Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Baolin Wang | 3333 | 66.14% | 6 | 22.22% |
Yuanjiang Yu | 1671 | 33.16% | 15 | 55.56% |
Fuqian Huang | 13 | 0.26% | 2 | 7.41% |
Chunyan Zhang | 7 | 0.14% | 1 | 3.70% |
Linus Walleij | 7 | 0.14% | 1 | 3.70% |
Zou Wei | 7 | 0.14% | 1 | 3.70% |
Hans de Goede | 1 | 0.02% | 1 | 3.70% |
Total | 5039 | 27 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Spreadtrum Communications Inc. #include <linux/gpio/consumer.h> #include <linux/iio/consumer.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/slab.h> /* PMIC global control registers definition */ #define SC27XX_MODULE_EN0 0xc08 #define SC27XX_CLK_EN0 0xc18 #define SC27XX_FGU_EN BIT(7) #define SC27XX_FGU_RTC_EN BIT(6) /* FGU registers definition */ #define SC27XX_FGU_START 0x0 #define SC27XX_FGU_CONFIG 0x4 #define SC27XX_FGU_ADC_CONFIG 0x8 #define SC27XX_FGU_STATUS 0xc #define SC27XX_FGU_INT_EN 0x10 #define SC27XX_FGU_INT_CLR 0x14 #define SC27XX_FGU_INT_STS 0x1c #define SC27XX_FGU_VOLTAGE 0x20 #define SC27XX_FGU_OCV 0x24 #define SC27XX_FGU_POCV 0x28 #define SC27XX_FGU_CURRENT 0x2c #define SC27XX_FGU_LOW_OVERLOAD 0x34 #define SC27XX_FGU_CLBCNT_SETH 0x50 #define SC27XX_FGU_CLBCNT_SETL 0x54 #define SC27XX_FGU_CLBCNT_DELTH 0x58 #define SC27XX_FGU_CLBCNT_DELTL 0x5c #define SC27XX_FGU_CLBCNT_VALH 0x68 #define SC27XX_FGU_CLBCNT_VALL 0x6c #define SC27XX_FGU_CLBCNT_QMAXL 0x74 #define SC27XX_FGU_USER_AREA_SET 0xa0 #define SC27XX_FGU_USER_AREA_CLEAR 0xa4 #define SC27XX_FGU_USER_AREA_STATUS 0xa8 #define SC27XX_FGU_VOLTAGE_BUF 0xd0 #define SC27XX_FGU_CURRENT_BUF 0xf0 #define SC27XX_WRITE_SELCLB_EN BIT(0) #define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0) #define SC27XX_FGU_CLBCNT_SHIFT 16 #define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0) #define SC27XX_FGU_INT_MASK GENMASK(9, 0) #define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0) #define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2) #define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12) #define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0) #define SC27XX_FGU_MODE_AREA_SHIFT 12 #define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0) #define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0) #define SC27XX_FGU_NORMAIL_POWERTON 0x5 #define SC27XX_FGU_CUR_BASIC_ADC 8192 #define SC27XX_FGU_SAMPLE_HZ 2 /* micro Ohms */ #define SC27XX_FGU_IDEAL_RESISTANCE 20000 /* * struct sc27xx_fgu_data: describe the FGU device * @regmap: regmap for register access * @dev: platform device * @battery: battery power supply * @base: the base offset for the controller * @lock: protect the structure * @gpiod: GPIO for battery detection * @channel: IIO channel to get battery temperature * @charge_chan: IIO channel to get charge voltage * @internal_resist: the battery internal resistance in mOhm * @total_cap: the total capacity of the battery in mAh * @init_cap: the initial capacity of the battery in mAh * @alarm_cap: the alarm capacity * @init_clbcnt: the initial coulomb counter * @max_volt: the maximum constant input voltage in millivolt * @min_volt: the minimum drained battery voltage in microvolt * @boot_volt: the voltage measured during boot in microvolt * @table_len: the capacity table length * @resist_table_len: the resistance table length * @cur_1000ma_adc: ADC value corresponding to 1000 mA * @vol_1000mv_adc: ADC value corresponding to 1000 mV * @calib_resist: the real resistance of coulomb counter chip in uOhm * @cap_table: capacity table with corresponding ocv * @resist_table: resistance percent table with corresponding temperature */ struct sc27xx_fgu_data { struct regmap *regmap; struct device *dev; struct power_supply *battery; u32 base; struct mutex lock; struct gpio_desc *gpiod; struct iio_channel *channel; struct iio_channel *charge_chan; bool bat_present; int internal_resist; int total_cap; int init_cap; int alarm_cap; int init_clbcnt; int max_volt; int min_volt; int boot_volt; int table_len; int resist_table_len; int cur_1000ma_adc; int vol_1000mv_adc; int calib_resist; struct power_supply_battery_ocv_table *cap_table; struct power_supply_resistance_temp_table *resist_table; }; static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity); static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data, int cap, bool int_mode); static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap); static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp); static const char * const sc27xx_charger_supply_name[] = { "sc2731_charger", "sc2720_charger", "sc2721_charger", "sc2723_charger", }; static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc) { return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc); } static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc) { return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc); } static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol) { return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000); } static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data) { int ret, status, cap, mode; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_USER_AREA_STATUS, &status); if (ret) return false; /* * We use low 4 bits to save the last battery capacity and high 12 bits * to save the system boot mode. */ mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT; cap = status & SC27XX_FGU_CAP_AREA_MASK; /* * When FGU has been powered down, the user area registers became * default value (0xffff), which can be used to valid if the system is * first power on or not. */ if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP) return true; return false; } static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data, int boot_mode) { int ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_CLEAR, SC27XX_FGU_MODE_AREA_MASK, SC27XX_FGU_MODE_AREA_MASK); if (ret) return ret; /* * Since the user area registers are put on power always-on region, * then these registers changing time will be a little long. Thus * here we should delay 200us to wait until values are updated * successfully according to the datasheet. */ udelay(200); ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_SET, SC27XX_FGU_MODE_AREA_MASK, boot_mode << SC27XX_FGU_MODE_AREA_SHIFT); if (ret) return ret; /* * Since the user area registers are put on power always-on region, * then these registers changing time will be a little long. Thus * here we should delay 200us to wait until values are updated * successfully according to the datasheet. */ udelay(200); /* * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to * make the user area data available, otherwise we can not save the user * area data. */ return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_CLEAR, SC27XX_FGU_MODE_AREA_MASK, 0); } static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap) { int ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_CLEAR, SC27XX_FGU_CAP_AREA_MASK, SC27XX_FGU_CAP_AREA_MASK); if (ret) return ret; /* * Since the user area registers are put on power always-on region, * then these registers changing time will be a little long. Thus * here we should delay 200us to wait until values are updated * successfully according to the datasheet. */ udelay(200); ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_SET, SC27XX_FGU_CAP_AREA_MASK, cap); if (ret) return ret; /* * Since the user area registers are put on power always-on region, * then these registers changing time will be a little long. Thus * here we should delay 200us to wait until values are updated * successfully according to the datasheet. */ udelay(200); /* * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to * make the user area data available, otherwise we can not save the user * area data. */ return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_CLEAR, SC27XX_FGU_CAP_AREA_MASK, 0); } static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap) { int ret, value; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_USER_AREA_STATUS, &value); if (ret) return ret; *cap = value & SC27XX_FGU_CAP_AREA_MASK; return 0; } /* * When system boots on, we can not read battery capacity from coulomb * registers, since now the coulomb registers are invalid. So we should * calculate the battery open circuit voltage, and get current battery * capacity according to the capacity table. */ static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap) { int volt, cur, oci, ocv, ret; bool is_first_poweron = sc27xx_fgu_is_first_poweron(data); /* * If system is not the first power on, we should use the last saved * battery capacity as the initial battery capacity. Otherwise we should * re-calculate the initial battery capacity. */ if (!is_first_poweron) { ret = sc27xx_fgu_read_last_cap(data, cap); if (ret) return ret; return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON); } /* * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved * the first sampled open circuit current. */ ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL, &cur); if (ret) return ret; cur <<= 1; oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); /* * Should get the OCV from SC27XX_FGU_POCV register at the system * beginning. It is ADC values reading from registers which need to * convert the corresponding voltage. */ ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt); if (ret) return ret; volt = sc27xx_fgu_adc_to_voltage(data, volt); ocv = volt * 1000 - oci * data->internal_resist; data->boot_volt = ocv; /* * Parse the capacity table to look up the correct capacity percent * according to current battery's corresponding OCV values. */ *cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, ocv); ret = sc27xx_fgu_save_last_cap(data, *cap); if (ret) return ret; return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON); } static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt) { int ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_SETL, SC27XX_FGU_CLBCNT_MASK, clbcnt); if (ret) return ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_SETH, SC27XX_FGU_CLBCNT_MASK, clbcnt >> SC27XX_FGU_CLBCNT_SHIFT); if (ret) return ret; return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START, SC27XX_WRITE_SELCLB_EN, SC27XX_WRITE_SELCLB_EN); } static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt) { int ccl, cch, ret; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL, &ccl); if (ret) return ret; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH, &cch); if (ret) return ret; *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK; *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT; return 0; } static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val) { int ret; u32 vol; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF, &vol); if (ret) return ret; /* * It is ADC values reading from registers which need to convert to * corresponding voltage values. */ *val = sc27xx_fgu_adc_to_voltage(data, vol); return 0; } static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val) { int ret; u32 cur; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF, &cur); if (ret) return ret; /* * It is ADC values reading from registers which need to convert to * corresponding current values. */ *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); return 0; } static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap) { int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp; /* Get current coulomb counters firstly */ ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt); if (ret) return ret; delta_clbcnt = cur_clbcnt - data->init_clbcnt; /* * Convert coulomb counter to delta capacity (mAh), and set multiplier * as 10 to improve the precision. */ temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ); temp = sc27xx_fgu_adc_to_current(data, temp / 1000); /* * Convert to capacity percent of the battery total capacity, * and multiplier is 100 too. */ delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap); *cap = delta_cap + data->init_cap; /* Calibrate the battery capacity in a normal range. */ sc27xx_fgu_capacity_calibration(data, *cap, false); return 0; } static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val) { int ret, vol; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol); if (ret) return ret; /* * It is ADC values reading from registers which need to convert to * corresponding voltage values. */ *val = sc27xx_fgu_adc_to_voltage(data, vol); return 0; } static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val) { int ret, cur; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur); if (ret) return ret; /* * It is ADC values reading from registers which need to convert to * corresponding current values. */ *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); return 0; } static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val) { int vol, cur, ret, temp, resistance; ret = sc27xx_fgu_get_vbat_vol(data, &vol); if (ret) return ret; ret = sc27xx_fgu_get_current(data, &cur); if (ret) return ret; resistance = data->internal_resist; if (data->resist_table_len > 0) { ret = sc27xx_fgu_get_temp(data, &temp); if (ret) return ret; resistance = power_supply_temp2resist_simple(data->resist_table, data->resist_table_len, temp); resistance = data->internal_resist * resistance / 100; } /* Return the battery OCV in micro volts. */ *val = vol * 1000 - cur * resistance; return 0; } static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val) { int ret, vol; ret = iio_read_channel_processed(data->charge_chan, &vol); if (ret < 0) return ret; *val = vol * 1000; return 0; } static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp) { return iio_read_channel_processed(data->channel, temp); } static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health) { int ret, vol; ret = sc27xx_fgu_get_vbat_vol(data, &vol); if (ret) return ret; if (vol > data->max_volt) *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else *health = POWER_SUPPLY_HEALTH_GOOD; return 0; } static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status) { union power_supply_propval val; struct power_supply *psy; int i, ret = -EINVAL; for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) { psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]); if (!psy) continue; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &val); power_supply_put(psy); if (ret) return ret; *status = val.intval; } return ret; } static int sc27xx_fgu_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy); int ret = 0; int value; mutex_lock(&data->lock); switch (psp) { case POWER_SUPPLY_PROP_STATUS: ret = sc27xx_fgu_get_status(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_HEALTH: ret = sc27xx_fgu_get_health(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = data->bat_present; break; case POWER_SUPPLY_PROP_TEMP: ret = sc27xx_fgu_get_temp(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CAPACITY: ret = sc27xx_fgu_get_capacity(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: ret = sc27xx_fgu_get_vbat_vol(data, &value); if (ret) goto error; val->intval = value * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_OCV: ret = sc27xx_fgu_get_vbat_ocv(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = sc27xx_fgu_get_charge_vol(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_CURRENT_AVG: ret = sc27xx_fgu_get_current(data, &value); if (ret) goto error; val->intval = value * 1000; break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: val->intval = data->total_cap * 1000; break; case POWER_SUPPLY_PROP_CHARGE_NOW: ret = sc27xx_fgu_get_clbcnt(data, &value); if (ret) goto error; value = DIV_ROUND_CLOSEST(value * 10, 36 * SC27XX_FGU_SAMPLE_HZ); val->intval = sc27xx_fgu_adc_to_current(data, value); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = sc27xx_fgu_get_vol_now(data, &value); if (ret) goto error; val->intval = value * 1000; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = sc27xx_fgu_get_cur_now(data, &value); if (ret) goto error; val->intval = value * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_BOOT: val->intval = data->boot_volt; break; default: ret = -EINVAL; break; } error: mutex_unlock(&data->lock); return ret; } static int sc27xx_fgu_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy); int ret; mutex_lock(&data->lock); switch (psp) { case POWER_SUPPLY_PROP_CAPACITY: ret = sc27xx_fgu_save_last_cap(data, val->intval); if (ret < 0) dev_err(data->dev, "failed to save battery capacity\n"); break; case POWER_SUPPLY_PROP_CALIBRATE: sc27xx_fgu_adjust_cap(data, val->intval); ret = 0; break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: data->total_cap = val->intval / 1000; ret = 0; break; default: ret = -EINVAL; } mutex_unlock(&data->lock); return ret; } static int sc27xx_fgu_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { return psp == POWER_SUPPLY_PROP_CAPACITY || psp == POWER_SUPPLY_PROP_CALIBRATE || psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN; } static enum power_supply_property sc27xx_fgu_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_VOLTAGE_BOOT, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_CALIBRATE, POWER_SUPPLY_PROP_CHARGE_NOW }; static const struct power_supply_desc sc27xx_fgu_desc = { .name = "sc27xx-fgu", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = sc27xx_fgu_props, .num_properties = ARRAY_SIZE(sc27xx_fgu_props), .get_property = sc27xx_fgu_get_property, .set_property = sc27xx_fgu_set_property, .external_power_changed = power_supply_changed, .property_is_writeable = sc27xx_fgu_property_is_writeable, .no_thermal = true, }; static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap) { int ret; data->init_cap = cap; ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt); if (ret) dev_err(data->dev, "failed to get init coulomb counter\n"); } static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data, int cap, bool int_mode) { int ret, ocv, chg_sts, adc; ret = sc27xx_fgu_get_vbat_ocv(data, &ocv); if (ret) { dev_err(data->dev, "get battery ocv error.\n"); return; } ret = sc27xx_fgu_get_status(data, &chg_sts); if (ret) { dev_err(data->dev, "get charger status error.\n"); return; } /* * If we are in charging mode, then we do not need to calibrate the * lower capacity. */ if (chg_sts == POWER_SUPPLY_STATUS_CHARGING) return; if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) { /* * If current OCV value is larger than the max OCV value in * OCV table, or the current capacity is larger than 100, * we should force the inititial capacity to 100. */ sc27xx_fgu_adjust_cap(data, 100); } else if (ocv <= data->cap_table[data->table_len - 1].ocv) { /* * If current OCV value is leass than the minimum OCV value in * OCV table, we should force the inititial capacity to 0. */ sc27xx_fgu_adjust_cap(data, 0); } else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) || (ocv > data->min_volt && cap <= data->alarm_cap)) { /* * If current OCV value is not matchable with current capacity, * we should re-calculate current capacity by looking up the * OCV table. */ int cur_cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, ocv); sc27xx_fgu_adjust_cap(data, cur_cap); } else if (ocv <= data->min_volt) { /* * If current OCV value is less than the low alarm voltage, but * current capacity is larger than the alarm capacity, we should * adjust the inititial capacity to alarm capacity. */ if (cap > data->alarm_cap) { sc27xx_fgu_adjust_cap(data, data->alarm_cap); } else { int cur_cap; /* * If current capacity is equal with 0 or less than 0 * (some error occurs), we should adjust inititial * capacity to the capacity corresponding to current OCV * value. */ cur_cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, ocv); sc27xx_fgu_adjust_cap(data, cur_cap); } if (!int_mode) return; /* * After adjusting the battery capacity, we should set the * lowest alarm voltage instead. */ data->min_volt = data->cap_table[data->table_len - 1].ocv; data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, data->min_volt); adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000); regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD, SC27XX_FGU_LOW_OVERLOAD_MASK, adc); } } static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id) { struct sc27xx_fgu_data *data = dev_id; int ret, cap; u32 status; mutex_lock(&data->lock); ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS, &status); if (ret) goto out; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR, status, status); if (ret) goto out; /* * When low overload voltage interrupt happens, we should calibrate the * battery capacity in lower voltage stage. */ if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT)) goto out; ret = sc27xx_fgu_get_capacity(data, &cap); if (ret) goto out; sc27xx_fgu_capacity_calibration(data, cap, true); out: mutex_unlock(&data->lock); power_supply_changed(data->battery); return IRQ_HANDLED; } static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id) { struct sc27xx_fgu_data *data = dev_id; int state; mutex_lock(&data->lock); state = gpiod_get_value_cansleep(data->gpiod); if (state < 0) { dev_err(data->dev, "failed to get gpio state\n"); mutex_unlock(&data->lock); return IRQ_RETVAL(state); } data->bat_present = !!state; mutex_unlock(&data->lock); power_supply_changed(data->battery); return IRQ_HANDLED; } static void sc27xx_fgu_disable(void *_data) { struct sc27xx_fgu_data *data = _data; regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0); regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0); } static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity) { /* * Get current capacity (mAh) = battery total capacity (mAh) * * current capacity percent (capacity / 100). */ int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100); /* * Convert current capacity (mAh) to coulomb counter according to the * formula: 1 mAh =3.6 coulomb. */ return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10); } static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data) { struct nvmem_cell *cell; int calib_data, cal_4200mv; void *buf; size_t len; cell = nvmem_cell_get(data->dev, "fgu_calib"); if (IS_ERR(cell)) return PTR_ERR(cell); buf = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(buf)) return PTR_ERR(buf); memcpy(&calib_data, buf, min(len, sizeof(u32))); /* * Get the ADC value corresponding to 4200 mV from eFuse controller * according to below formula. Then convert to ADC values corresponding * to 1000 mV and 1000 mA. */ cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256; data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42); data->cur_1000ma_adc = DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist, SC27XX_FGU_IDEAL_RESISTANCE); kfree(buf); return 0; } static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data) { struct power_supply_battery_info *info; struct power_supply_battery_ocv_table *table; int ret, delta_clbcnt, alarm_adc; ret = power_supply_get_battery_info(data->battery, &info); if (ret) { dev_err(data->dev, "failed to get battery information\n"); return ret; } data->total_cap = info->charge_full_design_uah / 1000; data->max_volt = info->constant_charge_voltage_max_uv / 1000; data->internal_resist = info->factory_internal_resistance_uohm / 1000; data->min_volt = info->voltage_min_design_uv; /* * For SC27XX fuel gauge device, we only use one ocv-capacity * table in normal temperature 20 Celsius. */ table = power_supply_find_ocv2cap_table(info, 20, &data->table_len); if (!table) return -EINVAL; data->cap_table = devm_kmemdup(data->dev, table, data->table_len * sizeof(*table), GFP_KERNEL); if (!data->cap_table) { power_supply_put_battery_info(data->battery, info); return -ENOMEM; } data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, data->min_volt); if (!data->alarm_cap) data->alarm_cap += 1; data->resist_table_len = info->resist_table_size; if (data->resist_table_len > 0) { data->resist_table = devm_kmemdup(data->dev, info->resist_table, data->resist_table_len * sizeof(struct power_supply_resistance_temp_table), GFP_KERNEL); if (!data->resist_table) { power_supply_put_battery_info(data->battery, info); return -ENOMEM; } } power_supply_put_battery_info(data->battery, info); ret = sc27xx_fgu_calibration(data); if (ret) return ret; /* Enable the FGU module */ ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, SC27XX_FGU_EN); if (ret) { dev_err(data->dev, "failed to enable fgu\n"); return ret; } /* Enable the FGU RTC clock to make it work */ ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN); if (ret) { dev_err(data->dev, "failed to enable fgu RTC clock\n"); goto disable_fgu; } ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR, SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK); if (ret) { dev_err(data->dev, "failed to clear interrupt status\n"); goto disable_clk; } /* * Set the voltage low overload threshold, which means when the battery * voltage is lower than this threshold, the controller will generate * one interrupt to notify. */ alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000); ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD, SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc); if (ret) { dev_err(data->dev, "failed to set fgu low overload\n"); goto disable_clk; } /* * Set the coulomb counter delta threshold, that means when the coulomb * counter change is multiples of the delta threshold, the controller * will generate one interrupt to notify the users to update the battery * capacity. Now we set the delta threshold as a counter value of 1% * capacity. */ delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1); ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL, SC27XX_FGU_CLBCNT_MASK, delta_clbcnt); if (ret) { dev_err(data->dev, "failed to set low delta coulomb counter\n"); goto disable_clk; } ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH, SC27XX_FGU_CLBCNT_MASK, delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT); if (ret) { dev_err(data->dev, "failed to set high delta coulomb counter\n"); goto disable_clk; } /* * Get the boot battery capacity when system powers on, which is used to * initialize the coulomb counter. After that, we can read the coulomb * counter to measure the battery capacity. */ ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap); if (ret) { dev_err(data->dev, "failed to get boot capacity\n"); goto disable_clk; } /* * Convert battery capacity to the corresponding initial coulomb counter * and set into coulomb counter registers. */ data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap); ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt); if (ret) { dev_err(data->dev, "failed to initialize coulomb counter\n"); goto disable_clk; } return 0; disable_clk: regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0); disable_fgu: regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0); return ret; } static int sc27xx_fgu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct power_supply_config fgu_cfg = { }; struct sc27xx_fgu_data *data; int ret, irq; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->regmap = dev_get_regmap(dev->parent, NULL); if (!data->regmap) { dev_err(dev, "failed to get regmap\n"); return -ENODEV; } ret = device_property_read_u32(dev, "reg", &data->base); if (ret) { dev_err(dev, "failed to get fgu address\n"); return ret; } ret = device_property_read_u32(&pdev->dev, "sprd,calib-resistance-micro-ohms", &data->calib_resist); if (ret) { dev_err(&pdev->dev, "failed to get fgu calibration resistance\n"); return ret; } data->channel = devm_iio_channel_get(dev, "bat-temp"); if (IS_ERR(data->channel)) { dev_err(dev, "failed to get IIO channel\n"); return PTR_ERR(data->channel); } data->charge_chan = devm_iio_channel_get(dev, "charge-vol"); if (IS_ERR(data->charge_chan)) { dev_err(dev, "failed to get charge IIO channel\n"); return PTR_ERR(data->charge_chan); } data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN); if (IS_ERR(data->gpiod)) { dev_err(dev, "failed to get battery detection GPIO\n"); return PTR_ERR(data->gpiod); } ret = gpiod_get_value_cansleep(data->gpiod); if (ret < 0) { dev_err(dev, "failed to get gpio state\n"); return ret; } data->bat_present = !!ret; mutex_init(&data->lock); data->dev = dev; platform_set_drvdata(pdev, data); fgu_cfg.drv_data = data; fgu_cfg.of_node = np; data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc, &fgu_cfg); if (IS_ERR(data->battery)) { dev_err(dev, "failed to register power supply\n"); return PTR_ERR(data->battery); } ret = sc27xx_fgu_hw_init(data); if (ret) { dev_err(dev, "failed to initialize fgu hardware\n"); return ret; } ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data); if (ret) { dev_err(dev, "failed to add fgu disable action\n"); return ret; } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_threaded_irq(data->dev, irq, NULL, sc27xx_fgu_interrupt, IRQF_NO_SUSPEND | IRQF_ONESHOT, pdev->name, data); if (ret) { dev_err(data->dev, "failed to request fgu IRQ\n"); return ret; } irq = gpiod_to_irq(data->gpiod); if (irq < 0) { dev_err(dev, "failed to translate GPIO to IRQ\n"); return irq; } ret = devm_request_threaded_irq(dev, irq, NULL, sc27xx_fgu_bat_detection, IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, pdev->name, data); if (ret) { dev_err(dev, "failed to request IRQ\n"); return ret; } return 0; } #ifdef CONFIG_PM_SLEEP static int sc27xx_fgu_resume(struct device *dev) { struct sc27xx_fgu_data *data = dev_get_drvdata(dev); int ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, SC27XX_FGU_LOW_OVERLOAD_INT | SC27XX_FGU_CLBCNT_DELTA_INT, 0); if (ret) { dev_err(data->dev, "failed to disable fgu interrupts\n"); return ret; } return 0; } static int sc27xx_fgu_suspend(struct device *dev) { struct sc27xx_fgu_data *data = dev_get_drvdata(dev); int ret, status, ocv; ret = sc27xx_fgu_get_status(data, &status); if (ret) return ret; /* * If we are charging, then no need to enable the FGU interrupts to * adjust the battery capacity. */ if (status != POWER_SUPPLY_STATUS_NOT_CHARGING && status != POWER_SUPPLY_STATUS_DISCHARGING) return 0; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, SC27XX_FGU_LOW_OVERLOAD_INT, SC27XX_FGU_LOW_OVERLOAD_INT); if (ret) { dev_err(data->dev, "failed to enable low voltage interrupt\n"); return ret; } ret = sc27xx_fgu_get_vbat_ocv(data, &ocv); if (ret) goto disable_int; /* * If current OCV is less than the minimum voltage, we should enable the * coulomb counter threshold interrupt to notify events to adjust the * battery capacity. */ if (ocv < data->min_volt) { ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, SC27XX_FGU_CLBCNT_DELTA_INT, SC27XX_FGU_CLBCNT_DELTA_INT); if (ret) { dev_err(data->dev, "failed to enable coulomb threshold int\n"); goto disable_int; } } return 0; disable_int: regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, SC27XX_FGU_LOW_OVERLOAD_INT, 0); return ret; } #endif static const struct dev_pm_ops sc27xx_fgu_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume) }; static const struct of_device_id sc27xx_fgu_of_match[] = { { .compatible = "sprd,sc2731-fgu", }, { } }; MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match); static struct platform_driver sc27xx_fgu_driver = { .probe = sc27xx_fgu_probe, .driver = { .name = "sc27xx-fgu", .of_match_table = sc27xx_fgu_of_match, .pm = &sc27xx_fgu_pm_ops, } }; module_platform_driver(sc27xx_fgu_driver); MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1