Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Ujfalusi | 1334 | 84.70% | 1 | 11.11% |
Uwe Kleine-König | 230 | 14.60% | 3 | 33.33% |
Axel Lin | 5 | 0.32% | 1 | 11.11% |
Sachin Kamat | 3 | 0.19% | 1 | 11.11% |
Wolfram Sang | 1 | 0.06% | 1 | 11.11% |
Thierry Reding | 1 | 0.06% | 1 | 11.11% |
Thomas Gleixner | 1 | 0.06% | 1 | 11.11% |
Total | 1575 | 9 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for TWL4030/6030 Pulse Width Modulator used as LED driver * * Copyright (C) 2012 Texas Instruments * Author: Peter Ujfalusi <peter.ujfalusi@ti.com> * * This driver is a complete rewrite of the former pwm-twl6030.c authorded by: * Hemanth V <hemanthv@ti.com> * * Reference manual for the twl6030 is available at: * https://www.ti.com/lit/ds/symlink/twl6030.pdf * * Limitations: * - The twl6030 hardware only supports two period lengths (128 clock ticks and * 64 clock ticks), the driver only uses 128 ticks * - The hardware doesn't support ON = 0, so the active part of a period doesn't * start at its beginning. * - The hardware could support inverted polarity (with a similar limitation as * for normal: the last clock tick is always inactive). * - The hardware emits a constant low output when disabled. * - A request for .duty_cycle = 0 results in an output wave with one active * clock tick per period. This should better use the disabled state. * - The driver only implements setting the relative duty cycle. * - The driver doesn't implement .get_state(). */ #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/mfd/twl.h> #include <linux/slab.h> /* * This driver handles the PWM driven LED terminals of TWL4030 and TWL6030. * To generate the signal on TWL4030: * - LEDA uses PWMA * - LEDB uses PWMB * TWL6030 has one LED pin with dedicated LEDPWM */ #define TWL4030_LED_MAX 0x7f #define TWL6030_LED_MAX 0xff /* Registers, bits and macro for TWL4030 */ #define TWL4030_LEDEN_REG 0x00 #define TWL4030_PWMA_REG 0x01 #define TWL4030_LEDXON (1 << 0) #define TWL4030_LEDXPWM (1 << 4) #define TWL4030_LED_PINS (TWL4030_LEDXON | TWL4030_LEDXPWM) #define TWL4030_LED_TOGGLE(led, x) ((x) << (led)) /* Register, bits and macro for TWL6030 */ #define TWL6030_LED_PWM_CTRL1 0xf4 #define TWL6030_LED_PWM_CTRL2 0xf5 #define TWL6040_LED_MODE_HW 0x00 #define TWL6040_LED_MODE_ON 0x01 #define TWL6040_LED_MODE_OFF 0x02 #define TWL6040_LED_MODE_MASK 0x03 struct twl_pwmled_chip { struct pwm_chip chip; struct mutex mutex; }; static inline struct twl_pwmled_chip *to_twl(struct pwm_chip *chip) { return container_of(chip, struct twl_pwmled_chip, chip); } static int twl4030_pwmled_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { int duty_cycle = DIV_ROUND_UP(duty_ns * TWL4030_LED_MAX, period_ns) + 1; u8 pwm_config[2] = { 1, 0 }; int base, ret; /* * To configure the duty period: * On-cycle is set to 1 (the minimum allowed value) * The off time of 0 is not configurable, so the mapping is: * 0 -> off cycle = 2, * 1 -> off cycle = 2, * 2 -> off cycle = 3, * 126 - > off cycle 127, * 127 - > off cycle 1 * When on cycle == off cycle the PWM will be always on */ if (duty_cycle == 1) duty_cycle = 2; else if (duty_cycle > TWL4030_LED_MAX) duty_cycle = 1; base = pwm->hwpwm * 2 + TWL4030_PWMA_REG; pwm_config[1] = duty_cycle; ret = twl_i2c_write(TWL4030_MODULE_LED, pwm_config, base, 2); if (ret < 0) dev_err(chip->dev, "%s: Failed to configure PWM\n", pwm->label); return ret; } static int twl4030_pwmled_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL4030_MODULE_LED, &val, TWL4030_LEDEN_REG); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read LEDEN\n", pwm->label); goto out; } val |= TWL4030_LED_TOGGLE(pwm->hwpwm, TWL4030_LED_PINS); ret = twl_i2c_write_u8(TWL4030_MODULE_LED, val, TWL4030_LEDEN_REG); if (ret < 0) dev_err(chip->dev, "%s: Failed to enable PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); return ret; } static void twl4030_pwmled_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL4030_MODULE_LED, &val, TWL4030_LEDEN_REG); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read LEDEN\n", pwm->label); goto out; } val &= ~TWL4030_LED_TOGGLE(pwm->hwpwm, TWL4030_LED_PINS); ret = twl_i2c_write_u8(TWL4030_MODULE_LED, val, TWL4030_LEDEN_REG); if (ret < 0) dev_err(chip->dev, "%s: Failed to disable PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); } static int twl4030_pwmled_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int ret; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (!state->enabled) { if (pwm->state.enabled) twl4030_pwmled_disable(chip, pwm); return 0; } /* * We cannot skip calling ->config even if state->period == * pwm->state.period && state->duty_cycle == pwm->state.duty_cycle * because we might have exited early in the last call to * pwm_apply_state because of !state->enabled and so the two values in * pwm->state might not be configured in hardware. */ ret = twl4030_pwmled_config(pwm->chip, pwm, state->duty_cycle, state->period); if (ret) return ret; if (!pwm->state.enabled) ret = twl4030_pwmled_enable(chip, pwm); return ret; } static const struct pwm_ops twl4030_pwmled_ops = { .apply = twl4030_pwmled_apply, .owner = THIS_MODULE, }; static int twl6030_pwmled_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { int duty_cycle = (duty_ns * TWL6030_LED_MAX) / period_ns; u8 on_time; int ret; on_time = duty_cycle & 0xff; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, on_time, TWL6030_LED_PWM_CTRL1); if (ret < 0) dev_err(chip->dev, "%s: Failed to configure PWM\n", pwm->label); return ret; } static int twl6030_pwmled_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL6030_MODULE_ID1, &val, TWL6030_LED_PWM_CTRL2); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read PWM_CTRL2\n", pwm->label); goto out; } val &= ~TWL6040_LED_MODE_MASK; val |= TWL6040_LED_MODE_ON; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, val, TWL6030_LED_PWM_CTRL2); if (ret < 0) dev_err(chip->dev, "%s: Failed to enable PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); return ret; } static void twl6030_pwmled_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL6030_MODULE_ID1, &val, TWL6030_LED_PWM_CTRL2); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read PWM_CTRL2\n", pwm->label); goto out; } val &= ~TWL6040_LED_MODE_MASK; val |= TWL6040_LED_MODE_OFF; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, val, TWL6030_LED_PWM_CTRL2); if (ret < 0) dev_err(chip->dev, "%s: Failed to disable PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); } static int twl6030_pwmled_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; if (state->polarity != pwm->state.polarity) return -EINVAL; if (!state->enabled) { if (pwm->state.enabled) twl6030_pwmled_disable(chip, pwm); return 0; } err = twl6030_pwmled_config(pwm->chip, pwm, state->duty_cycle, state->period); if (err) return err; if (!pwm->state.enabled) err = twl6030_pwmled_enable(chip, pwm); return err; } static int twl6030_pwmled_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL6030_MODULE_ID1, &val, TWL6030_LED_PWM_CTRL2); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read PWM_CTRL2\n", pwm->label); goto out; } val &= ~TWL6040_LED_MODE_MASK; val |= TWL6040_LED_MODE_OFF; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, val, TWL6030_LED_PWM_CTRL2); if (ret < 0) dev_err(chip->dev, "%s: Failed to request PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); return ret; } static void twl6030_pwmled_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct twl_pwmled_chip *twl = to_twl(chip); int ret; u8 val; mutex_lock(&twl->mutex); ret = twl_i2c_read_u8(TWL6030_MODULE_ID1, &val, TWL6030_LED_PWM_CTRL2); if (ret < 0) { dev_err(chip->dev, "%s: Failed to read PWM_CTRL2\n", pwm->label); goto out; } val &= ~TWL6040_LED_MODE_MASK; val |= TWL6040_LED_MODE_HW; ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, val, TWL6030_LED_PWM_CTRL2); if (ret < 0) dev_err(chip->dev, "%s: Failed to free PWM\n", pwm->label); out: mutex_unlock(&twl->mutex); } static const struct pwm_ops twl6030_pwmled_ops = { .apply = twl6030_pwmled_apply, .request = twl6030_pwmled_request, .free = twl6030_pwmled_free, .owner = THIS_MODULE, }; static int twl_pwmled_probe(struct platform_device *pdev) { struct twl_pwmled_chip *twl; twl = devm_kzalloc(&pdev->dev, sizeof(*twl), GFP_KERNEL); if (!twl) return -ENOMEM; if (twl_class_is_4030()) { twl->chip.ops = &twl4030_pwmled_ops; twl->chip.npwm = 2; } else { twl->chip.ops = &twl6030_pwmled_ops; twl->chip.npwm = 1; } twl->chip.dev = &pdev->dev; mutex_init(&twl->mutex); return devm_pwmchip_add(&pdev->dev, &twl->chip); } #ifdef CONFIG_OF static const struct of_device_id twl_pwmled_of_match[] = { { .compatible = "ti,twl4030-pwmled" }, { .compatible = "ti,twl6030-pwmled" }, { }, }; MODULE_DEVICE_TABLE(of, twl_pwmled_of_match); #endif static struct platform_driver twl_pwmled_driver = { .driver = { .name = "twl-pwmled", .of_match_table = of_match_ptr(twl_pwmled_of_match), }, .probe = twl_pwmled_probe, }; module_platform_driver(twl_pwmled_driver); MODULE_AUTHOR("Peter Ujfalusi <peter.ujfalusi@ti.com>"); MODULE_DESCRIPTION("PWM driver for TWL4030 and TWL6030 LED outputs"); MODULE_ALIAS("platform:twl-pwmled"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1