Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Neil Armstrong | 1450 | 99.52% | 1 | 25.00% |
Liu Ying | 4 | 0.27% | 1 | 25.00% |
Li Yang | 2 | 0.14% | 1 | 25.00% |
Jiang Jian | 1 | 0.07% | 1 | 25.00% |
Total | 1457 | 4 |
// SPDX-License-Identifier: GPL-2.0 /* * Meson AXG MIPI DPHY driver * * Copyright (C) 2018 Amlogic, Inc. All rights reserved * Copyright (C) 2020 BayLibre, SAS * Author: Neil Armstrong <narmstrong@baylibre.com> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> /* [31] soft reset for the phy. * 1: reset. 0: dessert the reset. * [30] clock lane soft reset. * [29] data byte lane 3 soft reset. * [28] data byte lane 2 soft reset. * [27] data byte lane 1 soft reset. * [26] data byte lane 0 soft reset. * [25] mipi dsi pll clock selection. * 1: clock from fixed 850Mhz clock source. 0: from VID2 PLL. * [12] mipi HSbyteclk enable. * [11] mipi divider clk selection. * 1: select the mipi DDRCLKHS from clock divider. * 0: from PLL clock. * [10] mipi clock divider control. * 1: /4. 0: /2. * [9] mipi divider output enable. * [8] mipi divider counter enable. * [7] PLL clock enable. * [5] LPDT data endian. * 1 = transfer the high bit first. 0 : transfer the low bit first. * [4] HS data endian. * [3] force data byte lane in stop mode. * [2] force data byte lane 0 in receiver mode. * [1] write 1 to sync the txclkesc input. the internal logic have to * use txclkesc to decide Txvalid and Txready. * [0] enalbe the MIPI DPHY TxDDRClk. */ #define MIPI_DSI_PHY_CTRL 0x0 /* [31] clk lane tx_hs_en control selection. * 1: from register. 0: use clk lane state machine. * [30] register bit for clock lane tx_hs_en. * [29] clk lane tx_lp_en contrl selection. * 1: from register. 0: from clk lane state machine. * [28] register bit for clock lane tx_lp_en. * [27] chan0 tx_hs_en control selection. * 1: from register. 0: from chan0 state machine. * [26] register bit for chan0 tx_hs_en. * [25] chan0 tx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [24] register bit from chan0 tx_lp_en. * [23] chan0 rx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [22] register bit from chan0 rx_lp_en. * [21] chan0 contention detection enable control selection. * 1: from register. 0: from chan0 state machine. * [20] register bit from chan0 contention dectection enable. * [19] chan1 tx_hs_en control selection. * 1: from register. 0: from chan0 state machine. * [18] register bit for chan1 tx_hs_en. * [17] chan1 tx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [16] register bit from chan1 tx_lp_en. * [15] chan2 tx_hs_en control selection. * 1: from register. 0: from chan0 state machine. * [14] register bit for chan2 tx_hs_en. * [13] chan2 tx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [12] register bit from chan2 tx_lp_en. * [11] chan3 tx_hs_en control selection. * 1: from register. 0: from chan0 state machine. * [10] register bit for chan3 tx_hs_en. * [9] chan3 tx_lp_en control selection. * 1: from register. 0: from chan0 state machine. * [8] register bit from chan3 tx_lp_en. * [4] clk chan power down. this bit is also used as the power down * of the whole MIPI_DSI_PHY. * [3] chan3 power down. * [2] chan2 power down. * [1] chan1 power down. * [0] chan0 power down. */ #define MIPI_DSI_CHAN_CTRL 0x4 /* [24] rx turn watch dog triggered. * [23] rx esc watchdog triggered. * [22] mbias ready. * [21] txclkesc synced and ready. * [20:17] clk lane state. {mbias_ready, tx_stop, tx_ulps, tx_hs_active} * [16:13] chan3 state{0, tx_stop, tx_ulps, tx_hs_active} * [12:9] chan2 state.{0, tx_stop, tx_ulps, tx_hs_active} * [8:5] chan1 state. {0, tx_stop, tx_ulps, tx_hs_active} * [4:0] chan0 state. {TX_STOP, tx_ULPS, hs_active, direction, rxulpsesc} */ #define MIPI_DSI_CHAN_STS 0x8 /* [31:24] TCLK_PREPARE. * [23:16] TCLK_ZERO. * [15:8] TCLK_POST. * [7:0] TCLK_TRAIL. */ #define MIPI_DSI_CLK_TIM 0xc /* [31:24] THS_PREPARE. * [23:16] THS_ZERO. * [15:8] THS_TRAIL. * [7:0] THS_EXIT. */ #define MIPI_DSI_HS_TIM 0x10 /* [31:24] tTA_GET. * [23:16] tTA_GO. * [15:8] tTA_SURE. * [7:0] tLPX. */ #define MIPI_DSI_LP_TIM 0x14 /* wait time to MIPI DIS analog ready. */ #define MIPI_DSI_ANA_UP_TIM 0x18 /* TINIT. */ #define MIPI_DSI_INIT_TIM 0x1c /* TWAKEUP. */ #define MIPI_DSI_WAKEUP_TIM 0x20 /* when in RxULPS check state, after the logic enable the analog, * how long we should wait to check the lP state . */ #define MIPI_DSI_LPOK_TIM 0x24 /* Watchdog for RX low power state no finished. */ #define MIPI_DSI_LP_WCHDOG 0x28 /* tMBIAS, after send power up signals to analog, * how long we should wait for analog powered up. */ #define MIPI_DSI_ANA_CTRL 0x2c /* [31:8] reserved for future. * [7:0] tCLK_PRE. */ #define MIPI_DSI_CLK_TIM1 0x30 /* watchdog for turn around waiting time. */ #define MIPI_DSI_TURN_WCHDOG 0x34 /* When in RxULPS state, how frequency we should to check * if the TX side out of ULPS state. */ #define MIPI_DSI_ULPS_CHECK 0x38 #define MIPI_DSI_TEST_CTRL0 0x3c #define MIPI_DSI_TEST_CTRL1 0x40 struct phy_meson_axg_mipi_dphy_priv { struct device *dev; struct regmap *regmap; struct clk *clk; struct reset_control *reset; struct phy *analog; struct phy_configure_opts_mipi_dphy config; }; static const struct regmap_config phy_meson_axg_mipi_dphy_regmap_conf = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = MIPI_DSI_TEST_CTRL1, }; static int phy_meson_axg_mipi_dphy_init(struct phy *phy) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_init(priv->analog); if (ret) return ret; ret = reset_control_reset(priv->reset); if (ret) return ret; return 0; } static int phy_meson_axg_mipi_dphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); if (ret) return ret; ret = phy_configure(priv->analog, opts); if (ret) return ret; memcpy(&priv->config, opts, sizeof(priv->config)); return 0; } static int phy_meson_axg_mipi_dphy_power_on(struct phy *phy) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); int ret; unsigned long temp; ret = phy_power_on(priv->analog); if (ret) return ret; /* enable phy clock */ regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, 0x1); regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(0) | /* enable the DSI PLL clock . */ BIT(7) | /* enable pll clock which connected to DDR clock path */ BIT(8)); /* enable the clock divider counter */ /* enable the divider clock out */ regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(9), BIT(9)); /* enable the byte clock generation. */ regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(12), BIT(12)); regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31), BIT(31)); regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31), 0); /* Calculate lanebyteclk period in ps */ temp = (1000000 * 100) / (priv->config.hs_clk_rate / 1000); temp = temp * 8 * 10; regmap_write(priv->regmap, MIPI_DSI_CLK_TIM, DIV_ROUND_UP(priv->config.clk_trail, temp) | (DIV_ROUND_UP(priv->config.clk_post + priv->config.hs_trail, temp) << 8) | (DIV_ROUND_UP(priv->config.clk_zero, temp) << 16) | (DIV_ROUND_UP(priv->config.clk_prepare, temp) << 24)); regmap_write(priv->regmap, MIPI_DSI_CLK_TIM1, DIV_ROUND_UP(priv->config.clk_pre, BITS_PER_BYTE)); regmap_write(priv->regmap, MIPI_DSI_HS_TIM, DIV_ROUND_UP(priv->config.hs_exit, temp) | (DIV_ROUND_UP(priv->config.hs_trail, temp) << 8) | (DIV_ROUND_UP(priv->config.hs_zero, temp) << 16) | (DIV_ROUND_UP(priv->config.hs_prepare, temp) << 24)); regmap_write(priv->regmap, MIPI_DSI_LP_TIM, DIV_ROUND_UP(priv->config.lpx, temp) | (DIV_ROUND_UP(priv->config.ta_sure, temp) << 8) | (DIV_ROUND_UP(priv->config.ta_go, temp) << 16) | (DIV_ROUND_UP(priv->config.ta_get, temp) << 24)); regmap_write(priv->regmap, MIPI_DSI_ANA_UP_TIM, 0x0100); regmap_write(priv->regmap, MIPI_DSI_INIT_TIM, DIV_ROUND_UP(priv->config.init * NSEC_PER_MSEC, temp)); regmap_write(priv->regmap, MIPI_DSI_WAKEUP_TIM, DIV_ROUND_UP(priv->config.wakeup * NSEC_PER_MSEC, temp)); regmap_write(priv->regmap, MIPI_DSI_LPOK_TIM, 0x7C); regmap_write(priv->regmap, MIPI_DSI_ULPS_CHECK, 0x927C); regmap_write(priv->regmap, MIPI_DSI_LP_WCHDOG, 0x1000); regmap_write(priv->regmap, MIPI_DSI_TURN_WCHDOG, 0x1000); /* Powerup the analog circuit */ switch (priv->config.lanes) { case 1: regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xe); break; case 2: regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xc); break; case 3: regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0x8); break; case 4: default: regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0); break; } /* Trigger a sync active for esc_clk */ regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(1), BIT(1)); return 0; } static int phy_meson_axg_mipi_dphy_power_off(struct phy *phy) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xf); regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31)); phy_power_off(priv->analog); return 0; } static int phy_meson_axg_mipi_dphy_exit(struct phy *phy) { struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = phy_exit(priv->analog); if (ret) return ret; return reset_control_reset(priv->reset); } static const struct phy_ops phy_meson_axg_mipi_dphy_ops = { .configure = phy_meson_axg_mipi_dphy_configure, .init = phy_meson_axg_mipi_dphy_init, .exit = phy_meson_axg_mipi_dphy_exit, .power_on = phy_meson_axg_mipi_dphy_power_on, .power_off = phy_meson_axg_mipi_dphy_power_off, .owner = THIS_MODULE, }; static int phy_meson_axg_mipi_dphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct phy_meson_axg_mipi_dphy_priv *priv; struct phy *phy; void __iomem *base; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; platform_set_drvdata(pdev, priv); base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->regmap = devm_regmap_init_mmio(dev, base, &phy_meson_axg_mipi_dphy_regmap_conf); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); priv->clk = devm_clk_get(dev, "pclk"); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->reset = devm_reset_control_get(dev, "phy"); if (IS_ERR(priv->reset)) return PTR_ERR(priv->reset); priv->analog = devm_phy_get(dev, "analog"); if (IS_ERR(priv->analog)) return PTR_ERR(priv->analog); ret = clk_prepare_enable(priv->clk); if (ret) return ret; ret = reset_control_deassert(priv->reset); if (ret) return ret; phy = devm_phy_create(dev, NULL, &phy_meson_axg_mipi_dphy_ops); if (IS_ERR(phy)) { ret = PTR_ERR(phy); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to create PHY\n"); return ret; } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id phy_meson_axg_mipi_dphy_of_match[] = { { .compatible = "amlogic,axg-mipi-dphy", }, { }, }; MODULE_DEVICE_TABLE(of, phy_meson_axg_mipi_dphy_of_match); static struct platform_driver phy_meson_axg_mipi_dphy_driver = { .probe = phy_meson_axg_mipi_dphy_probe, .driver = { .name = "phy-meson-axg-mipi-dphy", .of_match_table = phy_meson_axg_mipi_dphy_of_match, }, }; module_platform_driver(phy_meson_axg_mipi_dphy_driver); MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>"); MODULE_DESCRIPTION("Meson AXG MIPI DPHY driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1