Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 812 | 52.80% | 6 | 20.00% |
Laxman Dewangan | 206 | 13.39% | 6 | 20.00% |
Dmitry Osipenko | 187 | 12.16% | 1 | 3.33% |
Uwe Kleine-König | 147 | 9.56% | 5 | 16.67% |
Sandipan Patra | 100 | 6.50% | 2 | 6.67% |
Rohith Seelaboyina | 48 | 3.12% | 1 | 3.33% |
Jon Hunter | 23 | 1.50% | 2 | 6.67% |
Hyong Bin Kim | 5 | 0.33% | 1 | 3.33% |
Steven Price | 3 | 0.20% | 1 | 3.33% |
Boris Brezillon | 2 | 0.13% | 1 | 3.33% |
Yangtao Li | 2 | 0.13% | 1 | 3.33% |
Philipp Zabel | 1 | 0.07% | 1 | 3.33% |
Thomas Gleixner | 1 | 0.07% | 1 | 3.33% |
Axel Lin | 1 | 0.07% | 1 | 3.33% |
Total | 1538 | 30 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/pwm/pwm-tegra.c * * Tegra pulse-width-modulation controller driver * * Copyright (c) 2010-2020, NVIDIA Corporation. * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de> * * Overview of Tegra Pulse Width Modulator Register: * 1. 13-bit: Frequency division (SCALE) * 2. 8-bit : Pulse division (DUTY) * 3. 1-bit : Enable bit * * The PWM clock frequency is divided by 256 before subdividing it based * on the programmable frequency division value to generate the required * frequency for PWM output. The maximum output frequency that can be * achieved is (max rate of source clock) / 256. * e.g. if source clock rate is 408 MHz, maximum output frequency can be: * 408 MHz/256 = 1.6 MHz. * This 1.6 MHz frequency can further be divided using SCALE value in PWM. * * PWM pulse width: 8 bits are usable [23:16] for varying pulse width. * To achieve 100% duty cycle, program Bit [24] of this register to * 1’b1. In which case the other bits [23:16] are set to don't care. * * Limitations: * - When PWM is disabled, the output is driven to inactive. * - It does not allow the current PWM period to complete and * stops abruptly. * * - If the register is reconfigured while PWM is running, * it does not complete the currently running period. * * - If the user input duty is beyond acceptible limits, * -EINVAL is returned. */ #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pm_opp.h> #include <linux/pwm.h> #include <linux/platform_device.h> #include <linux/pinctrl/consumer.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/reset.h> #include <soc/tegra/common.h> #define PWM_ENABLE (1 << 31) #define PWM_DUTY_WIDTH 8 #define PWM_DUTY_SHIFT 16 #define PWM_SCALE_WIDTH 13 #define PWM_SCALE_SHIFT 0 struct tegra_pwm_soc { unsigned int num_channels; /* Maximum IP frequency for given SoCs */ unsigned long max_frequency; }; struct tegra_pwm_chip { struct pwm_chip chip; struct device *dev; struct clk *clk; struct reset_control*rst; unsigned long clk_rate; unsigned long min_period_ns; void __iomem *regs; const struct tegra_pwm_soc *soc; }; static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip) { return container_of(chip, struct tegra_pwm_chip, chip); } static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset) { return readl(pc->regs + (offset << 4)); } static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value) { writel(value, pc->regs + (offset << 4)); } static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip); unsigned long long c = duty_ns; unsigned long rate, required_clk_rate; u32 val = 0; int err; /* * Convert from duty_ns / period_ns to a fixed number of duty ticks * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the * nearest integer during division. */ c *= (1 << PWM_DUTY_WIDTH); c = DIV_ROUND_CLOSEST_ULL(c, period_ns); val = (u32)c << PWM_DUTY_SHIFT; /* * min period = max clock limit >> PWM_DUTY_WIDTH */ if (period_ns < pc->min_period_ns) return -EINVAL; /* * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH) * cycles at the PWM clock rate will take period_ns nanoseconds. * * num_channels: If single instance of PWM controller has multiple * channels (e.g. Tegra210 or older) then it is not possible to * configure separate clock rates to each of the channels, in such * case the value stored during probe will be referred. * * If every PWM controller instance has one channel respectively, i.e. * nums_channels == 1 then only the clock rate can be modified * dynamically (e.g. Tegra186 or Tegra194). */ if (pc->soc->num_channels == 1) { /* * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches * with the maximum possible rate that the controller can * provide. Any further lower value can be derived by setting * PFM bits[0:12]. * * required_clk_rate is a reference rate for source clock and * it is derived based on user requested period. By setting the * source clock rate as required_clk_rate, PWM controller will * be able to configure the requested period. */ required_clk_rate = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC << PWM_DUTY_WIDTH, period_ns); if (required_clk_rate > clk_round_rate(pc->clk, required_clk_rate)) /* * required_clk_rate is a lower bound for the input * rate; for lower rates there is no value for PWM_SCALE * that yields a period less than or equal to the * requested period. Hence, for lower rates, double the * required_clk_rate to get a clock rate that can meet * the requested period. */ required_clk_rate *= 2; err = dev_pm_opp_set_rate(pc->dev, required_clk_rate); if (err < 0) return -EINVAL; /* Store the new rate for further references */ pc->clk_rate = clk_get_rate(pc->clk); } /* Consider precision in PWM_SCALE_WIDTH rate calculation */ rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns, (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH); /* * Since the actual PWM divider is the register's frequency divider * field plus 1, we need to decrement to get the correct value to * write to the register. */ if (rate > 0) rate--; else return -EINVAL; /* * Make sure that the rate will fit in the register's frequency * divider field. */ if (rate >> PWM_SCALE_WIDTH) return -EINVAL; val |= rate << PWM_SCALE_SHIFT; /* * If the PWM channel is disabled, make sure to turn on the clock * before writing the register. Otherwise, keep it enabled. */ if (!pwm_is_enabled(pwm)) { err = pm_runtime_resume_and_get(pc->dev); if (err) return err; } else val |= PWM_ENABLE; pwm_writel(pc, pwm->hwpwm, val); /* * If the PWM is not enabled, turn the clock off again to save power. */ if (!pwm_is_enabled(pwm)) pm_runtime_put(pc->dev); return 0; } static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip); int rc = 0; u32 val; rc = pm_runtime_resume_and_get(pc->dev); if (rc) return rc; val = pwm_readl(pc, pwm->hwpwm); val |= PWM_ENABLE; pwm_writel(pc, pwm->hwpwm, val); return 0; } static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip); u32 val; val = pwm_readl(pc, pwm->hwpwm); val &= ~PWM_ENABLE; pwm_writel(pc, pwm->hwpwm, val); pm_runtime_put_sync(pc->dev); } static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; bool enabled = pwm->state.enabled; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (!state->enabled) { if (enabled) tegra_pwm_disable(chip, pwm); return 0; } err = tegra_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period); if (err) return err; if (!enabled) err = tegra_pwm_enable(chip, pwm); return err; } static const struct pwm_ops tegra_pwm_ops = { .apply = tegra_pwm_apply, .owner = THIS_MODULE, }; static int tegra_pwm_probe(struct platform_device *pdev) { struct tegra_pwm_chip *pc; int ret; pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL); if (!pc) return -ENOMEM; pc->soc = of_device_get_match_data(&pdev->dev); pc->dev = &pdev->dev; pc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pc->regs)) return PTR_ERR(pc->regs); platform_set_drvdata(pdev, pc); pc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(pc->clk)) return PTR_ERR(pc->clk); ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); if (ret) return ret; pm_runtime_enable(&pdev->dev); ret = pm_runtime_resume_and_get(&pdev->dev); if (ret) return ret; /* Set maximum frequency of the IP */ ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency); if (ret < 0) { dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret); goto put_pm; } /* * The requested and configured frequency may differ due to * clock register resolutions. Get the configured frequency * so that PWM period can be calculated more accurately. */ pc->clk_rate = clk_get_rate(pc->clk); /* Set minimum limit of PWM period for the IP */ pc->min_period_ns = (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1; pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm"); if (IS_ERR(pc->rst)) { ret = PTR_ERR(pc->rst); dev_err(&pdev->dev, "Reset control is not found: %d\n", ret); goto put_pm; } reset_control_deassert(pc->rst); pc->chip.dev = &pdev->dev; pc->chip.ops = &tegra_pwm_ops; pc->chip.npwm = pc->soc->num_channels; ret = pwmchip_add(&pc->chip); if (ret < 0) { dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret); reset_control_assert(pc->rst); goto put_pm; } pm_runtime_put(&pdev->dev); return 0; put_pm: pm_runtime_put_sync_suspend(&pdev->dev); pm_runtime_force_suspend(&pdev->dev); return ret; } static void tegra_pwm_remove(struct platform_device *pdev) { struct tegra_pwm_chip *pc = platform_get_drvdata(pdev); pwmchip_remove(&pc->chip); reset_control_assert(pc->rst); pm_runtime_force_suspend(&pdev->dev); } static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev) { struct tegra_pwm_chip *pc = dev_get_drvdata(dev); int err; clk_disable_unprepare(pc->clk); err = pinctrl_pm_select_sleep_state(dev); if (err) { clk_prepare_enable(pc->clk); return err; } return 0; } static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev) { struct tegra_pwm_chip *pc = dev_get_drvdata(dev); int err; err = pinctrl_pm_select_default_state(dev); if (err) return err; err = clk_prepare_enable(pc->clk); if (err) { pinctrl_pm_select_sleep_state(dev); return err; } return 0; } static const struct tegra_pwm_soc tegra20_pwm_soc = { .num_channels = 4, .max_frequency = 48000000UL, }; static const struct tegra_pwm_soc tegra186_pwm_soc = { .num_channels = 1, .max_frequency = 102000000UL, }; static const struct tegra_pwm_soc tegra194_pwm_soc = { .num_channels = 1, .max_frequency = 408000000UL, }; static const struct of_device_id tegra_pwm_of_match[] = { { .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc }, { .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc }, { .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc }, { } }; MODULE_DEVICE_TABLE(of, tegra_pwm_of_match); static const struct dev_pm_ops tegra_pwm_pm_ops = { SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct platform_driver tegra_pwm_driver = { .driver = { .name = "tegra-pwm", .of_match_table = tegra_pwm_of_match, .pm = &tegra_pwm_pm_ops, }, .probe = tegra_pwm_probe, .remove_new = tegra_pwm_remove, }; module_platform_driver(tegra_pwm_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>"); MODULE_DESCRIPTION("Tegra PWM controller driver"); MODULE_ALIAS("platform:tegra-pwm");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1