Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Phil Edworthy | 2682 | 52.32% | 8 | 12.70% |
Marc Zyngier | 704 | 13.73% | 3 | 4.76% |
Marek Vašut | 627 | 12.23% | 15 | 23.81% |
Sergei Shtylyov | 283 | 5.52% | 4 | 6.35% |
Lad Prabhakar | 273 | 5.33% | 1 | 1.59% |
Kazufumi Ikeda | 210 | 4.10% | 2 | 3.17% |
Björn Helgaas | 82 | 1.60% | 6 | 9.52% |
Grigory Kletsko | 77 | 1.50% | 1 | 1.59% |
Rob Herring | 50 | 0.98% | 5 | 7.94% |
Lorenzo Pieralisi | 43 | 0.84% | 1 | 1.59% |
Simon Horman | 24 | 0.47% | 3 | 4.76% |
Dien Pham | 16 | 0.31% | 1 | 1.59% |
Yoshihiro Shimoda | 14 | 0.27% | 1 | 1.59% |
Harunobu Kurokawa | 13 | 0.25% | 2 | 3.17% |
Geert Uytterhoeven | 8 | 0.16% | 1 | 1.59% |
Grygorii Strashko | 4 | 0.08% | 1 | 1.59% |
Liviu Dudau | 4 | 0.08% | 1 | 1.59% |
Paul Gortmaker | 2 | 0.04% | 1 | 1.59% |
Lukas Bulwahn | 2 | 0.04% | 1 | 1.59% |
Dmitry Torokhov | 2 | 0.04% | 1 | 1.59% |
Wolfram Sang | 2 | 0.04% | 1 | 1.59% |
Pali Rohár | 2 | 0.04% | 1 | 1.59% |
Dinghao Liu | 1 | 0.02% | 1 | 1.59% |
Nobuhiro Iwamatsu | 1 | 0.02% | 1 | 1.59% |
Total | 5126 | 63 |
// SPDX-License-Identifier: GPL-2.0 /* * PCIe driver for Renesas R-Car SoCs * Copyright (C) 2014-2020 Renesas Electronics Europe Ltd * * Based on: * arch/sh/drivers/pci/pcie-sh7786.c * arch/sh/drivers/pci/ops-sh7786.c * Copyright (C) 2009 - 2011 Paul Mundt * * Author: Phil Edworthy <phil.edworthy@renesas.com> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/iopoll.h> #include <linux/msi.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/pci.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include "pcie-rcar.h" struct rcar_msi { DECLARE_BITMAP(used, INT_PCI_MSI_NR); struct irq_domain *domain; struct mutex map_lock; spinlock_t mask_lock; int irq1; int irq2; }; /* Structure representing the PCIe interface */ struct rcar_pcie_host { struct rcar_pcie pcie; struct phy *phy; struct clk *bus_clk; struct rcar_msi msi; int (*phy_init_fn)(struct rcar_pcie_host *host); }; static DEFINE_SPINLOCK(pmsr_lock); static int rcar_pcie_wakeup(struct device *pcie_dev, void __iomem *pcie_base) { unsigned long flags; u32 pmsr, val; int ret = 0; spin_lock_irqsave(&pmsr_lock, flags); if (!pcie_base || pm_runtime_suspended(pcie_dev)) { ret = -EINVAL; goto unlock_exit; } pmsr = readl(pcie_base + PMSR); /* * Test if the PCIe controller received PM_ENTER_L1 DLLP and * the PCIe controller is not in L1 link state. If true, apply * fix, which will put the controller into L1 link state, from * which it can return to L0s/L0 on its own. */ if ((pmsr & PMEL1RX) && ((pmsr & PMSTATE) != PMSTATE_L1)) { writel(L1IATN, pcie_base + PMCTLR); ret = readl_poll_timeout_atomic(pcie_base + PMSR, val, val & L1FAEG, 10, 1000); WARN(ret, "Timeout waiting for L1 link state, ret=%d\n", ret); writel(L1FAEG | PMEL1RX, pcie_base + PMSR); } unlock_exit: spin_unlock_irqrestore(&pmsr_lock, flags); return ret; } static struct rcar_pcie_host *msi_to_host(struct rcar_msi *msi) { return container_of(msi, struct rcar_pcie_host, msi); } static u32 rcar_read_conf(struct rcar_pcie *pcie, int where) { unsigned int shift = BITS_PER_BYTE * (where & 3); u32 val = rcar_pci_read_reg(pcie, where & ~3); return val >> shift; } #ifdef CONFIG_ARM #define __rcar_pci_rw_reg_workaround(instr) \ " .arch armv7-a\n" \ "1: " instr " %1, [%2]\n" \ "2: isb\n" \ "3: .pushsection .text.fixup,\"ax\"\n" \ " .align 2\n" \ "4: mov %0, #" __stringify(PCIBIOS_SET_FAILED) "\n" \ " b 3b\n" \ " .popsection\n" \ " .pushsection __ex_table,\"a\"\n" \ " .align 3\n" \ " .long 1b, 4b\n" \ " .long 2b, 4b\n" \ " .popsection\n" #endif static int rcar_pci_write_reg_workaround(struct rcar_pcie *pcie, u32 val, unsigned int reg) { int error = PCIBIOS_SUCCESSFUL; #ifdef CONFIG_ARM asm volatile( __rcar_pci_rw_reg_workaround("str") : "+r"(error):"r"(val), "r"(pcie->base + reg) : "memory"); #else rcar_pci_write_reg(pcie, val, reg); #endif return error; } static int rcar_pci_read_reg_workaround(struct rcar_pcie *pcie, u32 *val, unsigned int reg) { int error = PCIBIOS_SUCCESSFUL; #ifdef CONFIG_ARM asm volatile( __rcar_pci_rw_reg_workaround("ldr") : "+r"(error), "=r"(*val) : "r"(pcie->base + reg) : "memory"); if (error != PCIBIOS_SUCCESSFUL) PCI_SET_ERROR_RESPONSE(val); #else *val = rcar_pci_read_reg(pcie, reg); #endif return error; } /* Serialization is provided by 'pci_lock' in drivers/pci/access.c */ static int rcar_pcie_config_access(struct rcar_pcie_host *host, unsigned char access_type, struct pci_bus *bus, unsigned int devfn, int where, u32 *data) { struct rcar_pcie *pcie = &host->pcie; unsigned int dev, func, reg, index; int ret; /* Wake the bus up in case it is in L1 state. */ ret = rcar_pcie_wakeup(pcie->dev, pcie->base); if (ret) { PCI_SET_ERROR_RESPONSE(data); return PCIBIOS_SET_FAILED; } dev = PCI_SLOT(devfn); func = PCI_FUNC(devfn); reg = where & ~3; index = reg / 4; /* * While each channel has its own memory-mapped extended config * space, it's generally only accessible when in endpoint mode. * When in root complex mode, the controller is unable to target * itself with either type 0 or type 1 accesses, and indeed, any * controller initiated target transfer to its own config space * result in a completer abort. * * Each channel effectively only supports a single device, but as * the same channel <-> device access works for any PCI_SLOT() * value, we cheat a bit here and bind the controller's config * space to devfn 0 in order to enable self-enumeration. In this * case the regular ECAR/ECDR path is sidelined and the mangled * config access itself is initiated as an internal bus transaction. */ if (pci_is_root_bus(bus)) { if (dev != 0) return PCIBIOS_DEVICE_NOT_FOUND; if (access_type == RCAR_PCI_ACCESS_READ) *data = rcar_pci_read_reg(pcie, PCICONF(index)); else rcar_pci_write_reg(pcie, *data, PCICONF(index)); return PCIBIOS_SUCCESSFUL; } /* Clear errors */ rcar_pci_write_reg(pcie, rcar_pci_read_reg(pcie, PCIEERRFR), PCIEERRFR); /* Set the PIO address */ rcar_pci_write_reg(pcie, PCIE_CONF_BUS(bus->number) | PCIE_CONF_DEV(dev) | PCIE_CONF_FUNC(func) | reg, PCIECAR); /* Enable the configuration access */ if (pci_is_root_bus(bus->parent)) rcar_pci_write_reg(pcie, PCIECCTLR_CCIE | TYPE0, PCIECCTLR); else rcar_pci_write_reg(pcie, PCIECCTLR_CCIE | TYPE1, PCIECCTLR); /* Check for errors */ if (rcar_pci_read_reg(pcie, PCIEERRFR) & UNSUPPORTED_REQUEST) return PCIBIOS_DEVICE_NOT_FOUND; /* Check for master and target aborts */ if (rcar_read_conf(pcie, RCONF(PCI_STATUS)) & (PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT)) return PCIBIOS_DEVICE_NOT_FOUND; if (access_type == RCAR_PCI_ACCESS_READ) ret = rcar_pci_read_reg_workaround(pcie, data, PCIECDR); else ret = rcar_pci_write_reg_workaround(pcie, *data, PCIECDR); /* Disable the configuration access */ rcar_pci_write_reg(pcie, 0, PCIECCTLR); return ret; } static int rcar_pcie_read_conf(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct rcar_pcie_host *host = bus->sysdata; int ret; ret = rcar_pcie_config_access(host, RCAR_PCI_ACCESS_READ, bus, devfn, where, val); if (ret != PCIBIOS_SUCCESSFUL) return ret; if (size == 1) *val = (*val >> (BITS_PER_BYTE * (where & 3))) & 0xff; else if (size == 2) *val = (*val >> (BITS_PER_BYTE * (where & 2))) & 0xffff; dev_dbg(&bus->dev, "pcie-config-read: bus=%3d devfn=0x%04x where=0x%04x size=%d val=0x%08x\n", bus->number, devfn, where, size, *val); return ret; } /* Serialization is provided by 'pci_lock' in drivers/pci/access.c */ static int rcar_pcie_write_conf(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct rcar_pcie_host *host = bus->sysdata; unsigned int shift; u32 data; int ret; ret = rcar_pcie_config_access(host, RCAR_PCI_ACCESS_READ, bus, devfn, where, &data); if (ret != PCIBIOS_SUCCESSFUL) return ret; dev_dbg(&bus->dev, "pcie-config-write: bus=%3d devfn=0x%04x where=0x%04x size=%d val=0x%08x\n", bus->number, devfn, where, size, val); if (size == 1) { shift = BITS_PER_BYTE * (where & 3); data &= ~(0xff << shift); data |= ((val & 0xff) << shift); } else if (size == 2) { shift = BITS_PER_BYTE * (where & 2); data &= ~(0xffff << shift); data |= ((val & 0xffff) << shift); } else data = val; ret = rcar_pcie_config_access(host, RCAR_PCI_ACCESS_WRITE, bus, devfn, where, &data); return ret; } static struct pci_ops rcar_pcie_ops = { .read = rcar_pcie_read_conf, .write = rcar_pcie_write_conf, }; static void rcar_pcie_force_speedup(struct rcar_pcie *pcie) { struct device *dev = pcie->dev; unsigned int timeout = 1000; u32 macsr; if ((rcar_pci_read_reg(pcie, MACS2R) & LINK_SPEED) != LINK_SPEED_5_0GTS) return; if (rcar_pci_read_reg(pcie, MACCTLR) & SPEED_CHANGE) { dev_err(dev, "Speed change already in progress\n"); return; } macsr = rcar_pci_read_reg(pcie, MACSR); if ((macsr & LINK_SPEED) == LINK_SPEED_5_0GTS) goto done; /* Set target link speed to 5.0 GT/s */ rcar_rmw32(pcie, EXPCAP(12), PCI_EXP_LNKSTA_CLS, PCI_EXP_LNKSTA_CLS_5_0GB); /* Set speed change reason as intentional factor */ rcar_rmw32(pcie, MACCGSPSETR, SPCNGRSN, 0); /* Clear SPCHGFIN, SPCHGSUC, and SPCHGFAIL */ if (macsr & (SPCHGFIN | SPCHGSUC | SPCHGFAIL)) rcar_pci_write_reg(pcie, macsr, MACSR); /* Start link speed change */ rcar_rmw32(pcie, MACCTLR, SPEED_CHANGE, SPEED_CHANGE); while (timeout--) { macsr = rcar_pci_read_reg(pcie, MACSR); if (macsr & SPCHGFIN) { /* Clear the interrupt bits */ rcar_pci_write_reg(pcie, macsr, MACSR); if (macsr & SPCHGFAIL) dev_err(dev, "Speed change failed\n"); goto done; } msleep(1); } dev_err(dev, "Speed change timed out\n"); done: dev_info(dev, "Current link speed is %s GT/s\n", (macsr & LINK_SPEED) == LINK_SPEED_5_0GTS ? "5" : "2.5"); } static void rcar_pcie_hw_enable(struct rcar_pcie_host *host) { struct rcar_pcie *pcie = &host->pcie; struct pci_host_bridge *bridge = pci_host_bridge_from_priv(host); struct resource_entry *win; LIST_HEAD(res); int i = 0; /* Try setting 5 GT/s link speed */ rcar_pcie_force_speedup(pcie); /* Setup PCI resources */ resource_list_for_each_entry(win, &bridge->windows) { struct resource *res = win->res; if (!res->flags) continue; switch (resource_type(res)) { case IORESOURCE_IO: case IORESOURCE_MEM: rcar_pcie_set_outbound(pcie, i, win); i++; break; } } } static int rcar_pcie_enable(struct rcar_pcie_host *host) { struct pci_host_bridge *bridge = pci_host_bridge_from_priv(host); rcar_pcie_hw_enable(host); pci_add_flags(PCI_REASSIGN_ALL_BUS); bridge->sysdata = host; bridge->ops = &rcar_pcie_ops; return pci_host_probe(bridge); } static int phy_wait_for_ack(struct rcar_pcie *pcie) { struct device *dev = pcie->dev; unsigned int timeout = 100; while (timeout--) { if (rcar_pci_read_reg(pcie, H1_PCIEPHYADRR) & PHY_ACK) return 0; udelay(100); } dev_err(dev, "Access to PCIe phy timed out\n"); return -ETIMEDOUT; } static void phy_write_reg(struct rcar_pcie *pcie, unsigned int rate, u32 addr, unsigned int lane, u32 data) { u32 phyaddr; phyaddr = WRITE_CMD | ((rate & 1) << RATE_POS) | ((lane & 0xf) << LANE_POS) | ((addr & 0xff) << ADR_POS); /* Set write data */ rcar_pci_write_reg(pcie, data, H1_PCIEPHYDOUTR); rcar_pci_write_reg(pcie, phyaddr, H1_PCIEPHYADRR); /* Ignore errors as they will be dealt with if the data link is down */ phy_wait_for_ack(pcie); /* Clear command */ rcar_pci_write_reg(pcie, 0, H1_PCIEPHYDOUTR); rcar_pci_write_reg(pcie, 0, H1_PCIEPHYADRR); /* Ignore errors as they will be dealt with if the data link is down */ phy_wait_for_ack(pcie); } static int rcar_pcie_hw_init(struct rcar_pcie *pcie) { int err; /* Begin initialization */ rcar_pci_write_reg(pcie, 0, PCIETCTLR); /* Set mode */ rcar_pci_write_reg(pcie, 1, PCIEMSR); err = rcar_pcie_wait_for_phyrdy(pcie); if (err) return err; /* * Initial header for port config space is type 1, set the device * class to match. Hardware takes care of propagating the IDSETR * settings, so there is no need to bother with a quirk. */ rcar_pci_write_reg(pcie, PCI_CLASS_BRIDGE_PCI_NORMAL << 8, IDSETR1); /* * Setup Secondary Bus Number & Subordinate Bus Number, even though * they aren't used, to avoid bridge being detected as broken. */ rcar_rmw32(pcie, RCONF(PCI_SECONDARY_BUS), 0xff, 1); rcar_rmw32(pcie, RCONF(PCI_SUBORDINATE_BUS), 0xff, 1); /* Initialize default capabilities. */ rcar_rmw32(pcie, REXPCAP(0), 0xff, PCI_CAP_ID_EXP); rcar_rmw32(pcie, REXPCAP(PCI_EXP_FLAGS), PCI_EXP_FLAGS_TYPE, PCI_EXP_TYPE_ROOT_PORT << 4); rcar_rmw32(pcie, RCONF(PCI_HEADER_TYPE), 0x7f, PCI_HEADER_TYPE_BRIDGE); /* Enable data link layer active state reporting */ rcar_rmw32(pcie, REXPCAP(PCI_EXP_LNKCAP), PCI_EXP_LNKCAP_DLLLARC, PCI_EXP_LNKCAP_DLLLARC); /* Write out the physical slot number = 0 */ rcar_rmw32(pcie, REXPCAP(PCI_EXP_SLTCAP), PCI_EXP_SLTCAP_PSN, 0); /* Set the completion timer timeout to the maximum 50ms. */ rcar_rmw32(pcie, TLCTLR + 1, 0x3f, 50); /* Terminate list of capabilities (Next Capability Offset=0) */ rcar_rmw32(pcie, RVCCAP(0), 0xfff00000, 0); /* Enable MSI */ if (IS_ENABLED(CONFIG_PCI_MSI)) rcar_pci_write_reg(pcie, 0x801f0000, PCIEMSITXR); rcar_pci_write_reg(pcie, MACCTLR_INIT_VAL, MACCTLR); /* Finish initialization - establish a PCI Express link */ rcar_pci_write_reg(pcie, CFINIT, PCIETCTLR); /* This will timeout if we don't have a link. */ err = rcar_pcie_wait_for_dl(pcie); if (err) return err; /* Enable INTx interrupts */ rcar_rmw32(pcie, PCIEINTXR, 0, 0xF << 8); wmb(); return 0; } static int rcar_pcie_phy_init_h1(struct rcar_pcie_host *host) { struct rcar_pcie *pcie = &host->pcie; /* Initialize the phy */ phy_write_reg(pcie, 0, 0x42, 0x1, 0x0EC34191); phy_write_reg(pcie, 1, 0x42, 0x1, 0x0EC34180); phy_write_reg(pcie, 0, 0x43, 0x1, 0x00210188); phy_write_reg(pcie, 1, 0x43, 0x1, 0x00210188); phy_write_reg(pcie, 0, 0x44, 0x1, 0x015C0014); phy_write_reg(pcie, 1, 0x44, 0x1, 0x015C0014); phy_write_reg(pcie, 1, 0x4C, 0x1, 0x786174A0); phy_write_reg(pcie, 1, 0x4D, 0x1, 0x048000BB); phy_write_reg(pcie, 0, 0x51, 0x1, 0x079EC062); phy_write_reg(pcie, 0, 0x52, 0x1, 0x20000000); phy_write_reg(pcie, 1, 0x52, 0x1, 0x20000000); phy_write_reg(pcie, 1, 0x56, 0x1, 0x00003806); phy_write_reg(pcie, 0, 0x60, 0x1, 0x004B03A5); phy_write_reg(pcie, 0, 0x64, 0x1, 0x3F0F1F0F); phy_write_reg(pcie, 0, 0x66, 0x1, 0x00008000); return 0; } static int rcar_pcie_phy_init_gen2(struct rcar_pcie_host *host) { struct rcar_pcie *pcie = &host->pcie; /* * These settings come from the R-Car Series, 2nd Generation User's * Manual, section 50.3.1 (2) Initialization of the physical layer. */ rcar_pci_write_reg(pcie, 0x000f0030, GEN2_PCIEPHYADDR); rcar_pci_write_reg(pcie, 0x00381203, GEN2_PCIEPHYDATA); rcar_pci_write_reg(pcie, 0x00000001, GEN2_PCIEPHYCTRL); rcar_pci_write_reg(pcie, 0x00000006, GEN2_PCIEPHYCTRL); rcar_pci_write_reg(pcie, 0x000f0054, GEN2_PCIEPHYADDR); /* The following value is for DC connection, no termination resistor */ rcar_pci_write_reg(pcie, 0x13802007, GEN2_PCIEPHYDATA); rcar_pci_write_reg(pcie, 0x00000001, GEN2_PCIEPHYCTRL); rcar_pci_write_reg(pcie, 0x00000006, GEN2_PCIEPHYCTRL); return 0; } static int rcar_pcie_phy_init_gen3(struct rcar_pcie_host *host) { int err; err = phy_init(host->phy); if (err) return err; err = phy_power_on(host->phy); if (err) phy_exit(host->phy); return err; } static irqreturn_t rcar_pcie_msi_irq(int irq, void *data) { struct rcar_pcie_host *host = data; struct rcar_pcie *pcie = &host->pcie; struct rcar_msi *msi = &host->msi; struct device *dev = pcie->dev; unsigned long reg; reg = rcar_pci_read_reg(pcie, PCIEMSIFR); /* MSI & INTx share an interrupt - we only handle MSI here */ if (!reg) return IRQ_NONE; while (reg) { unsigned int index = find_first_bit(®, 32); int ret; ret = generic_handle_domain_irq(msi->domain->parent, index); if (ret) { /* Unknown MSI, just clear it */ dev_dbg(dev, "unexpected MSI\n"); rcar_pci_write_reg(pcie, BIT(index), PCIEMSIFR); } /* see if there's any more pending in this vector */ reg = rcar_pci_read_reg(pcie, PCIEMSIFR); } return IRQ_HANDLED; } static void rcar_msi_top_irq_ack(struct irq_data *d) { irq_chip_ack_parent(d); } static void rcar_msi_top_irq_mask(struct irq_data *d) { pci_msi_mask_irq(d); irq_chip_mask_parent(d); } static void rcar_msi_top_irq_unmask(struct irq_data *d) { pci_msi_unmask_irq(d); irq_chip_unmask_parent(d); } static struct irq_chip rcar_msi_top_chip = { .name = "PCIe MSI", .irq_ack = rcar_msi_top_irq_ack, .irq_mask = rcar_msi_top_irq_mask, .irq_unmask = rcar_msi_top_irq_unmask, }; static void rcar_msi_irq_ack(struct irq_data *d) { struct rcar_msi *msi = irq_data_get_irq_chip_data(d); struct rcar_pcie *pcie = &msi_to_host(msi)->pcie; /* clear the interrupt */ rcar_pci_write_reg(pcie, BIT(d->hwirq), PCIEMSIFR); } static void rcar_msi_irq_mask(struct irq_data *d) { struct rcar_msi *msi = irq_data_get_irq_chip_data(d); struct rcar_pcie *pcie = &msi_to_host(msi)->pcie; unsigned long flags; u32 value; spin_lock_irqsave(&msi->mask_lock, flags); value = rcar_pci_read_reg(pcie, PCIEMSIIER); value &= ~BIT(d->hwirq); rcar_pci_write_reg(pcie, value, PCIEMSIIER); spin_unlock_irqrestore(&msi->mask_lock, flags); } static void rcar_msi_irq_unmask(struct irq_data *d) { struct rcar_msi *msi = irq_data_get_irq_chip_data(d); struct rcar_pcie *pcie = &msi_to_host(msi)->pcie; unsigned long flags; u32 value; spin_lock_irqsave(&msi->mask_lock, flags); value = rcar_pci_read_reg(pcie, PCIEMSIIER); value |= BIT(d->hwirq); rcar_pci_write_reg(pcie, value, PCIEMSIIER); spin_unlock_irqrestore(&msi->mask_lock, flags); } static int rcar_msi_set_affinity(struct irq_data *d, const struct cpumask *mask, bool force) { return -EINVAL; } static void rcar_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct rcar_msi *msi = irq_data_get_irq_chip_data(data); struct rcar_pcie *pcie = &msi_to_host(msi)->pcie; msg->address_lo = rcar_pci_read_reg(pcie, PCIEMSIALR) & ~MSIFE; msg->address_hi = rcar_pci_read_reg(pcie, PCIEMSIAUR); msg->data = data->hwirq; } static struct irq_chip rcar_msi_bottom_chip = { .name = "R-Car MSI", .irq_ack = rcar_msi_irq_ack, .irq_mask = rcar_msi_irq_mask, .irq_unmask = rcar_msi_irq_unmask, .irq_set_affinity = rcar_msi_set_affinity, .irq_compose_msi_msg = rcar_compose_msi_msg, }; static int rcar_msi_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { struct rcar_msi *msi = domain->host_data; unsigned int i; int hwirq; mutex_lock(&msi->map_lock); hwirq = bitmap_find_free_region(msi->used, INT_PCI_MSI_NR, order_base_2(nr_irqs)); mutex_unlock(&msi->map_lock); if (hwirq < 0) return -ENOSPC; for (i = 0; i < nr_irqs; i++) irq_domain_set_info(domain, virq + i, hwirq + i, &rcar_msi_bottom_chip, domain->host_data, handle_edge_irq, NULL, NULL); return 0; } static void rcar_msi_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *d = irq_domain_get_irq_data(domain, virq); struct rcar_msi *msi = domain->host_data; mutex_lock(&msi->map_lock); bitmap_release_region(msi->used, d->hwirq, order_base_2(nr_irqs)); mutex_unlock(&msi->map_lock); } static const struct irq_domain_ops rcar_msi_domain_ops = { .alloc = rcar_msi_domain_alloc, .free = rcar_msi_domain_free, }; static struct msi_domain_info rcar_msi_info = { .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI), .chip = &rcar_msi_top_chip, }; static int rcar_allocate_domains(struct rcar_msi *msi) { struct rcar_pcie *pcie = &msi_to_host(msi)->pcie; struct fwnode_handle *fwnode = dev_fwnode(pcie->dev); struct irq_domain *parent; parent = irq_domain_create_linear(fwnode, INT_PCI_MSI_NR, &rcar_msi_domain_ops, msi); if (!parent) { dev_err(pcie->dev, "failed to create IRQ domain\n"); return -ENOMEM; } irq_domain_update_bus_token(parent, DOMAIN_BUS_NEXUS); msi->domain = pci_msi_create_irq_domain(fwnode, &rcar_msi_info, parent); if (!msi->domain) { dev_err(pcie->dev, "failed to create MSI domain\n"); irq_domain_remove(parent); return -ENOMEM; } return 0; } static void rcar_free_domains(struct rcar_msi *msi) { struct irq_domain *parent = msi->domain->parent; irq_domain_remove(msi->domain); irq_domain_remove(parent); } static int rcar_pcie_enable_msi(struct rcar_pcie_host *host) { struct rcar_pcie *pcie = &host->pcie; struct device *dev = pcie->dev; struct rcar_msi *msi = &host->msi; struct resource res; int err; mutex_init(&msi->map_lock); spin_lock_init(&msi->mask_lock); err = of_address_to_resource(dev->of_node, 0, &res); if (err) return err; err = rcar_allocate_domains(msi); if (err) return err; /* Two irqs are for MSI, but they are also used for non-MSI irqs */ err = devm_request_irq(dev, msi->irq1, rcar_pcie_msi_irq, IRQF_SHARED | IRQF_NO_THREAD, rcar_msi_bottom_chip.name, host); if (err < 0) { dev_err(dev, "failed to request IRQ: %d\n", err); goto err; } err = devm_request_irq(dev, msi->irq2, rcar_pcie_msi_irq, IRQF_SHARED | IRQF_NO_THREAD, rcar_msi_bottom_chip.name, host); if (err < 0) { dev_err(dev, "failed to request IRQ: %d\n", err); goto err; } /* disable all MSIs */ rcar_pci_write_reg(pcie, 0, PCIEMSIIER); /* * Setup MSI data target using RC base address address, which * is guaranteed to be in the low 32bit range on any R-Car HW. */ rcar_pci_write_reg(pcie, lower_32_bits(res.start) | MSIFE, PCIEMSIALR); rcar_pci_write_reg(pcie, upper_32_bits(res.start), PCIEMSIAUR); return 0; err: rcar_free_domains(msi); return err; } static void rcar_pcie_teardown_msi(struct rcar_pcie_host *host) { struct rcar_pcie *pcie = &host->pcie; /* Disable all MSI interrupts */ rcar_pci_write_reg(pcie, 0, PCIEMSIIER); /* Disable address decoding of the MSI interrupt, MSIFE */ rcar_pci_write_reg(pcie, 0, PCIEMSIALR); rcar_free_domains(&host->msi); } static int rcar_pcie_get_resources(struct rcar_pcie_host *host) { struct rcar_pcie *pcie = &host->pcie; struct device *dev = pcie->dev; struct resource res; int err, i; host->phy = devm_phy_optional_get(dev, "pcie"); if (IS_ERR(host->phy)) return PTR_ERR(host->phy); err = of_address_to_resource(dev->of_node, 0, &res); if (err) return err; pcie->base = devm_ioremap_resource(dev, &res); if (IS_ERR(pcie->base)) return PTR_ERR(pcie->base); host->bus_clk = devm_clk_get(dev, "pcie_bus"); if (IS_ERR(host->bus_clk)) { dev_err(dev, "cannot get pcie bus clock\n"); return PTR_ERR(host->bus_clk); } i = irq_of_parse_and_map(dev->of_node, 0); if (!i) { dev_err(dev, "cannot get platform resources for msi interrupt\n"); err = -ENOENT; goto err_irq1; } host->msi.irq1 = i; i = irq_of_parse_and_map(dev->of_node, 1); if (!i) { dev_err(dev, "cannot get platform resources for msi interrupt\n"); err = -ENOENT; goto err_irq2; } host->msi.irq2 = i; return 0; err_irq2: irq_dispose_mapping(host->msi.irq1); err_irq1: return err; } static int rcar_pcie_inbound_ranges(struct rcar_pcie *pcie, struct resource_entry *entry, int *index) { u64 restype = entry->res->flags; u64 cpu_addr = entry->res->start; u64 cpu_end = entry->res->end; u64 pci_addr = entry->res->start - entry->offset; u32 flags = LAM_64BIT | LAR_ENABLE; u64 mask; u64 size = resource_size(entry->res); int idx = *index; if (restype & IORESOURCE_PREFETCH) flags |= LAM_PREFETCH; while (cpu_addr < cpu_end) { if (idx >= MAX_NR_INBOUND_MAPS - 1) { dev_err(pcie->dev, "Failed to map inbound regions!\n"); return -EINVAL; } /* * If the size of the range is larger than the alignment of * the start address, we have to use multiple entries to * perform the mapping. */ if (cpu_addr > 0) { unsigned long nr_zeros = __ffs64(cpu_addr); u64 alignment = 1ULL << nr_zeros; size = min(size, alignment); } /* Hardware supports max 4GiB inbound region */ size = min(size, 1ULL << 32); mask = roundup_pow_of_two(size) - 1; mask &= ~0xf; rcar_pcie_set_inbound(pcie, cpu_addr, pci_addr, lower_32_bits(mask) | flags, idx, true); pci_addr += size; cpu_addr += size; idx += 2; } *index = idx; return 0; } static int rcar_pcie_parse_map_dma_ranges(struct rcar_pcie_host *host) { struct pci_host_bridge *bridge = pci_host_bridge_from_priv(host); struct resource_entry *entry; int index = 0, err = 0; resource_list_for_each_entry(entry, &bridge->dma_ranges) { err = rcar_pcie_inbound_ranges(&host->pcie, entry, &index); if (err) break; } return err; } static const struct of_device_id rcar_pcie_of_match[] = { { .compatible = "renesas,pcie-r8a7779", .data = rcar_pcie_phy_init_h1 }, { .compatible = "renesas,pcie-r8a7790", .data = rcar_pcie_phy_init_gen2 }, { .compatible = "renesas,pcie-r8a7791", .data = rcar_pcie_phy_init_gen2 }, { .compatible = "renesas,pcie-rcar-gen2", .data = rcar_pcie_phy_init_gen2 }, { .compatible = "renesas,pcie-r8a7795", .data = rcar_pcie_phy_init_gen3 }, { .compatible = "renesas,pcie-rcar-gen3", .data = rcar_pcie_phy_init_gen3 }, {}, }; static int rcar_pcie_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rcar_pcie_host *host; struct rcar_pcie *pcie; u32 data; int err; struct pci_host_bridge *bridge; bridge = devm_pci_alloc_host_bridge(dev, sizeof(*host)); if (!bridge) return -ENOMEM; host = pci_host_bridge_priv(bridge); pcie = &host->pcie; pcie->dev = dev; platform_set_drvdata(pdev, host); pm_runtime_enable(pcie->dev); err = pm_runtime_get_sync(pcie->dev); if (err < 0) { dev_err(pcie->dev, "pm_runtime_get_sync failed\n"); goto err_pm_put; } err = rcar_pcie_get_resources(host); if (err < 0) { dev_err(dev, "failed to request resources: %d\n", err); goto err_pm_put; } err = clk_prepare_enable(host->bus_clk); if (err) { dev_err(dev, "failed to enable bus clock: %d\n", err); goto err_unmap_msi_irqs; } err = rcar_pcie_parse_map_dma_ranges(host); if (err) goto err_clk_disable; host->phy_init_fn = of_device_get_match_data(dev); err = host->phy_init_fn(host); if (err) { dev_err(dev, "failed to init PCIe PHY\n"); goto err_clk_disable; } /* Failure to get a link might just be that no cards are inserted */ if (rcar_pcie_hw_init(pcie)) { dev_info(dev, "PCIe link down\n"); err = -ENODEV; goto err_phy_shutdown; } data = rcar_pci_read_reg(pcie, MACSR); dev_info(dev, "PCIe x%d: link up\n", (data >> 20) & 0x3f); if (IS_ENABLED(CONFIG_PCI_MSI)) { err = rcar_pcie_enable_msi(host); if (err < 0) { dev_err(dev, "failed to enable MSI support: %d\n", err); goto err_phy_shutdown; } } err = rcar_pcie_enable(host); if (err) goto err_msi_teardown; return 0; err_msi_teardown: if (IS_ENABLED(CONFIG_PCI_MSI)) rcar_pcie_teardown_msi(host); err_phy_shutdown: if (host->phy) { phy_power_off(host->phy); phy_exit(host->phy); } err_clk_disable: clk_disable_unprepare(host->bus_clk); err_unmap_msi_irqs: irq_dispose_mapping(host->msi.irq2); irq_dispose_mapping(host->msi.irq1); err_pm_put: pm_runtime_put(dev); pm_runtime_disable(dev); return err; } static int rcar_pcie_resume(struct device *dev) { struct rcar_pcie_host *host = dev_get_drvdata(dev); struct rcar_pcie *pcie = &host->pcie; unsigned int data; int err; err = rcar_pcie_parse_map_dma_ranges(host); if (err) return 0; /* Failure to get a link might just be that no cards are inserted */ err = host->phy_init_fn(host); if (err) { dev_info(dev, "PCIe link down\n"); return 0; } data = rcar_pci_read_reg(pcie, MACSR); dev_info(dev, "PCIe x%d: link up\n", (data >> 20) & 0x3f); /* Enable MSI */ if (IS_ENABLED(CONFIG_PCI_MSI)) { struct resource res; u32 val; of_address_to_resource(dev->of_node, 0, &res); rcar_pci_write_reg(pcie, upper_32_bits(res.start), PCIEMSIAUR); rcar_pci_write_reg(pcie, lower_32_bits(res.start) | MSIFE, PCIEMSIALR); bitmap_to_arr32(&val, host->msi.used, INT_PCI_MSI_NR); rcar_pci_write_reg(pcie, val, PCIEMSIIER); } rcar_pcie_hw_enable(host); return 0; } static int rcar_pcie_resume_noirq(struct device *dev) { struct rcar_pcie_host *host = dev_get_drvdata(dev); struct rcar_pcie *pcie = &host->pcie; if (rcar_pci_read_reg(pcie, PMSR) && !(rcar_pci_read_reg(pcie, PCIETCTLR) & DL_DOWN)) return 0; /* Re-establish the PCIe link */ rcar_pci_write_reg(pcie, MACCTLR_INIT_VAL, MACCTLR); rcar_pci_write_reg(pcie, CFINIT, PCIETCTLR); return rcar_pcie_wait_for_dl(pcie); } static const struct dev_pm_ops rcar_pcie_pm_ops = { SYSTEM_SLEEP_PM_OPS(NULL, rcar_pcie_resume) .resume_noirq = rcar_pcie_resume_noirq, }; static struct platform_driver rcar_pcie_driver = { .driver = { .name = "rcar-pcie", .of_match_table = rcar_pcie_of_match, .pm = &rcar_pcie_pm_ops, .suppress_bind_attrs = true, }, .probe = rcar_pcie_probe, }; #ifdef CONFIG_ARM static int rcar_pcie_aarch32_abort_handler(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { return !fixup_exception(regs); } static const struct of_device_id rcar_pcie_abort_handler_of_match[] __initconst = { { .compatible = "renesas,pcie-r8a7779" }, { .compatible = "renesas,pcie-r8a7790" }, { .compatible = "renesas,pcie-r8a7791" }, { .compatible = "renesas,pcie-rcar-gen2" }, {}, }; static int __init rcar_pcie_init(void) { if (of_find_matching_node(NULL, rcar_pcie_abort_handler_of_match)) { #ifdef CONFIG_ARM_LPAE hook_fault_code(17, rcar_pcie_aarch32_abort_handler, SIGBUS, 0, "asynchronous external abort"); #else hook_fault_code(22, rcar_pcie_aarch32_abort_handler, SIGBUS, 0, "imprecise external abort"); #endif } return platform_driver_register(&rcar_pcie_driver); } device_initcall(rcar_pcie_init); #else builtin_platform_driver(rcar_pcie_driver); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1