Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pali Rohár | 3458 | 43.14% | 56 | 55.45% |
Thomas Petazzoni | 3378 | 42.14% | 7 | 6.93% |
Marek Behún | 401 | 5.00% | 10 | 9.90% |
Zachary Zhang | 362 | 4.52% | 1 | 0.99% |
Remi Pommarel | 116 | 1.45% | 3 | 2.97% |
Evan Wang | 71 | 0.89% | 1 | 0.99% |
Victor Gu | 66 | 0.82% | 3 | 2.97% |
Lorenzo Pieralisi | 34 | 0.42% | 1 | 0.99% |
Wen Yang | 26 | 0.32% | 1 | 0.99% |
Björn Helgaas | 23 | 0.29% | 4 | 3.96% |
Rob Herring | 20 | 0.25% | 2 | 1.98% |
Grzegorz Jaszczyk | 17 | 0.21% | 2 | 1.98% |
Dmitry Torokhov | 13 | 0.16% | 1 | 0.99% |
Krzysztof Wilczynski | 12 | 0.15% | 1 | 0.99% |
Aman Sharma | 7 | 0.09% | 1 | 0.99% |
Jayachandran C | 3 | 0.04% | 2 | 1.98% |
Dejin Zheng | 3 | 0.04% | 1 | 0.99% |
Paul Burton | 2 | 0.02% | 1 | 0.99% |
Uwe Kleine-König | 2 | 0.02% | 1 | 0.99% |
Wei Yongjun | 1 | 0.01% | 1 | 0.99% |
Marc Zyngier | 1 | 0.01% | 1 | 0.99% |
Total | 8016 | 101 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the Aardvark PCIe controller, used on Marvell Armada * 3700. * * Copyright (C) 2016 Marvell * * Author: Hezi Shahmoon <hezi.shahmoon@marvell.com> */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/pci-ecam.h> #include <linux/init.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/msi.h> #include <linux/of_address.h> #include <linux/of_gpio.h> #include <linux/of_pci.h> #include "../pci.h" #include "../pci-bridge-emul.h" /* PCIe core registers */ #define PCIE_CORE_DEV_ID_REG 0x0 #define PCIE_CORE_CMD_STATUS_REG 0x4 #define PCIE_CORE_DEV_REV_REG 0x8 #define PCIE_CORE_SSDEV_ID_REG 0x2c #define PCIE_CORE_PCIEXP_CAP 0xc0 #define PCIE_CORE_PCIERR_CAP 0x100 #define PCIE_CORE_ERR_CAPCTL_REG 0x118 #define PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX BIT(5) #define PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX_EN BIT(6) #define PCIE_CORE_ERR_CAPCTL_ECRC_CHCK BIT(7) #define PCIE_CORE_ERR_CAPCTL_ECRC_CHCK_RCV BIT(8) /* PIO registers base address and register offsets */ #define PIO_BASE_ADDR 0x4000 #define PIO_CTRL (PIO_BASE_ADDR + 0x0) #define PIO_CTRL_TYPE_MASK GENMASK(3, 0) #define PIO_CTRL_ADDR_WIN_DISABLE BIT(24) #define PIO_STAT (PIO_BASE_ADDR + 0x4) #define PIO_COMPLETION_STATUS_SHIFT 7 #define PIO_COMPLETION_STATUS_MASK GENMASK(9, 7) #define PIO_COMPLETION_STATUS_OK 0 #define PIO_COMPLETION_STATUS_UR 1 #define PIO_COMPLETION_STATUS_CRS 2 #define PIO_COMPLETION_STATUS_CA 4 #define PIO_NON_POSTED_REQ BIT(10) #define PIO_ERR_STATUS BIT(11) #define PIO_ADDR_LS (PIO_BASE_ADDR + 0x8) #define PIO_ADDR_MS (PIO_BASE_ADDR + 0xc) #define PIO_WR_DATA (PIO_BASE_ADDR + 0x10) #define PIO_WR_DATA_STRB (PIO_BASE_ADDR + 0x14) #define PIO_RD_DATA (PIO_BASE_ADDR + 0x18) #define PIO_START (PIO_BASE_ADDR + 0x1c) #define PIO_ISR (PIO_BASE_ADDR + 0x20) #define PIO_ISRM (PIO_BASE_ADDR + 0x24) /* Aardvark Control registers */ #define CONTROL_BASE_ADDR 0x4800 #define PCIE_CORE_CTRL0_REG (CONTROL_BASE_ADDR + 0x0) #define PCIE_GEN_SEL_MSK 0x3 #define PCIE_GEN_SEL_SHIFT 0x0 #define SPEED_GEN_1 0 #define SPEED_GEN_2 1 #define SPEED_GEN_3 2 #define IS_RC_MSK 1 #define IS_RC_SHIFT 2 #define LANE_CNT_MSK 0x18 #define LANE_CNT_SHIFT 0x3 #define LANE_COUNT_1 (0 << LANE_CNT_SHIFT) #define LANE_COUNT_2 (1 << LANE_CNT_SHIFT) #define LANE_COUNT_4 (2 << LANE_CNT_SHIFT) #define LANE_COUNT_8 (3 << LANE_CNT_SHIFT) #define LINK_TRAINING_EN BIT(6) #define LEGACY_INTA BIT(28) #define LEGACY_INTB BIT(29) #define LEGACY_INTC BIT(30) #define LEGACY_INTD BIT(31) #define PCIE_CORE_CTRL1_REG (CONTROL_BASE_ADDR + 0x4) #define HOT_RESET_GEN BIT(0) #define PCIE_CORE_CTRL2_REG (CONTROL_BASE_ADDR + 0x8) #define PCIE_CORE_CTRL2_RESERVED 0x7 #define PCIE_CORE_CTRL2_TD_ENABLE BIT(4) #define PCIE_CORE_CTRL2_STRICT_ORDER_ENABLE BIT(5) #define PCIE_CORE_CTRL2_OB_WIN_ENABLE BIT(6) #define PCIE_CORE_CTRL2_MSI_ENABLE BIT(10) #define PCIE_CORE_REF_CLK_REG (CONTROL_BASE_ADDR + 0x14) #define PCIE_CORE_REF_CLK_TX_ENABLE BIT(1) #define PCIE_CORE_REF_CLK_RX_ENABLE BIT(2) #define PCIE_MSG_LOG_REG (CONTROL_BASE_ADDR + 0x30) #define PCIE_ISR0_REG (CONTROL_BASE_ADDR + 0x40) #define PCIE_MSG_PM_PME_MASK BIT(7) #define PCIE_ISR0_MASK_REG (CONTROL_BASE_ADDR + 0x44) #define PCIE_ISR0_MSI_INT_PENDING BIT(24) #define PCIE_ISR0_CORR_ERR BIT(11) #define PCIE_ISR0_NFAT_ERR BIT(12) #define PCIE_ISR0_FAT_ERR BIT(13) #define PCIE_ISR0_ERR_MASK GENMASK(13, 11) #define PCIE_ISR0_INTX_ASSERT(val) BIT(16 + (val)) #define PCIE_ISR0_INTX_DEASSERT(val) BIT(20 + (val)) #define PCIE_ISR0_ALL_MASK GENMASK(31, 0) #define PCIE_ISR1_REG (CONTROL_BASE_ADDR + 0x48) #define PCIE_ISR1_MASK_REG (CONTROL_BASE_ADDR + 0x4C) #define PCIE_ISR1_POWER_STATE_CHANGE BIT(4) #define PCIE_ISR1_FLUSH BIT(5) #define PCIE_ISR1_INTX_ASSERT(val) BIT(8 + (val)) #define PCIE_ISR1_ALL_MASK GENMASK(31, 0) #define PCIE_MSI_ADDR_LOW_REG (CONTROL_BASE_ADDR + 0x50) #define PCIE_MSI_ADDR_HIGH_REG (CONTROL_BASE_ADDR + 0x54) #define PCIE_MSI_STATUS_REG (CONTROL_BASE_ADDR + 0x58) #define PCIE_MSI_MASK_REG (CONTROL_BASE_ADDR + 0x5C) #define PCIE_MSI_ALL_MASK GENMASK(31, 0) #define PCIE_MSI_PAYLOAD_REG (CONTROL_BASE_ADDR + 0x9C) #define PCIE_MSI_DATA_MASK GENMASK(15, 0) /* PCIe window configuration */ #define OB_WIN_BASE_ADDR 0x4c00 #define OB_WIN_BLOCK_SIZE 0x20 #define OB_WIN_COUNT 8 #define OB_WIN_REG_ADDR(win, offset) (OB_WIN_BASE_ADDR + \ OB_WIN_BLOCK_SIZE * (win) + \ (offset)) #define OB_WIN_MATCH_LS(win) OB_WIN_REG_ADDR(win, 0x00) #define OB_WIN_ENABLE BIT(0) #define OB_WIN_MATCH_MS(win) OB_WIN_REG_ADDR(win, 0x04) #define OB_WIN_REMAP_LS(win) OB_WIN_REG_ADDR(win, 0x08) #define OB_WIN_REMAP_MS(win) OB_WIN_REG_ADDR(win, 0x0c) #define OB_WIN_MASK_LS(win) OB_WIN_REG_ADDR(win, 0x10) #define OB_WIN_MASK_MS(win) OB_WIN_REG_ADDR(win, 0x14) #define OB_WIN_ACTIONS(win) OB_WIN_REG_ADDR(win, 0x18) #define OB_WIN_DEFAULT_ACTIONS (OB_WIN_ACTIONS(OB_WIN_COUNT-1) + 0x4) #define OB_WIN_FUNC_NUM_MASK GENMASK(31, 24) #define OB_WIN_FUNC_NUM_SHIFT 24 #define OB_WIN_FUNC_NUM_ENABLE BIT(23) #define OB_WIN_BUS_NUM_BITS_MASK GENMASK(22, 20) #define OB_WIN_BUS_NUM_BITS_SHIFT 20 #define OB_WIN_MSG_CODE_ENABLE BIT(22) #define OB_WIN_MSG_CODE_MASK GENMASK(21, 14) #define OB_WIN_MSG_CODE_SHIFT 14 #define OB_WIN_MSG_PAYLOAD_LEN BIT(12) #define OB_WIN_ATTR_ENABLE BIT(11) #define OB_WIN_ATTR_TC_MASK GENMASK(10, 8) #define OB_WIN_ATTR_TC_SHIFT 8 #define OB_WIN_ATTR_RELAXED BIT(7) #define OB_WIN_ATTR_NOSNOOP BIT(6) #define OB_WIN_ATTR_POISON BIT(5) #define OB_WIN_ATTR_IDO BIT(4) #define OB_WIN_TYPE_MASK GENMASK(3, 0) #define OB_WIN_TYPE_SHIFT 0 #define OB_WIN_TYPE_MEM 0x0 #define OB_WIN_TYPE_IO 0x4 #define OB_WIN_TYPE_CONFIG_TYPE0 0x8 #define OB_WIN_TYPE_CONFIG_TYPE1 0x9 #define OB_WIN_TYPE_MSG 0xc /* LMI registers base address and register offsets */ #define LMI_BASE_ADDR 0x6000 #define CFG_REG (LMI_BASE_ADDR + 0x0) #define LTSSM_SHIFT 24 #define LTSSM_MASK 0x3f #define RC_BAR_CONFIG 0x300 /* LTSSM values in CFG_REG */ enum { LTSSM_DETECT_QUIET = 0x0, LTSSM_DETECT_ACTIVE = 0x1, LTSSM_POLLING_ACTIVE = 0x2, LTSSM_POLLING_COMPLIANCE = 0x3, LTSSM_POLLING_CONFIGURATION = 0x4, LTSSM_CONFIG_LINKWIDTH_START = 0x5, LTSSM_CONFIG_LINKWIDTH_ACCEPT = 0x6, LTSSM_CONFIG_LANENUM_ACCEPT = 0x7, LTSSM_CONFIG_LANENUM_WAIT = 0x8, LTSSM_CONFIG_COMPLETE = 0x9, LTSSM_CONFIG_IDLE = 0xa, LTSSM_RECOVERY_RCVR_LOCK = 0xb, LTSSM_RECOVERY_SPEED = 0xc, LTSSM_RECOVERY_RCVR_CFG = 0xd, LTSSM_RECOVERY_IDLE = 0xe, LTSSM_L0 = 0x10, LTSSM_RX_L0S_ENTRY = 0x11, LTSSM_RX_L0S_IDLE = 0x12, LTSSM_RX_L0S_FTS = 0x13, LTSSM_TX_L0S_ENTRY = 0x14, LTSSM_TX_L0S_IDLE = 0x15, LTSSM_TX_L0S_FTS = 0x16, LTSSM_L1_ENTRY = 0x17, LTSSM_L1_IDLE = 0x18, LTSSM_L2_IDLE = 0x19, LTSSM_L2_TRANSMIT_WAKE = 0x1a, LTSSM_DISABLED = 0x20, LTSSM_LOOPBACK_ENTRY_MASTER = 0x21, LTSSM_LOOPBACK_ACTIVE_MASTER = 0x22, LTSSM_LOOPBACK_EXIT_MASTER = 0x23, LTSSM_LOOPBACK_ENTRY_SLAVE = 0x24, LTSSM_LOOPBACK_ACTIVE_SLAVE = 0x25, LTSSM_LOOPBACK_EXIT_SLAVE = 0x26, LTSSM_HOT_RESET = 0x27, LTSSM_RECOVERY_EQUALIZATION_PHASE0 = 0x28, LTSSM_RECOVERY_EQUALIZATION_PHASE1 = 0x29, LTSSM_RECOVERY_EQUALIZATION_PHASE2 = 0x2a, LTSSM_RECOVERY_EQUALIZATION_PHASE3 = 0x2b, }; #define VENDOR_ID_REG (LMI_BASE_ADDR + 0x44) /* PCIe core controller registers */ #define CTRL_CORE_BASE_ADDR 0x18000 #define CTRL_CONFIG_REG (CTRL_CORE_BASE_ADDR + 0x0) #define CTRL_MODE_SHIFT 0x0 #define CTRL_MODE_MASK 0x1 #define PCIE_CORE_MODE_DIRECT 0x0 #define PCIE_CORE_MODE_COMMAND 0x1 /* PCIe Central Interrupts Registers */ #define CENTRAL_INT_BASE_ADDR 0x1b000 #define HOST_CTRL_INT_STATUS_REG (CENTRAL_INT_BASE_ADDR + 0x0) #define HOST_CTRL_INT_MASK_REG (CENTRAL_INT_BASE_ADDR + 0x4) #define PCIE_IRQ_CMDQ_INT BIT(0) #define PCIE_IRQ_MSI_STATUS_INT BIT(1) #define PCIE_IRQ_CMD_SENT_DONE BIT(3) #define PCIE_IRQ_DMA_INT BIT(4) #define PCIE_IRQ_IB_DXFERDONE BIT(5) #define PCIE_IRQ_OB_DXFERDONE BIT(6) #define PCIE_IRQ_OB_RXFERDONE BIT(7) #define PCIE_IRQ_COMPQ_INT BIT(12) #define PCIE_IRQ_DIR_RD_DDR_DET BIT(13) #define PCIE_IRQ_DIR_WR_DDR_DET BIT(14) #define PCIE_IRQ_CORE_INT BIT(16) #define PCIE_IRQ_CORE_INT_PIO BIT(17) #define PCIE_IRQ_DPMU_INT BIT(18) #define PCIE_IRQ_PCIE_MIS_INT BIT(19) #define PCIE_IRQ_MSI_INT1_DET BIT(20) #define PCIE_IRQ_MSI_INT2_DET BIT(21) #define PCIE_IRQ_RC_DBELL_DET BIT(22) #define PCIE_IRQ_EP_STATUS BIT(23) #define PCIE_IRQ_ALL_MASK GENMASK(31, 0) #define PCIE_IRQ_ENABLE_INTS_MASK PCIE_IRQ_CORE_INT /* Transaction types */ #define PCIE_CONFIG_RD_TYPE0 0x8 #define PCIE_CONFIG_RD_TYPE1 0x9 #define PCIE_CONFIG_WR_TYPE0 0xa #define PCIE_CONFIG_WR_TYPE1 0xb #define PIO_RETRY_CNT 750000 /* 1.5 s */ #define PIO_RETRY_DELAY 2 /* 2 us*/ #define LINK_WAIT_MAX_RETRIES 10 #define LINK_WAIT_USLEEP_MIN 90000 #define LINK_WAIT_USLEEP_MAX 100000 #define RETRAIN_WAIT_MAX_RETRIES 10 #define RETRAIN_WAIT_USLEEP_US 2000 #define MSI_IRQ_NUM 32 #define CFG_RD_CRS_VAL 0xffff0001 struct advk_pcie { struct platform_device *pdev; void __iomem *base; struct { phys_addr_t match; phys_addr_t remap; phys_addr_t mask; u32 actions; } wins[OB_WIN_COUNT]; u8 wins_count; struct irq_domain *rp_irq_domain; struct irq_domain *irq_domain; struct irq_chip irq_chip; raw_spinlock_t irq_lock; struct irq_domain *msi_domain; struct irq_domain *msi_inner_domain; raw_spinlock_t msi_irq_lock; DECLARE_BITMAP(msi_used, MSI_IRQ_NUM); struct mutex msi_used_lock; int link_gen; struct pci_bridge_emul bridge; struct gpio_desc *reset_gpio; struct phy *phy; }; static inline void advk_writel(struct advk_pcie *pcie, u32 val, u64 reg) { writel(val, pcie->base + reg); } static inline u32 advk_readl(struct advk_pcie *pcie, u64 reg) { return readl(pcie->base + reg); } static u8 advk_pcie_ltssm_state(struct advk_pcie *pcie) { u32 val; u8 ltssm_state; val = advk_readl(pcie, CFG_REG); ltssm_state = (val >> LTSSM_SHIFT) & LTSSM_MASK; return ltssm_state; } static inline bool advk_pcie_link_up(struct advk_pcie *pcie) { /* check if LTSSM is in normal operation - some L* state */ u8 ltssm_state = advk_pcie_ltssm_state(pcie); return ltssm_state >= LTSSM_L0 && ltssm_state < LTSSM_DISABLED; } static inline bool advk_pcie_link_active(struct advk_pcie *pcie) { /* * According to PCIe Base specification 3.0, Table 4-14: Link * Status Mapped to the LTSSM, and 4.2.6.3.6 Configuration.Idle * is Link Up mapped to LTSSM Configuration.Idle, Recovery, L0, * L0s, L1 and L2 states. And according to 3.2.1. Data Link * Control and Management State Machine Rules is DL Up status * reported in DL Active state. */ u8 ltssm_state = advk_pcie_ltssm_state(pcie); return ltssm_state >= LTSSM_CONFIG_IDLE && ltssm_state < LTSSM_DISABLED; } static inline bool advk_pcie_link_training(struct advk_pcie *pcie) { /* * According to PCIe Base specification 3.0, Table 4-14: Link * Status Mapped to the LTSSM is Link Training mapped to LTSSM * Configuration and Recovery states. */ u8 ltssm_state = advk_pcie_ltssm_state(pcie); return ((ltssm_state >= LTSSM_CONFIG_LINKWIDTH_START && ltssm_state < LTSSM_L0) || (ltssm_state >= LTSSM_RECOVERY_EQUALIZATION_PHASE0 && ltssm_state <= LTSSM_RECOVERY_EQUALIZATION_PHASE3)); } static int advk_pcie_wait_for_link(struct advk_pcie *pcie) { int retries; /* check if the link is up or not */ for (retries = 0; retries < LINK_WAIT_MAX_RETRIES; retries++) { if (advk_pcie_link_up(pcie)) return 0; usleep_range(LINK_WAIT_USLEEP_MIN, LINK_WAIT_USLEEP_MAX); } return -ETIMEDOUT; } static void advk_pcie_wait_for_retrain(struct advk_pcie *pcie) { size_t retries; for (retries = 0; retries < RETRAIN_WAIT_MAX_RETRIES; ++retries) { if (advk_pcie_link_training(pcie)) break; udelay(RETRAIN_WAIT_USLEEP_US); } } static void advk_pcie_issue_perst(struct advk_pcie *pcie) { if (!pcie->reset_gpio) return; /* 10ms delay is needed for some cards */ dev_info(&pcie->pdev->dev, "issuing PERST via reset GPIO for 10ms\n"); gpiod_set_value_cansleep(pcie->reset_gpio, 1); usleep_range(10000, 11000); gpiod_set_value_cansleep(pcie->reset_gpio, 0); } static void advk_pcie_train_link(struct advk_pcie *pcie) { struct device *dev = &pcie->pdev->dev; u32 reg; int ret; /* * Setup PCIe rev / gen compliance based on device tree property * 'max-link-speed' which also forces maximal link speed. */ reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG); reg &= ~PCIE_GEN_SEL_MSK; if (pcie->link_gen == 3) reg |= SPEED_GEN_3; else if (pcie->link_gen == 2) reg |= SPEED_GEN_2; else reg |= SPEED_GEN_1; advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG); /* * Set maximal link speed value also into PCIe Link Control 2 register. * Armada 3700 Functional Specification says that default value is based * on SPEED_GEN but tests showed that default value is always 8.0 GT/s. */ reg = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + PCI_EXP_LNKCTL2); reg &= ~PCI_EXP_LNKCTL2_TLS; if (pcie->link_gen == 3) reg |= PCI_EXP_LNKCTL2_TLS_8_0GT; else if (pcie->link_gen == 2) reg |= PCI_EXP_LNKCTL2_TLS_5_0GT; else reg |= PCI_EXP_LNKCTL2_TLS_2_5GT; advk_writel(pcie, reg, PCIE_CORE_PCIEXP_CAP + PCI_EXP_LNKCTL2); /* Enable link training after selecting PCIe generation */ reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG); reg |= LINK_TRAINING_EN; advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG); /* * Reset PCIe card via PERST# signal. Some cards are not detected * during link training when they are in some non-initial state. */ advk_pcie_issue_perst(pcie); /* * PERST# signal could have been asserted by pinctrl subsystem before * probe() callback has been called or issued explicitly by reset gpio * function advk_pcie_issue_perst(), making the endpoint going into * fundamental reset. As required by PCI Express spec (PCI Express * Base Specification, REV. 4.0 PCI Express, February 19 2014, 6.6.1 * Conventional Reset) a delay for at least 100ms after such a reset * before sending a Configuration Request to the device is needed. * So wait until PCIe link is up. Function advk_pcie_wait_for_link() * waits for link at least 900ms. */ ret = advk_pcie_wait_for_link(pcie); if (ret < 0) dev_err(dev, "link never came up\n"); else dev_info(dev, "link up\n"); } /* * Set PCIe address window register which could be used for memory * mapping. */ static void advk_pcie_set_ob_win(struct advk_pcie *pcie, u8 win_num, phys_addr_t match, phys_addr_t remap, phys_addr_t mask, u32 actions) { advk_writel(pcie, OB_WIN_ENABLE | lower_32_bits(match), OB_WIN_MATCH_LS(win_num)); advk_writel(pcie, upper_32_bits(match), OB_WIN_MATCH_MS(win_num)); advk_writel(pcie, lower_32_bits(remap), OB_WIN_REMAP_LS(win_num)); advk_writel(pcie, upper_32_bits(remap), OB_WIN_REMAP_MS(win_num)); advk_writel(pcie, lower_32_bits(mask), OB_WIN_MASK_LS(win_num)); advk_writel(pcie, upper_32_bits(mask), OB_WIN_MASK_MS(win_num)); advk_writel(pcie, actions, OB_WIN_ACTIONS(win_num)); } static void advk_pcie_disable_ob_win(struct advk_pcie *pcie, u8 win_num) { advk_writel(pcie, 0, OB_WIN_MATCH_LS(win_num)); advk_writel(pcie, 0, OB_WIN_MATCH_MS(win_num)); advk_writel(pcie, 0, OB_WIN_REMAP_LS(win_num)); advk_writel(pcie, 0, OB_WIN_REMAP_MS(win_num)); advk_writel(pcie, 0, OB_WIN_MASK_LS(win_num)); advk_writel(pcie, 0, OB_WIN_MASK_MS(win_num)); advk_writel(pcie, 0, OB_WIN_ACTIONS(win_num)); } static void advk_pcie_setup_hw(struct advk_pcie *pcie) { phys_addr_t msi_addr; u32 reg; int i; /* * Configure PCIe Reference clock. Direction is from the PCIe * controller to the endpoint card, so enable transmitting of * Reference clock differential signal off-chip and disable * receiving off-chip differential signal. */ reg = advk_readl(pcie, PCIE_CORE_REF_CLK_REG); reg |= PCIE_CORE_REF_CLK_TX_ENABLE; reg &= ~PCIE_CORE_REF_CLK_RX_ENABLE; advk_writel(pcie, reg, PCIE_CORE_REF_CLK_REG); /* Set to Direct mode */ reg = advk_readl(pcie, CTRL_CONFIG_REG); reg &= ~(CTRL_MODE_MASK << CTRL_MODE_SHIFT); reg |= ((PCIE_CORE_MODE_DIRECT & CTRL_MODE_MASK) << CTRL_MODE_SHIFT); advk_writel(pcie, reg, CTRL_CONFIG_REG); /* Set PCI global control register to RC mode */ reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG); reg |= (IS_RC_MSK << IS_RC_SHIFT); advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG); /* * Replace incorrect PCI vendor id value 0x1b4b by correct value 0x11ab. * VENDOR_ID_REG contains vendor id in low 16 bits and subsystem vendor * id in high 16 bits. Updating this register changes readback value of * read-only vendor id bits in PCIE_CORE_DEV_ID_REG register. Workaround * for erratum 4.1: "The value of device and vendor ID is incorrect". */ reg = (PCI_VENDOR_ID_MARVELL << 16) | PCI_VENDOR_ID_MARVELL; advk_writel(pcie, reg, VENDOR_ID_REG); /* * Change Class Code of PCI Bridge device to PCI Bridge (0x600400), * because the default value is Mass storage controller (0x010400). * * Note that this Aardvark PCI Bridge does not have compliant Type 1 * Configuration Space and it even cannot be accessed via Aardvark's * PCI config space access method. Something like config space is * available in internal Aardvark registers starting at offset 0x0 * and is reported as Type 0. In range 0x10 - 0x34 it has totally * different registers. * * Therefore driver uses emulation of PCI Bridge which emulates * access to configuration space via internal Aardvark registers or * emulated configuration buffer. */ reg = advk_readl(pcie, PCIE_CORE_DEV_REV_REG); reg &= ~0xffffff00; reg |= PCI_CLASS_BRIDGE_PCI_NORMAL << 8; advk_writel(pcie, reg, PCIE_CORE_DEV_REV_REG); /* Disable Root Bridge I/O space, memory space and bus mastering */ reg = advk_readl(pcie, PCIE_CORE_CMD_STATUS_REG); reg &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); advk_writel(pcie, reg, PCIE_CORE_CMD_STATUS_REG); /* Set Advanced Error Capabilities and Control PF0 register */ reg = PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX | PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX_EN | PCIE_CORE_ERR_CAPCTL_ECRC_CHCK | PCIE_CORE_ERR_CAPCTL_ECRC_CHCK_RCV; advk_writel(pcie, reg, PCIE_CORE_ERR_CAPCTL_REG); /* Set PCIe Device Control register */ reg = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + PCI_EXP_DEVCTL); reg &= ~PCI_EXP_DEVCTL_RELAX_EN; reg &= ~PCI_EXP_DEVCTL_NOSNOOP_EN; reg &= ~PCI_EXP_DEVCTL_PAYLOAD; reg &= ~PCI_EXP_DEVCTL_READRQ; reg |= PCI_EXP_DEVCTL_PAYLOAD_512B; reg |= PCI_EXP_DEVCTL_READRQ_512B; advk_writel(pcie, reg, PCIE_CORE_PCIEXP_CAP + PCI_EXP_DEVCTL); /* Program PCIe Control 2 to disable strict ordering */ reg = PCIE_CORE_CTRL2_RESERVED | PCIE_CORE_CTRL2_TD_ENABLE; advk_writel(pcie, reg, PCIE_CORE_CTRL2_REG); /* Set lane X1 */ reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG); reg &= ~LANE_CNT_MSK; reg |= LANE_COUNT_1; advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG); /* Set MSI address */ msi_addr = virt_to_phys(pcie); advk_writel(pcie, lower_32_bits(msi_addr), PCIE_MSI_ADDR_LOW_REG); advk_writel(pcie, upper_32_bits(msi_addr), PCIE_MSI_ADDR_HIGH_REG); /* Enable MSI */ reg = advk_readl(pcie, PCIE_CORE_CTRL2_REG); reg |= PCIE_CORE_CTRL2_MSI_ENABLE; advk_writel(pcie, reg, PCIE_CORE_CTRL2_REG); /* Clear all interrupts */ advk_writel(pcie, PCIE_MSI_ALL_MASK, PCIE_MSI_STATUS_REG); advk_writel(pcie, PCIE_ISR0_ALL_MASK, PCIE_ISR0_REG); advk_writel(pcie, PCIE_ISR1_ALL_MASK, PCIE_ISR1_REG); advk_writel(pcie, PCIE_IRQ_ALL_MASK, HOST_CTRL_INT_STATUS_REG); /* Disable All ISR0/1 and MSI Sources */ advk_writel(pcie, PCIE_ISR0_ALL_MASK, PCIE_ISR0_MASK_REG); advk_writel(pcie, PCIE_ISR1_ALL_MASK, PCIE_ISR1_MASK_REG); advk_writel(pcie, PCIE_MSI_ALL_MASK, PCIE_MSI_MASK_REG); /* Unmask summary MSI interrupt */ reg = advk_readl(pcie, PCIE_ISR0_MASK_REG); reg &= ~PCIE_ISR0_MSI_INT_PENDING; advk_writel(pcie, reg, PCIE_ISR0_MASK_REG); /* Unmask PME interrupt for processing of PME requester */ reg = advk_readl(pcie, PCIE_ISR0_MASK_REG); reg &= ~PCIE_MSG_PM_PME_MASK; advk_writel(pcie, reg, PCIE_ISR0_MASK_REG); /* Enable summary interrupt for GIC SPI source */ reg = PCIE_IRQ_ALL_MASK & (~PCIE_IRQ_ENABLE_INTS_MASK); advk_writel(pcie, reg, HOST_CTRL_INT_MASK_REG); /* * Enable AXI address window location generation: * When it is enabled, the default outbound window * configurations (Default User Field: 0xD0074CFC) * are used to transparent address translation for * the outbound transactions. Thus, PCIe address * windows are not required for transparent memory * access when default outbound window configuration * is set for memory access. */ reg = advk_readl(pcie, PCIE_CORE_CTRL2_REG); reg |= PCIE_CORE_CTRL2_OB_WIN_ENABLE; advk_writel(pcie, reg, PCIE_CORE_CTRL2_REG); /* * Set memory access in Default User Field so it * is not required to configure PCIe address for * transparent memory access. */ advk_writel(pcie, OB_WIN_TYPE_MEM, OB_WIN_DEFAULT_ACTIONS); /* * Bypass the address window mapping for PIO: * Since PIO access already contains all required * info over AXI interface by PIO registers, the * address window is not required. */ reg = advk_readl(pcie, PIO_CTRL); reg |= PIO_CTRL_ADDR_WIN_DISABLE; advk_writel(pcie, reg, PIO_CTRL); /* * Configure PCIe address windows for non-memory or * non-transparent access as by default PCIe uses * transparent memory access. */ for (i = 0; i < pcie->wins_count; i++) advk_pcie_set_ob_win(pcie, i, pcie->wins[i].match, pcie->wins[i].remap, pcie->wins[i].mask, pcie->wins[i].actions); /* Disable remaining PCIe outbound windows */ for (i = pcie->wins_count; i < OB_WIN_COUNT; i++) advk_pcie_disable_ob_win(pcie, i); advk_pcie_train_link(pcie); } static int advk_pcie_check_pio_status(struct advk_pcie *pcie, bool allow_crs, u32 *val) { struct device *dev = &pcie->pdev->dev; u32 reg; unsigned int status; char *strcomp_status, *str_posted; int ret; reg = advk_readl(pcie, PIO_STAT); status = (reg & PIO_COMPLETION_STATUS_MASK) >> PIO_COMPLETION_STATUS_SHIFT; /* * According to HW spec, the PIO status check sequence as below: * 1) even if COMPLETION_STATUS(bit9:7) indicates successful, * it still needs to check Error Status(bit11), only when this bit * indicates no error happen, the operation is successful. * 2) value Unsupported Request(1) of COMPLETION_STATUS(bit9:7) only * means a PIO write error, and for PIO read it is successful with * a read value of 0xFFFFFFFF. * 3) value Completion Retry Status(CRS) of COMPLETION_STATUS(bit9:7) * only means a PIO write error, and for PIO read it is successful * with a read value of 0xFFFF0001. * 4) value Completer Abort (CA) of COMPLETION_STATUS(bit9:7) means * error for both PIO read and PIO write operation. * 5) other errors are indicated as 'unknown'. */ switch (status) { case PIO_COMPLETION_STATUS_OK: if (reg & PIO_ERR_STATUS) { strcomp_status = "COMP_ERR"; ret = -EFAULT; break; } /* Get the read result */ if (val) *val = advk_readl(pcie, PIO_RD_DATA); /* No error */ strcomp_status = NULL; ret = 0; break; case PIO_COMPLETION_STATUS_UR: strcomp_status = "UR"; ret = -EOPNOTSUPP; break; case PIO_COMPLETION_STATUS_CRS: if (allow_crs && val) { /* PCIe r4.0, sec 2.3.2, says: * If CRS Software Visibility is enabled: * For a Configuration Read Request that includes both * bytes of the Vendor ID field of a device Function's * Configuration Space Header, the Root Complex must * complete the Request to the host by returning a * read-data value of 0001h for the Vendor ID field and * all '1's for any additional bytes included in the * request. * * So CRS in this case is not an error status. */ *val = CFG_RD_CRS_VAL; strcomp_status = NULL; ret = 0; break; } /* PCIe r4.0, sec 2.3.2, says: * If CRS Software Visibility is not enabled, the Root Complex * must re-issue the Configuration Request as a new Request. * If CRS Software Visibility is enabled: For a Configuration * Write Request or for any other Configuration Read Request, * the Root Complex must re-issue the Configuration Request as * a new Request. * A Root Complex implementation may choose to limit the number * of Configuration Request/CRS Completion Status loops before * determining that something is wrong with the target of the * Request and taking appropriate action, e.g., complete the * Request to the host as a failed transaction. * * So return -EAGAIN and caller (pci-aardvark.c driver) will * re-issue request again up to the PIO_RETRY_CNT retries. */ strcomp_status = "CRS"; ret = -EAGAIN; break; case PIO_COMPLETION_STATUS_CA: strcomp_status = "CA"; ret = -ECANCELED; break; default: strcomp_status = "Unknown"; ret = -EINVAL; break; } if (!strcomp_status) return ret; if (reg & PIO_NON_POSTED_REQ) str_posted = "Non-posted"; else str_posted = "Posted"; dev_dbg(dev, "%s PIO Response Status: %s, %#x @ %#x\n", str_posted, strcomp_status, reg, advk_readl(pcie, PIO_ADDR_LS)); return ret; } static int advk_pcie_wait_pio(struct advk_pcie *pcie) { struct device *dev = &pcie->pdev->dev; int i; for (i = 1; i <= PIO_RETRY_CNT; i++) { u32 start, isr; start = advk_readl(pcie, PIO_START); isr = advk_readl(pcie, PIO_ISR); if (!start && isr) return i; udelay(PIO_RETRY_DELAY); } dev_err(dev, "PIO read/write transfer time out\n"); return -ETIMEDOUT; } static pci_bridge_emul_read_status_t advk_pci_bridge_emul_base_conf_read(struct pci_bridge_emul *bridge, int reg, u32 *value) { struct advk_pcie *pcie = bridge->data; switch (reg) { case PCI_COMMAND: *value = advk_readl(pcie, PCIE_CORE_CMD_STATUS_REG); return PCI_BRIDGE_EMUL_HANDLED; case PCI_INTERRUPT_LINE: { /* * From the whole 32bit register we support reading from HW only * two bits: PCI_BRIDGE_CTL_BUS_RESET and PCI_BRIDGE_CTL_SERR. * Other bits are retrieved only from emulated config buffer. */ __le32 *cfgspace = (__le32 *)&bridge->conf; u32 val = le32_to_cpu(cfgspace[PCI_INTERRUPT_LINE / 4]); if (advk_readl(pcie, PCIE_ISR0_MASK_REG) & PCIE_ISR0_ERR_MASK) val &= ~(PCI_BRIDGE_CTL_SERR << 16); else val |= PCI_BRIDGE_CTL_SERR << 16; if (advk_readl(pcie, PCIE_CORE_CTRL1_REG) & HOT_RESET_GEN) val |= PCI_BRIDGE_CTL_BUS_RESET << 16; else val &= ~(PCI_BRIDGE_CTL_BUS_RESET << 16); *value = val; return PCI_BRIDGE_EMUL_HANDLED; } default: return PCI_BRIDGE_EMUL_NOT_HANDLED; } } static void advk_pci_bridge_emul_base_conf_write(struct pci_bridge_emul *bridge, int reg, u32 old, u32 new, u32 mask) { struct advk_pcie *pcie = bridge->data; switch (reg) { case PCI_COMMAND: advk_writel(pcie, new, PCIE_CORE_CMD_STATUS_REG); break; case PCI_INTERRUPT_LINE: /* * According to Figure 6-3: Pseudo Logic Diagram for Error * Message Controls in PCIe base specification, SERR# Enable bit * in Bridge Control register enable receiving of ERR_* messages */ if (mask & (PCI_BRIDGE_CTL_SERR << 16)) { u32 val = advk_readl(pcie, PCIE_ISR0_MASK_REG); if (new & (PCI_BRIDGE_CTL_SERR << 16)) val &= ~PCIE_ISR0_ERR_MASK; else val |= PCIE_ISR0_ERR_MASK; advk_writel(pcie, val, PCIE_ISR0_MASK_REG); } if (mask & (PCI_BRIDGE_CTL_BUS_RESET << 16)) { u32 val = advk_readl(pcie, PCIE_CORE_CTRL1_REG); if (new & (PCI_BRIDGE_CTL_BUS_RESET << 16)) val |= HOT_RESET_GEN; else val &= ~HOT_RESET_GEN; advk_writel(pcie, val, PCIE_CORE_CTRL1_REG); } break; default: break; } } static pci_bridge_emul_read_status_t advk_pci_bridge_emul_pcie_conf_read(struct pci_bridge_emul *bridge, int reg, u32 *value) { struct advk_pcie *pcie = bridge->data; switch (reg) { /* * PCI_EXP_SLTCAP, PCI_EXP_SLTCTL, PCI_EXP_RTCTL and PCI_EXP_RTSTA are * also supported, but do not need to be handled here, because their * values are stored in emulated config space buffer, and we read them * from there when needed. */ case PCI_EXP_LNKCAP: { u32 val = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + reg); /* * PCI_EXP_LNKCAP_DLLLARC bit is hardwired in aardvark HW to 0. * But support for PCI_EXP_LNKSTA_DLLLA is emulated via ltssm * state so explicitly enable PCI_EXP_LNKCAP_DLLLARC flag. */ val |= PCI_EXP_LNKCAP_DLLLARC; *value = val; return PCI_BRIDGE_EMUL_HANDLED; } case PCI_EXP_LNKCTL: { /* u32 contains both PCI_EXP_LNKCTL and PCI_EXP_LNKSTA */ u32 val = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + reg) & ~(PCI_EXP_LNKSTA_LT << 16); if (advk_pcie_link_training(pcie)) val |= (PCI_EXP_LNKSTA_LT << 16); if (advk_pcie_link_active(pcie)) val |= (PCI_EXP_LNKSTA_DLLLA << 16); *value = val; return PCI_BRIDGE_EMUL_HANDLED; } case PCI_EXP_DEVCAP: case PCI_EXP_DEVCTL: case PCI_EXP_DEVCAP2: case PCI_EXP_DEVCTL2: case PCI_EXP_LNKCAP2: case PCI_EXP_LNKCTL2: *value = advk_readl(pcie, PCIE_CORE_PCIEXP_CAP + reg); return PCI_BRIDGE_EMUL_HANDLED; default: return PCI_BRIDGE_EMUL_NOT_HANDLED; } } static void advk_pci_bridge_emul_pcie_conf_write(struct pci_bridge_emul *bridge, int reg, u32 old, u32 new, u32 mask) { struct advk_pcie *pcie = bridge->data; switch (reg) { case PCI_EXP_LNKCTL: advk_writel(pcie, new, PCIE_CORE_PCIEXP_CAP + reg); if (new & PCI_EXP_LNKCTL_RL) advk_pcie_wait_for_retrain(pcie); break; case PCI_EXP_RTCTL: { u16 rootctl = le16_to_cpu(bridge->pcie_conf.rootctl); /* Only emulation of PMEIE and CRSSVE bits is provided */ rootctl &= PCI_EXP_RTCTL_PMEIE | PCI_EXP_RTCTL_CRSSVE; bridge->pcie_conf.rootctl = cpu_to_le16(rootctl); break; } /* * PCI_EXP_RTSTA is also supported, but does not need to be handled * here, because its value is stored in emulated config space buffer, * and we write it there when needed. */ case PCI_EXP_DEVCTL: case PCI_EXP_DEVCTL2: case PCI_EXP_LNKCTL2: advk_writel(pcie, new, PCIE_CORE_PCIEXP_CAP + reg); break; default: break; } } static pci_bridge_emul_read_status_t advk_pci_bridge_emul_ext_conf_read(struct pci_bridge_emul *bridge, int reg, u32 *value) { struct advk_pcie *pcie = bridge->data; switch (reg) { case 0: *value = advk_readl(pcie, PCIE_CORE_PCIERR_CAP + reg); /* * PCI_EXT_CAP_NEXT bits are set to offset 0x150, but Armada * 3700 Functional Specification does not document registers * at those addresses. * * Thus we clear PCI_EXT_CAP_NEXT bits to make Advanced Error * Reporting Capability header the last Extended Capability. * If we obtain documentation for those registers in the * future, this can be changed. */ *value &= 0x000fffff; return PCI_BRIDGE_EMUL_HANDLED; case PCI_ERR_UNCOR_STATUS: case PCI_ERR_UNCOR_MASK: case PCI_ERR_UNCOR_SEVER: case PCI_ERR_COR_STATUS: case PCI_ERR_COR_MASK: case PCI_ERR_CAP: case PCI_ERR_HEADER_LOG + 0: case PCI_ERR_HEADER_LOG + 4: case PCI_ERR_HEADER_LOG + 8: case PCI_ERR_HEADER_LOG + 12: case PCI_ERR_ROOT_COMMAND: case PCI_ERR_ROOT_STATUS: case PCI_ERR_ROOT_ERR_SRC: *value = advk_readl(pcie, PCIE_CORE_PCIERR_CAP + reg); return PCI_BRIDGE_EMUL_HANDLED; default: return PCI_BRIDGE_EMUL_NOT_HANDLED; } } static void advk_pci_bridge_emul_ext_conf_write(struct pci_bridge_emul *bridge, int reg, u32 old, u32 new, u32 mask) { struct advk_pcie *pcie = bridge->data; switch (reg) { /* These are W1C registers, so clear other bits */ case PCI_ERR_UNCOR_STATUS: case PCI_ERR_COR_STATUS: case PCI_ERR_ROOT_STATUS: new &= mask; fallthrough; case PCI_ERR_UNCOR_MASK: case PCI_ERR_UNCOR_SEVER: case PCI_ERR_COR_MASK: case PCI_ERR_CAP: case PCI_ERR_HEADER_LOG + 0: case PCI_ERR_HEADER_LOG + 4: case PCI_ERR_HEADER_LOG + 8: case PCI_ERR_HEADER_LOG + 12: case PCI_ERR_ROOT_COMMAND: case PCI_ERR_ROOT_ERR_SRC: advk_writel(pcie, new, PCIE_CORE_PCIERR_CAP + reg); break; default: break; } } static const struct pci_bridge_emul_ops advk_pci_bridge_emul_ops = { .read_base = advk_pci_bridge_emul_base_conf_read, .write_base = advk_pci_bridge_emul_base_conf_write, .read_pcie = advk_pci_bridge_emul_pcie_conf_read, .write_pcie = advk_pci_bridge_emul_pcie_conf_write, .read_ext = advk_pci_bridge_emul_ext_conf_read, .write_ext = advk_pci_bridge_emul_ext_conf_write, }; /* * Initialize the configuration space of the PCI-to-PCI bridge * associated with the given PCIe interface. */ static int advk_sw_pci_bridge_init(struct advk_pcie *pcie) { struct pci_bridge_emul *bridge = &pcie->bridge; bridge->conf.vendor = cpu_to_le16(advk_readl(pcie, PCIE_CORE_DEV_ID_REG) & 0xffff); bridge->conf.device = cpu_to_le16(advk_readl(pcie, PCIE_CORE_DEV_ID_REG) >> 16); bridge->conf.class_revision = cpu_to_le32(advk_readl(pcie, PCIE_CORE_DEV_REV_REG) & 0xff); /* Support 32 bits I/O addressing */ bridge->conf.iobase = PCI_IO_RANGE_TYPE_32; bridge->conf.iolimit = PCI_IO_RANGE_TYPE_32; /* Support 64 bits memory pref */ bridge->conf.pref_mem_base = cpu_to_le16(PCI_PREF_RANGE_TYPE_64); bridge->conf.pref_mem_limit = cpu_to_le16(PCI_PREF_RANGE_TYPE_64); /* Support interrupt A for MSI feature */ bridge->conf.intpin = PCI_INTERRUPT_INTA; /* * Aardvark HW provides PCIe Capability structure in version 2 and * indicate slot support, which is emulated. */ bridge->pcie_conf.cap = cpu_to_le16(2 | PCI_EXP_FLAGS_SLOT); /* * Set Presence Detect State bit permanently since there is no support * for unplugging the card nor detecting whether it is plugged. (If a * platform exists in the future that supports it, via a GPIO for * example, it should be implemented via this bit.) * * Set physical slot number to 1 since there is only one port and zero * value is reserved for ports within the same silicon as Root Port * which is not our case. */ bridge->pcie_conf.slotcap = cpu_to_le32(FIELD_PREP(PCI_EXP_SLTCAP_PSN, 1)); bridge->pcie_conf.slotsta = cpu_to_le16(PCI_EXP_SLTSTA_PDS); /* Indicates supports for Completion Retry Status */ bridge->pcie_conf.rootcap = cpu_to_le16(PCI_EXP_RTCAP_CRSVIS); bridge->subsystem_vendor_id = advk_readl(pcie, PCIE_CORE_SSDEV_ID_REG) & 0xffff; bridge->subsystem_id = advk_readl(pcie, PCIE_CORE_SSDEV_ID_REG) >> 16; bridge->has_pcie = true; bridge->pcie_start = PCIE_CORE_PCIEXP_CAP; bridge->data = pcie; bridge->ops = &advk_pci_bridge_emul_ops; return pci_bridge_emul_init(bridge, 0); } static bool advk_pcie_valid_device(struct advk_pcie *pcie, struct pci_bus *bus, int devfn) { if (pci_is_root_bus(bus) && PCI_SLOT(devfn) != 0) return false; /* * If the link goes down after we check for link-up, we have a problem: * if a PIO request is executed while link-down, the whole controller * gets stuck in a non-functional state, and even after link comes up * again, PIO requests won't work anymore, and a reset of the whole PCIe * controller is needed. Therefore we need to prevent sending PIO * requests while the link is down. */ if (!pci_is_root_bus(bus) && !advk_pcie_link_up(pcie)) return false; return true; } static bool advk_pcie_pio_is_running(struct advk_pcie *pcie) { struct device *dev = &pcie->pdev->dev; /* * Trying to start a new PIO transfer when previous has not completed * cause External Abort on CPU which results in kernel panic: * * SError Interrupt on CPU0, code 0xbf000002 -- SError * Kernel panic - not syncing: Asynchronous SError Interrupt * * Functions advk_pcie_rd_conf() and advk_pcie_wr_conf() are protected * by raw_spin_lock_irqsave() at pci_lock_config() level to prevent * concurrent calls at the same time. But because PIO transfer may take * about 1.5s when link is down or card is disconnected, it means that * advk_pcie_wait_pio() does not always have to wait for completion. * * Some versions of ARM Trusted Firmware handles this External Abort at * EL3 level and mask it to prevent kernel panic. Relevant TF-A commit: * https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=3c7dcdac5c50 */ if (advk_readl(pcie, PIO_START)) { dev_err(dev, "Previous PIO read/write transfer is still running\n"); return true; } return false; } static int advk_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where, int size, u32 *val) { struct advk_pcie *pcie = bus->sysdata; int retry_count; bool allow_crs; u32 reg; int ret; if (!advk_pcie_valid_device(pcie, bus, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; if (pci_is_root_bus(bus)) return pci_bridge_emul_conf_read(&pcie->bridge, where, size, val); /* * Completion Retry Status is possible to return only when reading all * 4 bytes from PCI_VENDOR_ID and PCI_DEVICE_ID registers at once and * CRSSVE flag on Root Bridge is enabled. */ allow_crs = (where == PCI_VENDOR_ID) && (size == 4) && (le16_to_cpu(pcie->bridge.pcie_conf.rootctl) & PCI_EXP_RTCTL_CRSSVE); if (advk_pcie_pio_is_running(pcie)) goto try_crs; /* Program the control register */ reg = advk_readl(pcie, PIO_CTRL); reg &= ~PIO_CTRL_TYPE_MASK; if (pci_is_root_bus(bus->parent)) reg |= PCIE_CONFIG_RD_TYPE0; else reg |= PCIE_CONFIG_RD_TYPE1; advk_writel(pcie, reg, PIO_CTRL); /* Program the address registers */ reg = ALIGN_DOWN(PCIE_ECAM_OFFSET(bus->number, devfn, where), 4); advk_writel(pcie, reg, PIO_ADDR_LS); advk_writel(pcie, 0, PIO_ADDR_MS); /* Program the data strobe */ advk_writel(pcie, 0xf, PIO_WR_DATA_STRB); retry_count = 0; do { /* Clear PIO DONE ISR and start the transfer */ advk_writel(pcie, 1, PIO_ISR); advk_writel(pcie, 1, PIO_START); ret = advk_pcie_wait_pio(pcie); if (ret < 0) goto try_crs; retry_count += ret; /* Check PIO status and get the read result */ ret = advk_pcie_check_pio_status(pcie, allow_crs, val); } while (ret == -EAGAIN && retry_count < PIO_RETRY_CNT); if (ret < 0) goto fail; if (size == 1) *val = (*val >> (8 * (where & 3))) & 0xff; else if (size == 2) *val = (*val >> (8 * (where & 3))) & 0xffff; return PCIBIOS_SUCCESSFUL; try_crs: /* * If it is possible, return Completion Retry Status so that caller * tries to issue the request again instead of failing. */ if (allow_crs) { *val = CFG_RD_CRS_VAL; return PCIBIOS_SUCCESSFUL; } fail: *val = 0xffffffff; return PCIBIOS_SET_FAILED; } static int advk_pcie_wr_conf(struct pci_bus *bus, u32 devfn, int where, int size, u32 val) { struct advk_pcie *pcie = bus->sysdata; u32 reg; u32 data_strobe = 0x0; int retry_count; int offset; int ret; if (!advk_pcie_valid_device(pcie, bus, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; if (pci_is_root_bus(bus)) return pci_bridge_emul_conf_write(&pcie->bridge, where, size, val); if (where % size) return PCIBIOS_SET_FAILED; if (advk_pcie_pio_is_running(pcie)) return PCIBIOS_SET_FAILED; /* Program the control register */ reg = advk_readl(pcie, PIO_CTRL); reg &= ~PIO_CTRL_TYPE_MASK; if (pci_is_root_bus(bus->parent)) reg |= PCIE_CONFIG_WR_TYPE0; else reg |= PCIE_CONFIG_WR_TYPE1; advk_writel(pcie, reg, PIO_CTRL); /* Program the address registers */ reg = ALIGN_DOWN(PCIE_ECAM_OFFSET(bus->number, devfn, where), 4); advk_writel(pcie, reg, PIO_ADDR_LS); advk_writel(pcie, 0, PIO_ADDR_MS); /* Calculate the write strobe */ offset = where & 0x3; reg = val << (8 * offset); data_strobe = GENMASK(size - 1, 0) << offset; /* Program the data register */ advk_writel(pcie, reg, PIO_WR_DATA); /* Program the data strobe */ advk_writel(pcie, data_strobe, PIO_WR_DATA_STRB); retry_count = 0; do { /* Clear PIO DONE ISR and start the transfer */ advk_writel(pcie, 1, PIO_ISR); advk_writel(pcie, 1, PIO_START); ret = advk_pcie_wait_pio(pcie); if (ret < 0) return PCIBIOS_SET_FAILED; retry_count += ret; ret = advk_pcie_check_pio_status(pcie, false, NULL); } while (ret == -EAGAIN && retry_count < PIO_RETRY_CNT); return ret < 0 ? PCIBIOS_SET_FAILED : PCIBIOS_SUCCESSFUL; } static struct pci_ops advk_pcie_ops = { .read = advk_pcie_rd_conf, .write = advk_pcie_wr_conf, }; static void advk_msi_irq_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct advk_pcie *pcie = irq_data_get_irq_chip_data(data); phys_addr_t msi_addr = virt_to_phys(pcie); msg->address_lo = lower_32_bits(msi_addr); msg->address_hi = upper_32_bits(msi_addr); msg->data = data->hwirq; } static int advk_msi_set_affinity(struct irq_data *irq_data, const struct cpumask *mask, bool force) { return -EINVAL; } static void advk_msi_irq_mask(struct irq_data *d) { struct advk_pcie *pcie = d->domain->host_data; irq_hw_number_t hwirq = irqd_to_hwirq(d); unsigned long flags; u32 mask; raw_spin_lock_irqsave(&pcie->msi_irq_lock, flags); mask = advk_readl(pcie, PCIE_MSI_MASK_REG); mask |= BIT(hwirq); advk_writel(pcie, mask, PCIE_MSI_MASK_REG); raw_spin_unlock_irqrestore(&pcie->msi_irq_lock, flags); } static void advk_msi_irq_unmask(struct irq_data *d) { struct advk_pcie *pcie = d->domain->host_data; irq_hw_number_t hwirq = irqd_to_hwirq(d); unsigned long flags; u32 mask; raw_spin_lock_irqsave(&pcie->msi_irq_lock, flags); mask = advk_readl(pcie, PCIE_MSI_MASK_REG); mask &= ~BIT(hwirq); advk_writel(pcie, mask, PCIE_MSI_MASK_REG); raw_spin_unlock_irqrestore(&pcie->msi_irq_lock, flags); } static void advk_msi_top_irq_mask(struct irq_data *d) { pci_msi_mask_irq(d); irq_chip_mask_parent(d); } static void advk_msi_top_irq_unmask(struct irq_data *d) { pci_msi_unmask_irq(d); irq_chip_unmask_parent(d); } static struct irq_chip advk_msi_bottom_irq_chip = { .name = "MSI", .irq_compose_msi_msg = advk_msi_irq_compose_msi_msg, .irq_set_affinity = advk_msi_set_affinity, .irq_mask = advk_msi_irq_mask, .irq_unmask = advk_msi_irq_unmask, }; static int advk_msi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { struct advk_pcie *pcie = domain->host_data; int hwirq, i; mutex_lock(&pcie->msi_used_lock); hwirq = bitmap_find_free_region(pcie->msi_used, MSI_IRQ_NUM, order_base_2(nr_irqs)); mutex_unlock(&pcie->msi_used_lock); if (hwirq < 0) return -ENOSPC; for (i = 0; i < nr_irqs; i++) irq_domain_set_info(domain, virq + i, hwirq + i, &advk_msi_bottom_irq_chip, domain->host_data, handle_simple_irq, NULL, NULL); return 0; } static void advk_msi_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *d = irq_domain_get_irq_data(domain, virq); struct advk_pcie *pcie = domain->host_data; mutex_lock(&pcie->msi_used_lock); bitmap_release_region(pcie->msi_used, d->hwirq, order_base_2(nr_irqs)); mutex_unlock(&pcie->msi_used_lock); } static const struct irq_domain_ops advk_msi_domain_ops = { .alloc = advk_msi_irq_domain_alloc, .free = advk_msi_irq_domain_free, }; static void advk_pcie_irq_mask(struct irq_data *d) { struct advk_pcie *pcie = d->domain->host_data; irq_hw_number_t hwirq = irqd_to_hwirq(d); unsigned long flags; u32 mask; raw_spin_lock_irqsave(&pcie->irq_lock, flags); mask = advk_readl(pcie, PCIE_ISR1_MASK_REG); mask |= PCIE_ISR1_INTX_ASSERT(hwirq); advk_writel(pcie, mask, PCIE_ISR1_MASK_REG); raw_spin_unlock_irqrestore(&pcie->irq_lock, flags); } static void advk_pcie_irq_unmask(struct irq_data *d) { struct advk_pcie *pcie = d->domain->host_data; irq_hw_number_t hwirq = irqd_to_hwirq(d); unsigned long flags; u32 mask; raw_spin_lock_irqsave(&pcie->irq_lock, flags); mask = advk_readl(pcie, PCIE_ISR1_MASK_REG); mask &= ~PCIE_ISR1_INTX_ASSERT(hwirq); advk_writel(pcie, mask, PCIE_ISR1_MASK_REG); raw_spin_unlock_irqrestore(&pcie->irq_lock, flags); } static int advk_pcie_irq_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hwirq) { struct advk_pcie *pcie = h->host_data; irq_set_status_flags(virq, IRQ_LEVEL); irq_set_chip_and_handler(virq, &pcie->irq_chip, handle_level_irq); irq_set_chip_data(virq, pcie); return 0; } static const struct irq_domain_ops advk_pcie_irq_domain_ops = { .map = advk_pcie_irq_map, .xlate = irq_domain_xlate_onecell, }; static struct irq_chip advk_msi_irq_chip = { .name = "advk-MSI", .irq_mask = advk_msi_top_irq_mask, .irq_unmask = advk_msi_top_irq_unmask, }; static struct msi_domain_info advk_msi_domain_info = { .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX, .chip = &advk_msi_irq_chip, }; static int advk_pcie_init_msi_irq_domain(struct advk_pcie *pcie) { struct device *dev = &pcie->pdev->dev; raw_spin_lock_init(&pcie->msi_irq_lock); mutex_init(&pcie->msi_used_lock); pcie->msi_inner_domain = irq_domain_add_linear(NULL, MSI_IRQ_NUM, &advk_msi_domain_ops, pcie); if (!pcie->msi_inner_domain) return -ENOMEM; pcie->msi_domain = pci_msi_create_irq_domain(dev_fwnode(dev), &advk_msi_domain_info, pcie->msi_inner_domain); if (!pcie->msi_domain) { irq_domain_remove(pcie->msi_inner_domain); return -ENOMEM; } return 0; } static void advk_pcie_remove_msi_irq_domain(struct advk_pcie *pcie) { irq_domain_remove(pcie->msi_domain); irq_domain_remove(pcie->msi_inner_domain); } static int advk_pcie_init_irq_domain(struct advk_pcie *pcie) { struct device *dev = &pcie->pdev->dev; struct device_node *node = dev->of_node; struct device_node *pcie_intc_node; struct irq_chip *irq_chip; int ret = 0; raw_spin_lock_init(&pcie->irq_lock); pcie_intc_node = of_get_next_child(node, NULL); if (!pcie_intc_node) { dev_err(dev, "No PCIe Intc node found\n"); return -ENODEV; } irq_chip = &pcie->irq_chip; irq_chip->name = devm_kasprintf(dev, GFP_KERNEL, "%s-irq", dev_name(dev)); if (!irq_chip->name) { ret = -ENOMEM; goto out_put_node; } irq_chip->irq_mask = advk_pcie_irq_mask; irq_chip->irq_unmask = advk_pcie_irq_unmask; pcie->irq_domain = irq_domain_add_linear(pcie_intc_node, PCI_NUM_INTX, &advk_pcie_irq_domain_ops, pcie); if (!pcie->irq_domain) { dev_err(dev, "Failed to get a INTx IRQ domain\n"); ret = -ENOMEM; goto out_put_node; } out_put_node: of_node_put(pcie_intc_node); return ret; } static void advk_pcie_remove_irq_domain(struct advk_pcie *pcie) { irq_domain_remove(pcie->irq_domain); } static struct irq_chip advk_rp_irq_chip = { .name = "advk-RP", }; static int advk_pcie_rp_irq_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hwirq) { struct advk_pcie *pcie = h->host_data; irq_set_chip_and_handler(virq, &advk_rp_irq_chip, handle_simple_irq); irq_set_chip_data(virq, pcie); return 0; } static const struct irq_domain_ops advk_pcie_rp_irq_domain_ops = { .map = advk_pcie_rp_irq_map, .xlate = irq_domain_xlate_onecell, }; static int advk_pcie_init_rp_irq_domain(struct advk_pcie *pcie) { pcie->rp_irq_domain = irq_domain_add_linear(NULL, 1, &advk_pcie_rp_irq_domain_ops, pcie); if (!pcie->rp_irq_domain) { dev_err(&pcie->pdev->dev, "Failed to add Root Port IRQ domain\n"); return -ENOMEM; } return 0; } static void advk_pcie_remove_rp_irq_domain(struct advk_pcie *pcie) { irq_domain_remove(pcie->rp_irq_domain); } static void advk_pcie_handle_pme(struct advk_pcie *pcie) { u32 requester = advk_readl(pcie, PCIE_MSG_LOG_REG) >> 16; advk_writel(pcie, PCIE_MSG_PM_PME_MASK, PCIE_ISR0_REG); /* * PCIE_MSG_LOG_REG contains the last inbound message, so store * the requester ID only when PME was not asserted yet. * Also do not trigger PME interrupt when PME is still asserted. */ if (!(le32_to_cpu(pcie->bridge.pcie_conf.rootsta) & PCI_EXP_RTSTA_PME)) { pcie->bridge.pcie_conf.rootsta = cpu_to_le32(requester | PCI_EXP_RTSTA_PME); /* * Trigger PME interrupt only if PMEIE bit in Root Control is set. * Aardvark HW returns zero for PCI_EXP_FLAGS_IRQ, so use PCIe interrupt 0. */ if (!(le16_to_cpu(pcie->bridge.pcie_conf.rootctl) & PCI_EXP_RTCTL_PMEIE)) return; if (generic_handle_domain_irq(pcie->rp_irq_domain, 0) == -EINVAL) dev_err_ratelimited(&pcie->pdev->dev, "unhandled PME IRQ\n"); } } static void advk_pcie_handle_msi(struct advk_pcie *pcie) { u32 msi_val, msi_mask, msi_status, msi_idx; msi_mask = advk_readl(pcie, PCIE_MSI_MASK_REG); msi_val = advk_readl(pcie, PCIE_MSI_STATUS_REG); msi_status = msi_val & ((~msi_mask) & PCIE_MSI_ALL_MASK); for (msi_idx = 0; msi_idx < MSI_IRQ_NUM; msi_idx++) { if (!(BIT(msi_idx) & msi_status)) continue; advk_writel(pcie, BIT(msi_idx), PCIE_MSI_STATUS_REG); if (generic_handle_domain_irq(pcie->msi_inner_domain, msi_idx) == -EINVAL) dev_err_ratelimited(&pcie->pdev->dev, "unexpected MSI 0x%02x\n", msi_idx); } advk_writel(pcie, PCIE_ISR0_MSI_INT_PENDING, PCIE_ISR0_REG); } static void advk_pcie_handle_int(struct advk_pcie *pcie) { u32 isr0_val, isr0_mask, isr0_status; u32 isr1_val, isr1_mask, isr1_status; int i; isr0_val = advk_readl(pcie, PCIE_ISR0_REG); isr0_mask = advk_readl(pcie, PCIE_ISR0_MASK_REG); isr0_status = isr0_val & ((~isr0_mask) & PCIE_ISR0_ALL_MASK); isr1_val = advk_readl(pcie, PCIE_ISR1_REG); isr1_mask = advk_readl(pcie, PCIE_ISR1_MASK_REG); isr1_status = isr1_val & ((~isr1_mask) & PCIE_ISR1_ALL_MASK); /* Process PME interrupt as the first one to do not miss PME requester id */ if (isr0_status & PCIE_MSG_PM_PME_MASK) advk_pcie_handle_pme(pcie); /* Process ERR interrupt */ if (isr0_status & PCIE_ISR0_ERR_MASK) { advk_writel(pcie, PCIE_ISR0_ERR_MASK, PCIE_ISR0_REG); /* * Aardvark HW returns zero for PCI_ERR_ROOT_AER_IRQ, so use * PCIe interrupt 0 */ if (generic_handle_domain_irq(pcie->rp_irq_domain, 0) == -EINVAL) dev_err_ratelimited(&pcie->pdev->dev, "unhandled ERR IRQ\n"); } /* Process MSI interrupts */ if (isr0_status & PCIE_ISR0_MSI_INT_PENDING) advk_pcie_handle_msi(pcie); /* Process legacy interrupts */ for (i = 0; i < PCI_NUM_INTX; i++) { if (!(isr1_status & PCIE_ISR1_INTX_ASSERT(i))) continue; advk_writel(pcie, PCIE_ISR1_INTX_ASSERT(i), PCIE_ISR1_REG); if (generic_handle_domain_irq(pcie->irq_domain, i) == -EINVAL) dev_err_ratelimited(&pcie->pdev->dev, "unexpected INT%c IRQ\n", (char)i + 'A'); } } static irqreturn_t advk_pcie_irq_handler(int irq, void *arg) { struct advk_pcie *pcie = arg; u32 status; status = advk_readl(pcie, HOST_CTRL_INT_STATUS_REG); if (!(status & PCIE_IRQ_CORE_INT)) return IRQ_NONE; advk_pcie_handle_int(pcie); /* Clear interrupt */ advk_writel(pcie, PCIE_IRQ_CORE_INT, HOST_CTRL_INT_STATUS_REG); return IRQ_HANDLED; } static int advk_pcie_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { struct advk_pcie *pcie = dev->bus->sysdata; /* * Emulated root bridge has its own emulated irq chip and irq domain. * Argument pin is the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) and * hwirq for irq_create_mapping() is indexed from zero. */ if (pci_is_root_bus(dev->bus)) return irq_create_mapping(pcie->rp_irq_domain, pin - 1); else return of_irq_parse_and_map_pci(dev, slot, pin); } static void advk_pcie_disable_phy(struct advk_pcie *pcie) { phy_power_off(pcie->phy); phy_exit(pcie->phy); } static int advk_pcie_enable_phy(struct advk_pcie *pcie) { int ret; if (!pcie->phy) return 0; ret = phy_init(pcie->phy); if (ret) return ret; ret = phy_set_mode(pcie->phy, PHY_MODE_PCIE); if (ret) { phy_exit(pcie->phy); return ret; } ret = phy_power_on(pcie->phy); if (ret) { phy_exit(pcie->phy); return ret; } return 0; } static int advk_pcie_setup_phy(struct advk_pcie *pcie) { struct device *dev = &pcie->pdev->dev; struct device_node *node = dev->of_node; int ret = 0; pcie->phy = devm_of_phy_get(dev, node, NULL); if (IS_ERR(pcie->phy) && (PTR_ERR(pcie->phy) == -EPROBE_DEFER)) return PTR_ERR(pcie->phy); /* Old bindings miss the PHY handle */ if (IS_ERR(pcie->phy)) { dev_warn(dev, "PHY unavailable (%ld)\n", PTR_ERR(pcie->phy)); pcie->phy = NULL; return 0; } ret = advk_pcie_enable_phy(pcie); if (ret) dev_err(dev, "Failed to initialize PHY (%d)\n", ret); return ret; } static int advk_pcie_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct advk_pcie *pcie; struct pci_host_bridge *bridge; struct resource_entry *entry; int ret, irq; bridge = devm_pci_alloc_host_bridge(dev, sizeof(struct advk_pcie)); if (!bridge) return -ENOMEM; pcie = pci_host_bridge_priv(bridge); pcie->pdev = pdev; platform_set_drvdata(pdev, pcie); resource_list_for_each_entry(entry, &bridge->windows) { resource_size_t start = entry->res->start; resource_size_t size = resource_size(entry->res); unsigned long type = resource_type(entry->res); u64 win_size; /* * Aardvark hardware allows to configure also PCIe window * for config type 0 and type 1 mapping, but driver uses * only PIO for issuing configuration transfers which does * not use PCIe window configuration. */ if (type != IORESOURCE_MEM && type != IORESOURCE_IO) continue; /* * Skip transparent memory resources. Default outbound access * configuration is set to transparent memory access so it * does not need window configuration. */ if (type == IORESOURCE_MEM && entry->offset == 0) continue; /* * The n-th PCIe window is configured by tuple (match, remap, mask) * and an access to address A uses this window if A matches the * match with given mask. * So every PCIe window size must be a power of two and every start * address must be aligned to window size. Minimal size is 64 KiB * because lower 16 bits of mask must be zero. Remapped address * may have set only bits from the mask. */ while (pcie->wins_count < OB_WIN_COUNT && size > 0) { /* Calculate the largest aligned window size */ win_size = (1ULL << (fls64(size)-1)) | (start ? (1ULL << __ffs64(start)) : 0); win_size = 1ULL << __ffs64(win_size); if (win_size < 0x10000) break; dev_dbg(dev, "Configuring PCIe window %d: [0x%llx-0x%llx] as %lu\n", pcie->wins_count, (unsigned long long)start, (unsigned long long)start + win_size, type); if (type == IORESOURCE_IO) { pcie->wins[pcie->wins_count].actions = OB_WIN_TYPE_IO; pcie->wins[pcie->wins_count].match = pci_pio_to_address(start); } else { pcie->wins[pcie->wins_count].actions = OB_WIN_TYPE_MEM; pcie->wins[pcie->wins_count].match = start; } pcie->wins[pcie->wins_count].remap = start - entry->offset; pcie->wins[pcie->wins_count].mask = ~(win_size - 1); if (pcie->wins[pcie->wins_count].remap & (win_size - 1)) break; start += win_size; size -= win_size; pcie->wins_count++; } if (size > 0) { dev_err(&pcie->pdev->dev, "Invalid PCIe region [0x%llx-0x%llx]\n", (unsigned long long)entry->res->start, (unsigned long long)entry->res->end + 1); return -EINVAL; } } pcie->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pcie->base)) return PTR_ERR(pcie->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(dev, irq, advk_pcie_irq_handler, IRQF_SHARED | IRQF_NO_THREAD, "advk-pcie", pcie); if (ret) { dev_err(dev, "Failed to register interrupt\n"); return ret; } pcie->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); ret = PTR_ERR_OR_ZERO(pcie->reset_gpio); if (ret) { if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get reset-gpio: %i\n", ret); return ret; } ret = gpiod_set_consumer_name(pcie->reset_gpio, "pcie1-reset"); if (ret) { dev_err(dev, "Failed to set reset gpio name: %d\n", ret); return ret; } ret = of_pci_get_max_link_speed(dev->of_node); if (ret <= 0 || ret > 3) pcie->link_gen = 3; else pcie->link_gen = ret; ret = advk_pcie_setup_phy(pcie); if (ret) return ret; advk_pcie_setup_hw(pcie); ret = advk_sw_pci_bridge_init(pcie); if (ret) { dev_err(dev, "Failed to register emulated root PCI bridge\n"); return ret; } ret = advk_pcie_init_irq_domain(pcie); if (ret) { dev_err(dev, "Failed to initialize irq\n"); return ret; } ret = advk_pcie_init_msi_irq_domain(pcie); if (ret) { dev_err(dev, "Failed to initialize irq\n"); advk_pcie_remove_irq_domain(pcie); return ret; } ret = advk_pcie_init_rp_irq_domain(pcie); if (ret) { dev_err(dev, "Failed to initialize irq\n"); advk_pcie_remove_msi_irq_domain(pcie); advk_pcie_remove_irq_domain(pcie); return ret; } bridge->sysdata = pcie; bridge->ops = &advk_pcie_ops; bridge->map_irq = advk_pcie_map_irq; ret = pci_host_probe(bridge); if (ret < 0) { advk_pcie_remove_rp_irq_domain(pcie); advk_pcie_remove_msi_irq_domain(pcie); advk_pcie_remove_irq_domain(pcie); return ret; } return 0; } static void advk_pcie_remove(struct platform_device *pdev) { struct advk_pcie *pcie = platform_get_drvdata(pdev); struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); u32 val; int i; /* Remove PCI bus with all devices */ pci_lock_rescan_remove(); pci_stop_root_bus(bridge->bus); pci_remove_root_bus(bridge->bus); pci_unlock_rescan_remove(); /* Disable Root Bridge I/O space, memory space and bus mastering */ val = advk_readl(pcie, PCIE_CORE_CMD_STATUS_REG); val &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); advk_writel(pcie, val, PCIE_CORE_CMD_STATUS_REG); /* Disable MSI */ val = advk_readl(pcie, PCIE_CORE_CTRL2_REG); val &= ~PCIE_CORE_CTRL2_MSI_ENABLE; advk_writel(pcie, val, PCIE_CORE_CTRL2_REG); /* Clear MSI address */ advk_writel(pcie, 0, PCIE_MSI_ADDR_LOW_REG); advk_writel(pcie, 0, PCIE_MSI_ADDR_HIGH_REG); /* Mask all interrupts */ advk_writel(pcie, PCIE_MSI_ALL_MASK, PCIE_MSI_MASK_REG); advk_writel(pcie, PCIE_ISR0_ALL_MASK, PCIE_ISR0_MASK_REG); advk_writel(pcie, PCIE_ISR1_ALL_MASK, PCIE_ISR1_MASK_REG); advk_writel(pcie, PCIE_IRQ_ALL_MASK, HOST_CTRL_INT_MASK_REG); /* Clear all interrupts */ advk_writel(pcie, PCIE_MSI_ALL_MASK, PCIE_MSI_STATUS_REG); advk_writel(pcie, PCIE_ISR0_ALL_MASK, PCIE_ISR0_REG); advk_writel(pcie, PCIE_ISR1_ALL_MASK, PCIE_ISR1_REG); advk_writel(pcie, PCIE_IRQ_ALL_MASK, HOST_CTRL_INT_STATUS_REG); /* Remove IRQ domains */ advk_pcie_remove_rp_irq_domain(pcie); advk_pcie_remove_msi_irq_domain(pcie); advk_pcie_remove_irq_domain(pcie); /* Free config space for emulated root bridge */ pci_bridge_emul_cleanup(&pcie->bridge); /* Assert PERST# signal which prepares PCIe card for power down */ if (pcie->reset_gpio) gpiod_set_value_cansleep(pcie->reset_gpio, 1); /* Disable link training */ val = advk_readl(pcie, PCIE_CORE_CTRL0_REG); val &= ~LINK_TRAINING_EN; advk_writel(pcie, val, PCIE_CORE_CTRL0_REG); /* Disable outbound address windows mapping */ for (i = 0; i < OB_WIN_COUNT; i++) advk_pcie_disable_ob_win(pcie, i); /* Disable phy */ advk_pcie_disable_phy(pcie); } static const struct of_device_id advk_pcie_of_match_table[] = { { .compatible = "marvell,armada-3700-pcie", }, {}, }; MODULE_DEVICE_TABLE(of, advk_pcie_of_match_table); static struct platform_driver advk_pcie_driver = { .driver = { .name = "advk-pcie", .of_match_table = advk_pcie_of_match_table, }, .probe = advk_pcie_probe, .remove_new = advk_pcie_remove, }; module_platform_driver(advk_pcie_driver); MODULE_DESCRIPTION("Aardvark PCIe controller"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1