NUM_CORE_RSTS, pci->core_rsts); if (ret) return ret; pci->pe_rst = devm_gpiod_get_optional(pci->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(pci->pe_rst)) return PTR_ERR(pci->pe_rst); return 0; } int dw_pcie_get_resources(struct dw_pcie *pci) { struct platform_device *pdev = to_platform_device(pci->dev); struct device_node *np = dev_of_node(pci->dev); struct resource *res; int ret; if (!pci->dbi_base) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dbi"); pci->dbi_base = devm_pci_remap_cfg_resource(pci->dev, res); if (IS_ERR(pci->dbi_base)) return PTR_ERR(pci->dbi_base); } /* DBI2 is mainly useful for the endpoint controller */ if (!pci->dbi_base2) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dbi2"); if (res) { pci->dbi_base2 = devm_pci_remap_cfg_resource(pci->dev, res); if (IS_ERR(pci->dbi_base2)) return PTR_ERR(pci->dbi_base2); } else { pci->dbi_base2 = pci->dbi_base + SZ_4K; } } /* For non-unrolled iATU/eDMA platforms this range will be ignored */ if (!pci->atu_base) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "atu"); if (res) { pci->atu_size = resource_size(res); pci->atu_base = devm_ioremap_resource(pci->dev, res); if (IS_ERR(pci->atu_base)) return PTR_ERR(pci->atu_base); } else { pci->atu_base = pci->dbi_base + DEFAULT_DBI_ATU_OFFSET; } } /* Set a default value suitable for at most 8 in and 8 out windows */ if (!pci->atu_size) pci->atu_size = SZ_4K; /* eDMA region can be mapped to a custom base address */ if (!pci->edma.reg_base) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma"); if (res) { pci->edma.reg_base = devm_ioremap_resource(pci->dev, res); if (IS_ERR(pci->edma.reg_base)) return PTR_ERR(pci->edma.reg_base); } else if (pci->atu_size >= 2 * DEFAULT_DBI_DMA_OFFSET) { pci->edma.reg_base = pci->atu_base + DEFAULT_DBI_DMA_OFFSET; } } /* LLDD is supposed to manually switch the clocks and resets state */ if (dw_pcie_cap_is(pci, REQ_RES)) { ret = dw_pcie_get_clocks(pci); if (ret) return ret; ret = dw_pcie_get_resets(pci); if (ret) return ret; } if (pci->link_gen < 1) pci->link_gen = of_pci_get_max_link_speed(np); of_property_read_u32(np, "num-lanes", &pci->num_lanes); if (of_property_read_bool(np, "snps,enable-cdm-check")) dw_pcie_cap_set(pci, CDM_CHECK); return 0; } void dw_pcie_version_detect(struct dw_pcie *pci) { u32 ver; /* The content of the CSR is zero on DWC PCIe older than v4.70a */ ver = dw_pcie_readl_dbi(pci, PCIE_VERSION_NUMBER); if (!ver) return; if (pci->version && pci->version != ver) dev_warn(pci->dev, "Versions don't match (%08x != %08x)\n", pci->version, ver); else pci->version = ver; ver = dw_pcie_readl_dbi(pci, PCIE_VERSION_TYPE); if (pci->type && pci->type != ver) dev_warn(pci->dev, "Types don't match (%08x != %08x)\n", pci->type, ver); else pci->type = ver; } /* * These interfaces resemble the pci_find_*capability() interfaces, but these * are for configuring host controllers, which are bridges *to* PCI devices but * are not PCI devices themselves. */ static u8 __dw_pcie_find_next_cap(struct dw_pcie *pci, u8 cap_ptr, u8 cap) { u8 cap_id, next_cap_ptr; u16 reg; if (!cap_ptr) return 0; reg = dw_pcie_readw_dbi(pci, cap_ptr); cap_id = (reg & 0x00ff); if (cap_id > PCI_CAP_ID_MAX) return 0; if (cap_id == cap) return cap_ptr; next_cap_ptr = (reg & 0xff00) >> 8; return __dw_pcie_find_next_cap(pci, next_cap_ptr, cap); } u8 dw_pcie_find_capability(struct dw_pcie *pci, u8 cap) { u8 next_cap_ptr; u16 reg; reg = dw_pcie_readw_dbi(pci, PCI_CAPABILITY_LIST); next_cap_ptr = (reg & 0x00ff); return __dw_pcie_find_next_cap(pci, next_cap_ptr, cap); } EXPORT_SYMBOL_GPL(dw_pcie_find_capability); static u16 dw_pcie_find_next_ext_capability(struct dw_pcie *pci, u16 start, u8 cap) { u32 header; int ttl; int pos = PCI_CFG_SPACE_SIZE; /* minimum 8 bytes per capability */ ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; if (start) pos = start; header = dw_pcie_readl_dbi(pci, pos); /* * If we have no capabilities, this is indicated by cap ID, * cap version and next pointer all being 0. */ if (header == 0) return 0; while (ttl-- > 0) { if (PCI_EXT_CAP_ID(header) == cap && pos != start) return pos; pos = PCI_EXT_CAP_NEXT(header); if (pos < PCI_CFG_SPACE_SIZE) break; header = dw_pcie_readl_dbi(pci, pos); } return 0; } u16 dw_pcie_find_ext_capability(struct dw_pcie *pci, u8 cap) { return dw_pcie_find_next_ext_capability(pci, 0, cap); } EXPORT_SYMBOL_GPL(dw_pcie_find_ext_capability); int dw_pcie_read(void __iomem *addr, int size, u32 *val) { if (!IS_ALIGNED((uintptr_t)addr, size)) { *val = 0; return PCIBIOS_BAD_REGISTER_NUMBER; } if (size == 4) { *val = readl(addr); } else if (size == 2) { *val = readw(addr); } else if (size == 1) { *val = readb(addr); } else { *val = 0; return PCIBIOS_BAD_REGISTER_NUMBER; } return PCIBIOS_SUCCESSFUL; } EXPORT_SYMBOL_GPL(dw_pcie_read); int dw_pcie_write(void __iomem *addr, int size, u32 val) { if (!IS_ALIGNED((uintptr_t)addr, size)) return PCIBIOS_BAD_REGISTER_NUMBER; if (size == 4) writel(val, addr); else if (size == 2) writew(val, addr); else if (size == 1) writeb(val, addr); else return PCIBIOS_BAD_REGISTER_NUMBER; return PCIBIOS_SUCCESSFUL; } EXPORT_SYMBOL_GPL(dw_pcie_write); u32 dw_pcie_read_dbi(struct dw_pcie *pci, u32 reg, size_t size) { int ret; u32 val; if (pci->ops && pci->ops->read_dbi) return pci->ops->read_dbi(pci, pci->dbi_base, reg, size); ret = dw_pcie_read(pci->dbi_base + reg, size, &val); if (ret) dev_err(pci->dev, "Read DBI address failed\n"); return val; } EXPORT_SYMBOL_GPL(dw_pcie_read_dbi); void dw_pcie_write_dbi(struct dw_pcie *pci, u32 reg, size_t size, u32 val) { int ret; if (pci->ops && pci->ops->write_dbi) { pci->ops->write_dbi(pci, pci->dbi_base, reg, size, val); return; } ret = dw_pcie_write(pci->dbi_base + reg, size, val); if (ret) dev_err(pci->dev, "Write DBI address failed\n"); } EXPORT_SYMBOL_GPL(dw_pcie_write_dbi); void dw_pcie_write_dbi2(struct dw_pcie *pci, u32 reg, size_t size, u32 val) { int ret; if (pci->ops && pci->ops->write_dbi2) { pci->ops->write_dbi2(pci, pci->dbi_base2, reg, size, val); return; } ret = dw_pcie_write(pci->dbi_base2 + reg, size, val); if (ret) dev_err(pci->dev, "write DBI address failed\n"); } static inline void __iomem *dw_pcie_select_atu(struct dw_pcie *pci, u32 dir, u32 index) { if (dw_pcie_cap_is(pci, IATU_UNROLL)) return pci->atu_base + PCIE_ATU_UNROLL_BASE(dir, index); dw_pcie_writel_dbi(pci, PCIE_ATU_VIEWPORT, dir | index); return pci->atu_base; } static u32 dw_pcie_readl_atu(struct dw_pcie *pci, u32 dir, u32 index, u32 reg) { void __iomem *base; int ret; u32 val; base = dw_pcie_select_atu(pci, dir, index); if (pci->ops && pci->ops->read_dbi) return pci->ops->read_dbi(pci, base, reg, 4); ret = dw_pcie_read(base + reg, 4, &val); if (ret) dev_err(pci->dev, "Read ATU address failed\n"); return val; } static void dw_pcie_writel_atu(struct dw_pcie *pci, u32 dir, u32 index, u32 reg, u32 val) { void __iomem *base; int ret; base = dw_pcie_select_atu(pci, dir, index); if (pci->ops && pci->ops->write_dbi) { pci->ops->write_dbi(pci, base, reg, 4, val); return; } ret = dw_pcie_write(base + reg, 4, val); if (ret) dev_err(pci->dev, "Write ATU address failed\n"); } static inline u32 dw_pcie_readl_atu_ob(struct dw_pcie *pci, u32 index, u32 reg) { return dw_pcie_readl_atu(pci, PCIE_ATU_REGION_DIR_OB, index, reg); } static inline void dw_pcie_writel_atu_ob(struct dw_pcie *pci, u32 index, u32 reg, u32 val) { dw_pcie_writel_atu(pci, PCIE_ATU_REGION_DIR_OB, index, reg, val); } static inline u32 dw_pcie_enable_ecrc(u32 val) { /* * DesignWare core version 4.90A has a design issue where the 'TD' * bit in the Control register-1 of the ATU outbound region acts * like an override for the ECRC setting, i.e., the presence of TLP * Digest (ECRC) in the outgoing TLPs is solely determined by this * bit. This is contrary to the PCIe spec which says that the * enablement of the ECRC is solely determined by the AER * registers. * * Because of this, even when the ECRC is enabled through AER * registers, the transactions going through ATU won't have TLP * Digest as there is no way the PCI core AER code could program * the TD bit which is specific to the DesignWare core. * * The best way to handle this scenario is to program the TD bit * always. It affects only the traffic from root port to downstream * devices. * * At this point, * When ECRC is enabled in AER registers, everything works normally * When ECRC is NOT enabled in AER registers, then, * on Root Port:- TLP Digest (DWord size) gets appended to each packet * even through it is not required. Since downstream * TLPs are mostly for configuration accesses and BAR * accesses, they are not in critical path and won't * have much negative effect on the performance. * on End Point:- TLP Digest is received for some/all the packets coming * from the root port. TLP Digest is ignored because, * as per the PCIe Spec r5.0 v1.0 section 2.2.3 * "TLP Digest Rules", when an endpoint receives TLP * Digest when its ECRC check functionality is disabled * in AER registers, received TLP Digest is just ignored. * Since there is no issue or error reported either side, best way to * handle the scenario is to program TD bit by default. */ return val | PCIE_ATU_TD; } static int __dw_pcie_prog_outbound_atu(struct dw_pcie *pci, u8 func_no, int index, int type, u64 cpu_addr, u64 pci_addr, u64 size) { u32 retries, val; u64 limit_addr; if (pci->ops && pci->ops->cpu_addr_fixup) cpu_addr = pci->ops->cpu_addr_fixup(pci, cpu_addr); limit_addr = cpu_addr + size - 1; if ((limit_addr & ~pci->region_limit) != (cpu_addr & ~pci->region_limit) || !IS_ALIGNED(cpu_addr, pci->region_align) || !IS_ALIGNED(pci_addr, pci->region_align) || !size) { return -EINVAL; } dw_pcie_writel_atu_ob(pci, index, PCIE_ATU_LOWER_BASE, lower_32_bits(cpu_addr)); dw_pcie_writel_atu_ob(pci, index, PCIE_ATU_UPPER_BASE, upper_32_bits(cpu_addr)); dw_pcie_writel_atu_ob(pci, index, PCIE_ATU_LIMIT, lower_32_bits(limit_addr)); if (dw_pcie_ver_is_ge(pci, 460A)) dw_pcie_writel_atu_ob(pci, index, PCIE_ATU_UPPER_LIMIT, upper_32_bits(limit_addr)); dw_pcie_writel_atu_ob(pci, index, PCIE_ATU_LOWER_TARGET, lower_32_bits(pci_addr)); dw_pcie_writel_atu_ob(pci, index, PCIE_ATU_UPPER_TARGET, upper_32_bits(pci_addr)); val = type | PCIE_ATU_FUNC_NUM(func_no); if (upper_32_bits(limit_addr) > upper_32_bits(cpu_addr) && dw_pcie_ver_is_ge(pci, 460A)) val |= PCIE_ATU_INCREASE_REGION_SIZE; if (dw_pcie_ver_is(pci, 490A)) val = dw_pcie_enable_ecrc(val); dw_pcie_writel_atu_ob(pci, index, PCIE_ATU_REGION_CTRL1, val); dw_pcie_writel_atu_ob(pci, index, PCIE_ATU_REGION_CTRL2, PCIE_ATU_ENABLE); /* * Make sure ATU enable takes effect before any subsequent config * and I/O accesses. */ for (retries = 0; retries < LINK_WAIT_MAX_IATU_RETRIES; retries++) { val = dw_pcie_readl_atu_ob(pci, index, PCIE_ATU_REGION_CTRL2); if (val & PCIE_ATU_ENABLE) return 0; mdelay(LINK_WAIT_IATU); } dev_err(pci->dev, "Outbound iATU is not being enabled\n"); return -ETIMEDOUT; } int dw_pcie_prog_outbound_atu(struct dw_pcie *pci, int index, int type, u64 cpu_addr, u64 pci_addr, u64 size) { return __dw_pcie_prog_outbound_atu(pci, 0, index, type, cpu_addr, pci_addr, size); } int dw_pcie_prog_ep_outbound_atu(struct dw_pcie *pci, u8 func_no, int index, int type, u64 cpu_addr, u64 pci_addr, u64 size) { return __dw_pcie_prog_outbound_atu(pci, func_no, index, type, cpu_addr, pci_addr, size); } static inline u32 dw_pcie_readl_atu_ib(struct dw_pcie *pci, u32 index, u32 reg) { return dw_pcie_readl_atu(pci, PCIE_ATU_REGION_DIR_IB, index, reg); } static inline void dw_pcie_writel_atu_ib(struct dw_pcie *pci, u32 index, u32 reg, u32 val) { dw_pcie_writel_atu(pci, PCIE_ATU_REGION_DIR_IB, index, reg, val); } int dw_pcie_prog_inbound_atu(struct dw_pcie *pci, int index, int type, u64 cpu_addr, u64 pci_addr, u64 size) { u64 limit_addr = pci_addr + size - 1; u32 retries, val; if ((limit_addr & ~pci->region_limit) != (pci_addr & ~pci->region_limit) || !IS_ALIGNED(cpu_addr, pci->region_align) || !IS_ALIGNED(pci_addr, pci->region_align) || !size) { return -EINVAL; } dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_LOWER_BASE, lower_32_bits(pci_addr)); dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_UPPER_BASE, upper_32_bits(pci_addr)); dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_LIMIT, lower_32_bits(limit_addr)); if (dw_pcie_ver_is_ge(pci, 460A)) dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_UPPER_LIMIT, upper_32_bits(limit_addr)); dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_LOWER_TARGET, lower_32_bits(cpu_addr)); dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_UPPER_TARGET, upper_32_bits(cpu_addr)); val = type; if (upper_32_bits(limit_addr) > upper_32_bits(pci_addr) && dw_pcie_ver_is_ge(pci, 460A)) val |= PCIE_ATU_INCREASE_REGION_SIZE; dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_REGION_CTRL1, val); dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_REGION_CTRL2, PCIE_ATU_ENABLE); /* * Make sure ATU enable takes effect before any subsequent config * and I/O accesses. */ for (retries = 0; retries < LINK_WAIT_MAX_IATU_RETRIES; retries++) { val = dw_pcie_readl_atu_ib(pci, index, PCIE_ATU_REGION_CTRL2); if (val & PCIE_ATU_ENABLE) return 0; mdelay(LINK_WAIT_IATU); } dev_err(pci->dev, "Inbound iATU is not being enabled\n"); return -ETIMEDOUT; } int dw_pcie_prog_ep_inbound_atu(struct dw_pcie *pci, u8 func_no, int index, int type, u64 cpu_addr, u8 bar) { u32 retries, val; if (!IS_ALIGNED(cpu_addr, pci->region_align)) return -EINVAL; dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_LOWER_TARGET, lower_32_bits(cpu_addr)); dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_UPPER_TARGET, upper_32_bits(cpu_addr)); dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_REGION_CTRL1, type | PCIE_ATU_FUNC_NUM(func_no)); dw_pcie_writel_atu_ib(pci, index, PCIE_ATU_REGION_CTRL2, PCIE_ATU_ENABLE | PCIE_ATU_FUNC_NUM_MATCH_EN | PCIE_ATU_BAR_MODE_ENABLE | (bar << 8)); /* * Make sure ATU enable takes effect before any subsequent config * and I/O accesses. */ for (retries = 0; retries < LINK_WAIT_MAX_IATU_RETRIES; retries++) { val = dw_pcie_readl_atu_ib(pci, index, PCIE_ATU_REGION_CTRL2); if (val & PCIE_ATU_ENABLE) return 0; mdelay(LINK_WAIT_IATU); } dev_err(pci->dev, "Inbound iATU is not being enabled\n"); return -ETIMEDOUT; } void dw_pcie_disable_atu(struct dw_pcie *pci, u32 dir, int index) { dw_pcie_writel_atu(pci, dir, index, PCIE_ATU_REGION_CTRL2, 0); } int dw_pcie_wait_for_link(struct dw_pcie *pci) { u32 offset, val; int retries; /* Check if the link is up or not */ for (retries = 0; retries < LINK_WAIT_MAX_RETRIES; retries++) { if (dw_pcie_link_up(pci)) break; usleep_range(LINK_WAIT_USLEEP_MIN, LINK_WAIT_USLEEP_MAX); } if (retries >= LINK_WAIT_MAX_RETRIES) { dev_info(pci->dev, "Phy link never came up\n"); return -ETIMEDOUT; } offset = dw_pcie_find_capability(pci, PCI_CAP_ID_EXP); val = dw_pcie_readw_dbi(pci, offset + PCI_EXP_LNKSTA); dev_info(pci->dev, "PCIe Gen.%u x%u link up\n", FIELD_GET(PCI_EXP_LNKSTA_CLS, val), FIELD_GET(PCI_EXP_LNKSTA_NLW, val)); return 0; } EXPORT_SYMBOL_GPL(dw_pcie_wait_for_link); int dw_pcie_link_up(struct dw_pcie *pci) { u32 val; if (pci->ops && pci->ops->link_up) return pci->ops->link_up(pci); val = dw_pcie_readl_dbi(pci, PCIE_PORT_DEBUG1); return ((val & PCIE_PORT_DEBUG1_LINK_UP) && (!(val & PCIE_PORT_DEBUG1_LINK_IN_TRAINING))); } EXPORT_SYMBOL_GPL(dw_pcie_link_up); void dw_pcie_upconfig_setup(struct dw_pcie *pci) { u32 val; val = dw_pcie_readl_dbi(pci, PCIE_PORT_MULTI_LANE_CTRL); val |= PORT_MLTI_UPCFG_SUPPORT; dw_pcie_writel_dbi(pci, PCIE_PORT_MULTI_LANE_CTRL, val); } EXPORT_SYMBOL_GPL(dw_pcie_upconfig_setup); static void dw_pcie_link_set_max_speed(struct dw_pcie *pci, u32 link_gen) { u32 cap, ctrl2, link_speed; u8 offset = dw_pcie_find_capability(pci, PCI_CAP_ID_EXP); cap = dw_pcie_readl_dbi(pci, offset + PCI_EXP_LNKCAP); ctrl2 = dw_pcie_readl_dbi(pci, offset + PCI_EXP_LNKCTL2); ctrl2 &= ~PCI_EXP_LNKCTL2_TLS; switch (pcie_link_speed[link_gen]) { case PCIE_SPEED_2_5GT: link_speed = PCI_EXP_LNKCTL2_TLS_2_5GT; break; case PCIE_SPEED_5_0GT: link_speed = PCI_EXP_LNKCTL2_TLS_5_0GT; break; case PCIE_SPEED_8_0GT: link_speed = PCI_EXP_LNKCTL2_TLS_8_0GT; break; case PCIE_SPEED_16_0GT: link_speed = PCI_EXP_LNKCTL2_TLS_16_0GT; break; default: /* Use hardware capability */ link_speed = FIELD_GET(PCI_EXP_LNKCAP_SLS, cap); ctrl2 &= ~PCI_EXP_LNKCTL2_HASD; break; } dw_pcie_writel_dbi(pci, offset + PCI_EXP_LNKCTL2, ctrl2 | link_speed); cap &= ~((u32)PCI_EXP_LNKCAP_SLS); dw_pcie_writel_dbi(pci, offset + PCI_EXP_LNKCAP, cap | link_speed); } void dw_pcie_iatu_detect(struct dw_pcie *pci) { int max_region, ob, ib; u32 val, min, dir; u64 max; val = dw_pcie_readl_dbi(pci, PCIE_ATU_VIEWPORT); if (val == 0xFFFFFFFF) { dw_pcie_cap_set(pci, IATU_UNROLL); max_region = min((int)pci->atu_size / 512, 256); } else { pci->atu_base = pci->dbi_base + PCIE_ATU_VIEWPORT_BASE; pci->atu_size = PCIE_ATU_VIEWPORT_SIZE; dw_pcie_writel_dbi(pci, PCIE_ATU_VIEWPORT, 0xFF); max_region = dw_pcie_readl_dbi(pci, PCIE_ATU_VIEWPORT) + 1; } for (ob = 0; ob < max_region; ob++) { dw_pcie_writel_atu_ob(pci, ob, PCIE_ATU_LOWER_TARGET, 0x11110000); val = dw_pcie_readl_atu_ob(pci, ob, PCIE_ATU_LOWER_TARGET); if (val != 0x11110000) break; } for (ib = 0; ib < max_region; ib++) { dw_pcie_writel_atu_ib(pci, ib, PCIE_ATU_LOWER_TARGET, 0x11110000); val = dw_pcie_readl_atu_ib(pci, ib, PCIE_ATU_LOWER_TARGET); if (val != 0x11110000) break; } if (ob) { dir = PCIE_ATU_REGION_DIR_OB; } else if (ib) { dir = PCIE_ATU_REGION_DIR_IB; } else { dev_err(pci->dev, "No iATU regions found\n"); return; } dw_pcie_writel_atu(pci, dir, 0, PCIE_ATU_LIMIT, 0x0); min = dw_pcie_readl_atu(pci, dir, 0, PCIE_ATU_LIMIT); if (dw_pcie_ver_is_ge(pci, 460A)) { dw_pcie_writel_atu(pci, dir, 0, PCIE_ATU_UPPER_LIMIT, 0xFFFFFFFF); max = dw_pcie_readl_atu(pci, dir, 0, PCIE_ATU_UPPER_LIMIT); } else { max = 0; } pci->num_ob_windows = ob; pci->num_ib_windows = ib; pci->region_align = 1 << fls(min); pci->region_limit = (max << 32) | (SZ_4G - 1); dev_info(pci->dev, "iATU: unroll %s, %u ob, %u ib, align %uK, limit %lluG\n", dw_pcie_cap_is(pci, IATU_UNROLL) ? "T" : "F", pci->num_ob_windows, pci->num_ib_windows, pci->region_align / SZ_1K, (pci->region_limit + 1) / SZ_1G); } static u32 dw_pcie_readl_dma(struct dw_pcie *pci, u32 reg) { u32 val = 0; int ret; if (pci->ops && pci->ops->read_dbi) return pci->ops->read_dbi(pci, pci->edma.reg_base, reg, 4); ret = dw_pcie_read(pci->edma.reg_base + reg, 4, &val); if (ret) dev_err(pci->dev, "Read DMA address failed\n"); return val; } static int dw_pcie_edma_irq_vector(struct device *dev, unsigned int nr) { struct platform_device *pdev = to_platform_device(dev); char name[6]; int ret; if (nr >= EDMA_MAX_WR_CH + EDMA_MAX_RD_CH) return -EINVAL; ret = platform_get_irq_byname_optional(pdev, "dma"); if (ret > 0) return ret; snprintf(name, sizeof(name), "dma%u", nr); return platform_get_irq_byname_optional(pdev, name); } static struct dw_edma_plat_ops dw_pcie_edma_ops = { .irq_vector = dw_pcie_edma_irq_vector, }; static int dw_pcie_edma_find_chip(struct dw_pcie *pci) { u32 val; /* * Indirect eDMA CSRs access has been completely removed since v5.40a * thus no space is now reserved for the eDMA channels viewport and * former DMA CTRL register is no longer fixed to FFs. */ if (dw_pcie_ver_is_ge(pci, 540A)) val = 0xFFFFFFFF; else val = dw_pcie_readl_dbi(pci, PCIE_DMA_VIEWPORT_BASE + PCIE_DMA_CTRL); if (val == 0xFFFFFFFF && pci->edma.reg_base) { pci->edma.mf = EDMA_MF_EDMA_UNROLL; val = dw_pcie_readl_dma(pci, PCIE_DMA_CTRL); } else if (val != 0xFFFFFFFF) { pci->edma.mf = EDMA_MF_EDMA_LEGACY; pci->edma.reg_base = pci->dbi_base + PCIE_DMA_VIEWPORT_BASE; } else { return -ENODEV; } pci->edma.dev = pci->dev; if (!pci->edma.ops) pci->edma.ops = &dw_pcie_edma_ops; pci->edma.flags |= DW_EDMA_CHIP_LOCAL; pci->edma.ll_wr_cnt = FIELD_GET(PCIE_DMA_NUM_WR_CHAN, val); pci->edma.ll_rd_cnt = FIELD_GET(PCIE_DMA_NUM_RD_CHAN, val); /* Sanity check the channels count if the mapping was incorrect */ if (!pci->edma.ll_wr_cnt || pci->edma.ll_wr_cnt > EDMA_MAX_WR_CH || !pci->edma.ll_rd_cnt || pci->edma.ll_rd_cnt > EDMA_MAX_RD_CH) return -EINVAL; return 0; } static int dw_pcie_edma_irq_verify(struct dw_pcie *pci) { struct platform_device *pdev = to_platform_device(pci->dev); u16 ch_cnt = pci->edma.ll_wr_cnt + pci->edma.ll_rd_cnt; char name[6]; int ret; if (pci->edma.nr_irqs == 1) return 0; else if (pci->edma.nr_irqs > 1) return pci->edma.nr_irqs != ch_cnt ? -EINVAL : 0; ret = platform_get_irq_byname_optional(pdev, "dma"); if (ret > 0) { pci->edma.nr_irqs = 1; return 0; } for (; pci->edma.nr_irqs < ch_cnt; pci->edma.nr_irqs++) { snprintf(name, sizeof(name), "dma%d", pci->edma.nr_irqs); ret = platform_get_irq_byname_optional(pdev, name); if (ret <= 0) return -EINVAL; } return 0; } static int dw_pcie_edma_ll_alloc(struct dw_pcie *pci) { struct dw_edma_region *ll; dma_addr_t paddr; int i; for (i = 0; i < pci->edma.ll_wr_cnt; i++) { ll = &pci->edma.ll_region_wr[i]; ll->sz = DMA_LLP_MEM_SIZE; ll->vaddr.mem = dmam_alloc_coherent(pci->dev, ll->sz, &paddr, GFP_KERNEL); if (!ll->vaddr.mem) return -ENOMEM; ll->paddr = paddr; } for (i = 0; i < pci->edma.ll_rd_cnt; i++) { ll = &pci->edma.ll_region_rd[i]; ll->sz = DMA_LLP_MEM_SIZE; ll->vaddr.mem = dmam_alloc_coherent(pci->dev, ll->sz, &paddr, GFP_KERNEL); if (!ll->vaddr.mem) return -ENOMEM; ll->paddr = paddr; } return 0; } int dw_pcie_edma_detect(struct dw_pcie *pci) { int ret; /* Don't fail if no eDMA was found (for the backward compatibility) */ ret = dw_pcie_edma_find_chip(pci); if (ret) return 0; /* Don't fail on the IRQs verification (for the backward compatibility) */ ret = dw_pcie_edma_irq_verify(pci); if (ret) { dev_err(pci->dev, "Invalid eDMA IRQs found\n"); return 0; } ret = dw_pcie_edma_ll_alloc(pci); if (ret) { dev_err(pci->dev, "Couldn't allocate LLP memory\n"); return ret; } /* Don't fail if the DW eDMA driver can't find the device */ ret = dw_edma_probe(&pci->edma); if (ret && ret != -ENODEV) { dev_err(pci->dev, "Couldn't register eDMA device\n"); return ret; } dev_info(pci->dev, "eDMA: unroll %s, %hu wr, %hu rd\n", pci->edma.mf == EDMA_MF_EDMA_UNROLL ? "T" : "F", pci->edma.ll_wr_cnt, pci->edma.ll_rd_cnt); return 0; } void dw_pcie_edma_remove(struct dw_pcie *pci) { dw_edma_remove(&pci->edma); } void dw_pcie_setup(struct dw_pcie *pci) { u32 val; if (pci->link_gen > 0) dw_pcie_link_set_max_speed(pci, pci->link_gen); /* Configure Gen1 N_FTS */ if (pci->n_fts[0]) { val = dw_pcie_readl_dbi(pci, PCIE_PORT_AFR); val &= ~(PORT_AFR_N_FTS_MASK | PORT_AFR_CC_N_FTS_MASK); val |= PORT_AFR_N_FTS(pci->n_fts[0]); val |= PORT_AFR_CC_N_FTS(pci->n_fts[0]); dw_pcie_writel_dbi(pci, PCIE_PORT_AFR, val); } /* Configure Gen2+ N_FTS */ if (pci->n_fts[1]) { val = dw_pcie_readl_dbi(pci, PCIE_LINK_WIDTH_SPEED_CONTROL); val &= ~PORT_LOGIC_N_FTS_MASK; val |= pci->n_fts[1]; dw_pcie_writel_dbi(pci, PCIE_LINK_WIDTH_SPEED_CONTROL, val); } if (dw_pcie_cap_is(pci, CDM_CHECK)) { val = dw_pcie_readl_dbi(pci, PCIE_PL_CHK_REG_CONTROL_STATUS); val |= PCIE_PL_CHK_REG_CHK_REG_CONTINUOUS | PCIE_PL_CHK_REG_CHK_REG_START; dw_pcie_writel_dbi(pci, PCIE_PL_CHK_REG_CONTROL_STATUS, val); } val = dw_pcie_readl_dbi(pci, PCIE_PORT_LINK_CONTROL); val &= ~PORT_LINK_FAST_LINK_MODE; val |= PORT_LINK_DLL_LINK_EN; dw_pcie_writel_dbi(pci, PCIE_PORT_LINK_CONTROL, val); if (!pci->num_lanes) { dev_dbg(pci->dev, "Using h/w default number of lanes\n"); return; } /* Set the number of lanes */ val &= ~PORT_LINK_FAST_LINK_MODE; val &= ~PORT_LINK_MODE_MASK; switch (pci->num_lanes) { case 1: val |= PORT_LINK_MODE_1_LANES; break; case 2: val |= PORT_LINK_MODE_2_LANES; break; case 4: val |= PORT_LINK_MODE_4_LANES; break; case 8: val |= PORT_LINK_MODE_8_LANES; break; default: dev_err(pci->dev, "num-lanes %u: invalid value\n", pci->num_lanes); return; } dw_pcie_writel_dbi(pci, PCIE_PORT_LINK_CONTROL, val); /* Set link width speed control register */ val = dw_pcie_readl_dbi(pci, PCIE_LINK_WIDTH_SPEED_CONTROL); val &= ~PORT_LOGIC_LINK_WIDTH_MASK; switch (pci->num_lanes) { case 1: val |= PORT_LOGIC_LINK_WIDTH_1_LANES; break; case 2: val |= PORT_LOGIC_LINK_WIDTH_2_LANES; break; case 4: val |= PORT_LOGIC_LINK_WIDTH_4_LANES; break; case 8: val |= PORT_LOGIC_LINK_WIDTH_8_LANES; break; } dw_pcie_writel_dbi(pci, PCIE_LINK_WIDTH_SPEED_CONTROL, val); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1