Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Logan Gunthorpe | 3180 | 80.08% | 24 | 37.50% |
Eric Dumazet | 269 | 6.77% | 1 | 1.56% |
Christoph Hellwig | 133 | 3.35% | 3 | 4.69% |
Dan J Williams | 122 | 3.07% | 8 | 12.50% |
Christian König | 86 | 2.17% | 1 | 1.56% |
Linus Torvalds (pre-git) | 44 | 1.11% | 2 | 3.12% |
Armen Baloyan | 31 | 0.78% | 1 | 1.56% |
Sebastian Andrzej Siewior | 18 | 0.45% | 1 | 1.56% |
Shlomo Pongratz | 15 | 0.38% | 1 | 1.56% |
Greg Kroah-Hartman | 12 | 0.30% | 1 | 1.56% |
Andrew Maier | 10 | 0.25% | 1 | 1.56% |
Michael J. Ruhl | 8 | 0.20% | 1 | 1.56% |
Krzysztof Wilczynski | 6 | 0.15% | 2 | 3.12% |
Patrick Mochel | 5 | 0.13% | 1 | 1.56% |
Adam J. Richter | 4 | 0.10% | 1 | 1.56% |
Stanislaw Gruszka | 4 | 0.10% | 1 | 1.56% |
Randy Dunlap | 4 | 0.10% | 1 | 1.56% |
Lukas Wunner | 3 | 0.08% | 1 | 1.56% |
Rajat Jain | 2 | 0.05% | 1 | 1.56% |
Mauro Carvalho Chehab | 2 | 0.05% | 1 | 1.56% |
Yang Yingliang | 2 | 0.05% | 1 | 1.56% |
Andrea Arcangeli | 2 | 0.05% | 1 | 1.56% |
Kees Cook | 2 | 0.05% | 1 | 1.56% |
Alex Williamson | 1 | 0.03% | 1 | 1.56% |
caihuoqing | 1 | 0.03% | 1 | 1.56% |
Julia Lawall | 1 | 0.03% | 1 | 1.56% |
Arnd Bergmann | 1 | 0.03% | 1 | 1.56% |
Christophe Jaillet | 1 | 0.03% | 1 | 1.56% |
Jason A. Donenfeld | 1 | 0.03% | 1 | 1.56% |
Björn Helgaas | 1 | 0.03% | 1 | 1.56% |
Total | 3971 | 64 |
// SPDX-License-Identifier: GPL-2.0 /* * PCI Peer 2 Peer DMA support. * * Copyright (c) 2016-2018, Logan Gunthorpe * Copyright (c) 2016-2017, Microsemi Corporation * Copyright (c) 2017, Christoph Hellwig * Copyright (c) 2018, Eideticom Inc. */ #define pr_fmt(fmt) "pci-p2pdma: " fmt #include <linux/ctype.h> #include <linux/dma-map-ops.h> #include <linux/pci-p2pdma.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/genalloc.h> #include <linux/memremap.h> #include <linux/percpu-refcount.h> #include <linux/random.h> #include <linux/seq_buf.h> #include <linux/xarray.h> struct pci_p2pdma { struct gen_pool *pool; bool p2pmem_published; struct xarray map_types; }; struct pci_p2pdma_pagemap { struct dev_pagemap pgmap; struct pci_dev *provider; u64 bus_offset; }; static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) { return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); } static ssize_t size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev = to_pci_dev(dev); struct pci_p2pdma *p2pdma; size_t size = 0; rcu_read_lock(); p2pdma = rcu_dereference(pdev->p2pdma); if (p2pdma && p2pdma->pool) size = gen_pool_size(p2pdma->pool); rcu_read_unlock(); return sysfs_emit(buf, "%zd\n", size); } static DEVICE_ATTR_RO(size); static ssize_t available_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev = to_pci_dev(dev); struct pci_p2pdma *p2pdma; size_t avail = 0; rcu_read_lock(); p2pdma = rcu_dereference(pdev->p2pdma); if (p2pdma && p2pdma->pool) avail = gen_pool_avail(p2pdma->pool); rcu_read_unlock(); return sysfs_emit(buf, "%zd\n", avail); } static DEVICE_ATTR_RO(available); static ssize_t published_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev = to_pci_dev(dev); struct pci_p2pdma *p2pdma; bool published = false; rcu_read_lock(); p2pdma = rcu_dereference(pdev->p2pdma); if (p2pdma) published = p2pdma->p2pmem_published; rcu_read_unlock(); return sysfs_emit(buf, "%d\n", published); } static DEVICE_ATTR_RO(published); static int p2pmem_alloc_mmap(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, struct vm_area_struct *vma) { struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); size_t len = vma->vm_end - vma->vm_start; struct pci_p2pdma *p2pdma; struct percpu_ref *ref; unsigned long vaddr; void *kaddr; int ret; /* prevent private mappings from being established */ if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) { pci_info_ratelimited(pdev, "%s: fail, attempted private mapping\n", current->comm); return -EINVAL; } if (vma->vm_pgoff) { pci_info_ratelimited(pdev, "%s: fail, attempted mapping with non-zero offset\n", current->comm); return -EINVAL; } rcu_read_lock(); p2pdma = rcu_dereference(pdev->p2pdma); if (!p2pdma) { ret = -ENODEV; goto out; } kaddr = (void *)gen_pool_alloc_owner(p2pdma->pool, len, (void **)&ref); if (!kaddr) { ret = -ENOMEM; goto out; } /* * vm_insert_page() can sleep, so a reference is taken to mapping * such that rcu_read_unlock() can be done before inserting the * pages */ if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { ret = -ENODEV; goto out_free_mem; } rcu_read_unlock(); for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) { ret = vm_insert_page(vma, vaddr, virt_to_page(kaddr)); if (ret) { gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len); return ret; } percpu_ref_get(ref); put_page(virt_to_page(kaddr)); kaddr += PAGE_SIZE; len -= PAGE_SIZE; } percpu_ref_put(ref); return 0; out_free_mem: gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len); out: rcu_read_unlock(); return ret; } static struct bin_attribute p2pmem_alloc_attr = { .attr = { .name = "allocate", .mode = 0660 }, .mmap = p2pmem_alloc_mmap, /* * Some places where we want to call mmap (ie. python) will check * that the file size is greater than the mmap size before allowing * the mmap to continue. To work around this, just set the size * to be very large. */ .size = SZ_1T, }; static struct attribute *p2pmem_attrs[] = { &dev_attr_size.attr, &dev_attr_available.attr, &dev_attr_published.attr, NULL, }; static struct bin_attribute *p2pmem_bin_attrs[] = { &p2pmem_alloc_attr, NULL, }; static const struct attribute_group p2pmem_group = { .attrs = p2pmem_attrs, .bin_attrs = p2pmem_bin_attrs, .name = "p2pmem", }; static void p2pdma_page_free(struct page *page) { struct pci_p2pdma_pagemap *pgmap = to_p2p_pgmap(page->pgmap); /* safe to dereference while a reference is held to the percpu ref */ struct pci_p2pdma *p2pdma = rcu_dereference_protected(pgmap->provider->p2pdma, 1); struct percpu_ref *ref; gen_pool_free_owner(p2pdma->pool, (uintptr_t)page_to_virt(page), PAGE_SIZE, (void **)&ref); percpu_ref_put(ref); } static const struct dev_pagemap_ops p2pdma_pgmap_ops = { .page_free = p2pdma_page_free, }; static void pci_p2pdma_release(void *data) { struct pci_dev *pdev = data; struct pci_p2pdma *p2pdma; p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); if (!p2pdma) return; /* Flush and disable pci_alloc_p2p_mem() */ pdev->p2pdma = NULL; synchronize_rcu(); gen_pool_destroy(p2pdma->pool); sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); xa_destroy(&p2pdma->map_types); } static int pci_p2pdma_setup(struct pci_dev *pdev) { int error = -ENOMEM; struct pci_p2pdma *p2p; p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); if (!p2p) return -ENOMEM; xa_init(&p2p->map_types); p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); if (!p2p->pool) goto out; error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); if (error) goto out_pool_destroy; error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); if (error) goto out_pool_destroy; rcu_assign_pointer(pdev->p2pdma, p2p); return 0; out_pool_destroy: gen_pool_destroy(p2p->pool); out: devm_kfree(&pdev->dev, p2p); return error; } static void pci_p2pdma_unmap_mappings(void *data) { struct pci_dev *pdev = data; /* * Removing the alloc attribute from sysfs will call * unmap_mapping_range() on the inode, teardown any existing userspace * mappings and prevent new ones from being created. */ sysfs_remove_file_from_group(&pdev->dev.kobj, &p2pmem_alloc_attr.attr, p2pmem_group.name); } /** * pci_p2pdma_add_resource - add memory for use as p2p memory * @pdev: the device to add the memory to * @bar: PCI BAR to add * @size: size of the memory to add, may be zero to use the whole BAR * @offset: offset into the PCI BAR * * The memory will be given ZONE_DEVICE struct pages so that it may * be used with any DMA request. */ int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, u64 offset) { struct pci_p2pdma_pagemap *p2p_pgmap; struct dev_pagemap *pgmap; struct pci_p2pdma *p2pdma; void *addr; int error; if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) return -EINVAL; if (offset >= pci_resource_len(pdev, bar)) return -EINVAL; if (!size) size = pci_resource_len(pdev, bar) - offset; if (size + offset > pci_resource_len(pdev, bar)) return -EINVAL; if (!pdev->p2pdma) { error = pci_p2pdma_setup(pdev); if (error) return error; } p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); if (!p2p_pgmap) return -ENOMEM; pgmap = &p2p_pgmap->pgmap; pgmap->range.start = pci_resource_start(pdev, bar) + offset; pgmap->range.end = pgmap->range.start + size - 1; pgmap->nr_range = 1; pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; pgmap->ops = &p2pdma_pgmap_ops; p2p_pgmap->provider = pdev; p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - pci_resource_start(pdev, bar); addr = devm_memremap_pages(&pdev->dev, pgmap); if (IS_ERR(addr)) { error = PTR_ERR(addr); goto pgmap_free; } error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_unmap_mappings, pdev); if (error) goto pages_free; p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr, pci_bus_address(pdev, bar) + offset, range_len(&pgmap->range), dev_to_node(&pdev->dev), &pgmap->ref); if (error) goto pages_free; pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", pgmap->range.start, pgmap->range.end); return 0; pages_free: devm_memunmap_pages(&pdev->dev, pgmap); pgmap_free: devm_kfree(&pdev->dev, pgmap); return error; } EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); /* * Note this function returns the parent PCI device with a * reference taken. It is the caller's responsibility to drop * the reference. */ static struct pci_dev *find_parent_pci_dev(struct device *dev) { struct device *parent; dev = get_device(dev); while (dev) { if (dev_is_pci(dev)) return to_pci_dev(dev); parent = get_device(dev->parent); put_device(dev); dev = parent; } return NULL; } /* * Check if a PCI bridge has its ACS redirection bits set to redirect P2P * TLPs upstream via ACS. Returns 1 if the packets will be redirected * upstream, 0 otherwise. */ static int pci_bridge_has_acs_redir(struct pci_dev *pdev) { int pos; u16 ctrl; pos = pdev->acs_cap; if (!pos) return 0; pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) return 1; return 0; } static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) { if (!buf) return; seq_buf_printf(buf, "%s;", pci_name(pdev)); } static bool cpu_supports_p2pdma(void) { #ifdef CONFIG_X86 struct cpuinfo_x86 *c = &cpu_data(0); /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) return true; #endif return false; } static const struct pci_p2pdma_whitelist_entry { unsigned short vendor; unsigned short device; enum { REQ_SAME_HOST_BRIDGE = 1 << 0, } flags; } pci_p2pdma_whitelist[] = { /* Intel Xeon E5/Core i7 */ {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, /* Intel SkyLake-E */ {PCI_VENDOR_ID_INTEL, 0x2030, 0}, {PCI_VENDOR_ID_INTEL, 0x2031, 0}, {PCI_VENDOR_ID_INTEL, 0x2032, 0}, {PCI_VENDOR_ID_INTEL, 0x2033, 0}, {PCI_VENDOR_ID_INTEL, 0x2020, 0}, {PCI_VENDOR_ID_INTEL, 0x09a2, 0}, {} }; /* * If the first device on host's root bus is either devfn 00.0 or a PCIe * Root Port, return it. Otherwise return NULL. * * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[] * (though there is no PCI/PCIe requirement for such a device). On some * platforms, e.g., Intel Skylake, there is no such host bridge device, and * pci_p2pdma_whitelist[] may contain a Root Port at any devfn. * * This function is similar to pci_get_slot(host->bus, 0), but it does * not take the pci_bus_sem lock since __host_bridge_whitelist() must not * sleep. * * For this to be safe, the caller should hold a reference to a device on the * bridge, which should ensure the host_bridge device will not be freed * or removed from the head of the devices list. */ static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host) { struct pci_dev *root; root = list_first_entry_or_null(&host->bus->devices, struct pci_dev, bus_list); if (!root) return NULL; if (root->devfn == PCI_DEVFN(0, 0)) return root; if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT) return root; return NULL; } static bool __host_bridge_whitelist(struct pci_host_bridge *host, bool same_host_bridge, bool warn) { struct pci_dev *root = pci_host_bridge_dev(host); const struct pci_p2pdma_whitelist_entry *entry; unsigned short vendor, device; if (!root) return false; vendor = root->vendor; device = root->device; for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { if (vendor != entry->vendor || device != entry->device) continue; if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) return false; return true; } if (warn) pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n", vendor, device); return false; } /* * If we can't find a common upstream bridge take a look at the root * complex and compare it to a whitelist of known good hardware. */ static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b, bool warn) { struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); if (host_a == host_b) return __host_bridge_whitelist(host_a, true, warn); if (__host_bridge_whitelist(host_a, false, warn) && __host_bridge_whitelist(host_b, false, warn)) return true; return false; } static unsigned long map_types_idx(struct pci_dev *client) { return (pci_domain_nr(client->bus) << 16) | (client->bus->number << 8) | client->devfn; } /* * Calculate the P2PDMA mapping type and distance between two PCI devices. * * If the two devices are the same PCI function, return * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0. * * If they are two functions of the same device, return * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge, * then one hop back down to another function of the same device). * * In the case where two devices are connected to the same PCIe switch, * return a distance of 4. This corresponds to the following PCI tree: * * -+ Root Port * \+ Switch Upstream Port * +-+ Switch Downstream Port 0 * + \- Device A * \-+ Switch Downstream Port 1 * \- Device B * * The distance is 4 because we traverse from Device A to Downstream Port 0 * to the common Switch Upstream Port, back down to Downstream Port 1 and * then to Device B. The mapping type returned depends on the ACS * redirection setting of the ports along the path. * * If ACS redirect is set on any port in the path, traffic between the * devices will go through the host bridge, so return * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return * PCI_P2PDMA_MAP_BUS_ADDR. * * Any two devices that have a data path that goes through the host bridge * will consult a whitelist. If the host bridge is in the whitelist, return * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of * ports per above. If the device is not in the whitelist, return * PCI_P2PDMA_MAP_NOT_SUPPORTED. */ static enum pci_p2pdma_map_type calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, int *dist, bool verbose) { enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; struct pci_dev *a = provider, *b = client, *bb; bool acs_redirects = false; struct pci_p2pdma *p2pdma; struct seq_buf acs_list; int acs_cnt = 0; int dist_a = 0; int dist_b = 0; char buf[128]; seq_buf_init(&acs_list, buf, sizeof(buf)); /* * Note, we don't need to take references to devices returned by * pci_upstream_bridge() seeing we hold a reference to a child * device which will already hold a reference to the upstream bridge. */ while (a) { dist_b = 0; if (pci_bridge_has_acs_redir(a)) { seq_buf_print_bus_devfn(&acs_list, a); acs_cnt++; } bb = b; while (bb) { if (a == bb) goto check_b_path_acs; bb = pci_upstream_bridge(bb); dist_b++; } a = pci_upstream_bridge(a); dist_a++; } *dist = dist_a + dist_b; goto map_through_host_bridge; check_b_path_acs: bb = b; while (bb) { if (a == bb) break; if (pci_bridge_has_acs_redir(bb)) { seq_buf_print_bus_devfn(&acs_list, bb); acs_cnt++; } bb = pci_upstream_bridge(bb); } *dist = dist_a + dist_b; if (!acs_cnt) { map_type = PCI_P2PDMA_MAP_BUS_ADDR; goto done; } if (verbose) { acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */ pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", pci_name(provider)); pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", acs_list.buffer); } acs_redirects = true; map_through_host_bridge: if (!cpu_supports_p2pdma() && !host_bridge_whitelist(provider, client, acs_redirects)) { if (verbose) pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", pci_name(provider)); map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; } done: rcu_read_lock(); p2pdma = rcu_dereference(provider->p2pdma); if (p2pdma) xa_store(&p2pdma->map_types, map_types_idx(client), xa_mk_value(map_type), GFP_KERNEL); rcu_read_unlock(); return map_type; } /** * pci_p2pdma_distance_many - Determine the cumulative distance between * a p2pdma provider and the clients in use. * @provider: p2pdma provider to check against the client list * @clients: array of devices to check (NULL-terminated) * @num_clients: number of clients in the array * @verbose: if true, print warnings for devices when we return -1 * * Returns -1 if any of the clients are not compatible, otherwise returns a * positive number where a lower number is the preferable choice. (If there's * one client that's the same as the provider it will return 0, which is best * choice). * * "compatible" means the provider and the clients are either all behind * the same PCI root port or the host bridges connected to each of the devices * are listed in the 'pci_p2pdma_whitelist'. */ int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, int num_clients, bool verbose) { enum pci_p2pdma_map_type map; bool not_supported = false; struct pci_dev *pci_client; int total_dist = 0; int i, distance; if (num_clients == 0) return -1; for (i = 0; i < num_clients; i++) { pci_client = find_parent_pci_dev(clients[i]); if (!pci_client) { if (verbose) dev_warn(clients[i], "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); return -1; } map = calc_map_type_and_dist(provider, pci_client, &distance, verbose); pci_dev_put(pci_client); if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED) not_supported = true; if (not_supported && !verbose) break; total_dist += distance; } if (not_supported) return -1; return total_dist; } EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); /** * pci_has_p2pmem - check if a given PCI device has published any p2pmem * @pdev: PCI device to check */ bool pci_has_p2pmem(struct pci_dev *pdev) { struct pci_p2pdma *p2pdma; bool res; rcu_read_lock(); p2pdma = rcu_dereference(pdev->p2pdma); res = p2pdma && p2pdma->p2pmem_published; rcu_read_unlock(); return res; } EXPORT_SYMBOL_GPL(pci_has_p2pmem); /** * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with * the specified list of clients and shortest distance * @clients: array of devices to check (NULL-terminated) * @num_clients: number of client devices in the list * * If multiple devices are behind the same switch, the one "closest" to the * client devices in use will be chosen first. (So if one of the providers is * the same as one of the clients, that provider will be used ahead of any * other providers that are unrelated). If multiple providers are an equal * distance away, one will be chosen at random. * * Returns a pointer to the PCI device with a reference taken (use pci_dev_put * to return the reference) or NULL if no compatible device is found. The * found provider will also be assigned to the client list. */ struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) { struct pci_dev *pdev = NULL; int distance; int closest_distance = INT_MAX; struct pci_dev **closest_pdevs; int dev_cnt = 0; const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); int i; closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!closest_pdevs) return NULL; for_each_pci_dev(pdev) { if (!pci_has_p2pmem(pdev)) continue; distance = pci_p2pdma_distance_many(pdev, clients, num_clients, false); if (distance < 0 || distance > closest_distance) continue; if (distance == closest_distance && dev_cnt >= max_devs) continue; if (distance < closest_distance) { for (i = 0; i < dev_cnt; i++) pci_dev_put(closest_pdevs[i]); dev_cnt = 0; closest_distance = distance; } closest_pdevs[dev_cnt++] = pci_dev_get(pdev); } if (dev_cnt) pdev = pci_dev_get(closest_pdevs[get_random_u32_below(dev_cnt)]); for (i = 0; i < dev_cnt; i++) pci_dev_put(closest_pdevs[i]); kfree(closest_pdevs); return pdev; } EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); /** * pci_alloc_p2pmem - allocate peer-to-peer DMA memory * @pdev: the device to allocate memory from * @size: number of bytes to allocate * * Returns the allocated memory or NULL on error. */ void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) { void *ret = NULL; struct percpu_ref *ref; struct pci_p2pdma *p2pdma; /* * Pairs with synchronize_rcu() in pci_p2pdma_release() to * ensure pdev->p2pdma is non-NULL for the duration of the * read-lock. */ rcu_read_lock(); p2pdma = rcu_dereference(pdev->p2pdma); if (unlikely(!p2pdma)) goto out; ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref); if (!ret) goto out; if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { gen_pool_free(p2pdma->pool, (unsigned long) ret, size); ret = NULL; goto out; } out: rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); /** * pci_free_p2pmem - free peer-to-peer DMA memory * @pdev: the device the memory was allocated from * @addr: address of the memory that was allocated * @size: number of bytes that were allocated */ void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) { struct percpu_ref *ref; struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size, (void **) &ref); percpu_ref_put(ref); } EXPORT_SYMBOL_GPL(pci_free_p2pmem); /** * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual * address obtained with pci_alloc_p2pmem() * @pdev: the device the memory was allocated from * @addr: address of the memory that was allocated */ pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) { struct pci_p2pdma *p2pdma; if (!addr) return 0; p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); if (!p2pdma) return 0; /* * Note: when we added the memory to the pool we used the PCI * bus address as the physical address. So gen_pool_virt_to_phys() * actually returns the bus address despite the misleading name. */ return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr); } EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); /** * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist * @pdev: the device to allocate memory from * @nents: the number of SG entries in the list * @length: number of bytes to allocate * * Return: %NULL on error or &struct scatterlist pointer and @nents on success */ struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, unsigned int *nents, u32 length) { struct scatterlist *sg; void *addr; sg = kmalloc(sizeof(*sg), GFP_KERNEL); if (!sg) return NULL; sg_init_table(sg, 1); addr = pci_alloc_p2pmem(pdev, length); if (!addr) goto out_free_sg; sg_set_buf(sg, addr, length); *nents = 1; return sg; out_free_sg: kfree(sg); return NULL; } EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); /** * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() * @pdev: the device to allocate memory from * @sgl: the allocated scatterlist */ void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) { struct scatterlist *sg; int count; for_each_sg(sgl, sg, INT_MAX, count) { if (!sg) break; pci_free_p2pmem(pdev, sg_virt(sg), sg->length); } kfree(sgl); } EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); /** * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by * other devices with pci_p2pmem_find() * @pdev: the device with peer-to-peer DMA memory to publish * @publish: set to true to publish the memory, false to unpublish it * * Published memory can be used by other PCI device drivers for * peer-2-peer DMA operations. Non-published memory is reserved for * exclusive use of the device driver that registers the peer-to-peer * memory. */ void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) { struct pci_p2pdma *p2pdma; rcu_read_lock(); p2pdma = rcu_dereference(pdev->p2pdma); if (p2pdma) p2pdma->p2pmem_published = publish; rcu_read_unlock(); } EXPORT_SYMBOL_GPL(pci_p2pmem_publish); static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap, struct device *dev) { enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED; struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider; struct pci_dev *client; struct pci_p2pdma *p2pdma; int dist; if (!provider->p2pdma) return PCI_P2PDMA_MAP_NOT_SUPPORTED; if (!dev_is_pci(dev)) return PCI_P2PDMA_MAP_NOT_SUPPORTED; client = to_pci_dev(dev); rcu_read_lock(); p2pdma = rcu_dereference(provider->p2pdma); if (p2pdma) type = xa_to_value(xa_load(&p2pdma->map_types, map_types_idx(client))); rcu_read_unlock(); if (type == PCI_P2PDMA_MAP_UNKNOWN) return calc_map_type_and_dist(provider, client, &dist, true); return type; } /** * pci_p2pdma_map_segment - map an sg segment determining the mapping type * @state: State structure that should be declared outside of the for_each_sg() * loop and initialized to zero. * @dev: DMA device that's doing the mapping operation * @sg: scatterlist segment to map * * This is a helper to be used by non-IOMMU dma_map_sg() implementations where * the sg segment is the same for the page_link and the dma_address. * * Attempt to map a single segment in an SGL with the PCI bus address. * The segment must point to a PCI P2PDMA page and thus must be * wrapped in a is_pci_p2pdma_page(sg_page(sg)) check. * * Returns the type of mapping used and maps the page if the type is * PCI_P2PDMA_MAP_BUS_ADDR. */ enum pci_p2pdma_map_type pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev, struct scatterlist *sg) { if (state->pgmap != sg_page(sg)->pgmap) { state->pgmap = sg_page(sg)->pgmap; state->map = pci_p2pdma_map_type(state->pgmap, dev); state->bus_off = to_p2p_pgmap(state->pgmap)->bus_offset; } if (state->map == PCI_P2PDMA_MAP_BUS_ADDR) { sg->dma_address = sg_phys(sg) + state->bus_off; sg_dma_len(sg) = sg->length; sg_dma_mark_bus_address(sg); } return state->map; } /** * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store * to enable p2pdma * @page: contents of the value to be stored * @p2p_dev: returns the PCI device that was selected to be used * (if one was specified in the stored value) * @use_p2pdma: returns whether to enable p2pdma or not * * Parses an attribute value to decide whether to enable p2pdma. * The value can select a PCI device (using its full BDF device * name) or a boolean (in any format kstrtobool() accepts). A false * value disables p2pdma, a true value expects the caller * to automatically find a compatible device and specifying a PCI device * expects the caller to use the specific provider. * * pci_p2pdma_enable_show() should be used as the show operation for * the attribute. * * Returns 0 on success */ int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, bool *use_p2pdma) { struct device *dev; dev = bus_find_device_by_name(&pci_bus_type, NULL, page); if (dev) { *use_p2pdma = true; *p2p_dev = to_pci_dev(dev); if (!pci_has_p2pmem(*p2p_dev)) { pci_err(*p2p_dev, "PCI device has no peer-to-peer memory: %s\n", page); pci_dev_put(*p2p_dev); return -ENODEV; } return 0; } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { /* * If the user enters a PCI device that doesn't exist * like "0000:01:00.1", we don't want kstrtobool to think * it's a '0' when it's clearly not what the user wanted. * So we require 0's and 1's to be exactly one character. */ } else if (!kstrtobool(page, use_p2pdma)) { return 0; } pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); return -ENODEV; } EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); /** * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating * whether p2pdma is enabled * @page: contents of the stored value * @p2p_dev: the selected p2p device (NULL if no device is selected) * @use_p2pdma: whether p2pdma has been enabled * * Attributes that use pci_p2pdma_enable_store() should use this function * to show the value of the attribute. * * Returns 0 on success */ ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, bool use_p2pdma) { if (!use_p2pdma) return sprintf(page, "0\n"); if (!p2p_dev) return sprintf(page, "1\n"); return sprintf(page, "%s\n", pci_name(p2p_dev)); } EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1