Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Angelo G. Del Regno | 2513 | 74.72% | 5 | 45.45% |
Nisha Kumari | 813 | 24.17% | 1 | 9.09% |
Matti Vaittinen | 27 | 0.80% | 2 | 18.18% |
Doug Anderson | 5 | 0.15% | 1 | 9.09% |
Rikard Falkeborn | 4 | 0.12% | 1 | 9.09% |
Marijn Suijten | 1 | 0.03% | 1 | 9.09% |
Total | 3363 | 11 |
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020, The Linux Foundation. All rights reserved. #include <linux/module.h> #include <linux/of_irq.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/regulator/of_regulator.h> #define REG_PERPH_TYPE 0x04 #define QCOM_LAB_TYPE 0x24 #define QCOM_IBB_TYPE 0x20 #define PMI8998_LAB_REG_BASE 0xde00 #define PMI8998_IBB_REG_BASE 0xdc00 #define PMI8998_IBB_LAB_REG_OFFSET 0x200 #define REG_LABIBB_STATUS1 0x08 #define LABIBB_STATUS1_SC_BIT BIT(6) #define LABIBB_STATUS1_VREG_OK_BIT BIT(7) #define REG_LABIBB_INT_SET_TYPE 0x11 #define REG_LABIBB_INT_POLARITY_HIGH 0x12 #define REG_LABIBB_INT_POLARITY_LOW 0x13 #define REG_LABIBB_INT_LATCHED_CLR 0x14 #define REG_LABIBB_INT_EN_SET 0x15 #define REG_LABIBB_INT_EN_CLR 0x16 #define LABIBB_INT_VREG_OK BIT(0) #define LABIBB_INT_VREG_TYPE_LEVEL 0 #define REG_LABIBB_VOLTAGE 0x41 #define LABIBB_VOLTAGE_OVERRIDE_EN BIT(7) #define LAB_VOLTAGE_SET_MASK GENMASK(3, 0) #define IBB_VOLTAGE_SET_MASK GENMASK(5, 0) #define REG_LABIBB_ENABLE_CTL 0x46 #define LABIBB_CONTROL_ENABLE BIT(7) #define REG_LABIBB_PD_CTL 0x47 #define LAB_PD_CTL_MASK GENMASK(1, 0) #define IBB_PD_CTL_MASK (BIT(0) | BIT(7)) #define LAB_PD_CTL_STRONG_PULL BIT(0) #define IBB_PD_CTL_HALF_STRENGTH BIT(0) #define IBB_PD_CTL_EN BIT(7) #define REG_LABIBB_CURRENT_LIMIT 0x4b #define LAB_CURRENT_LIMIT_MASK GENMASK(2, 0) #define IBB_CURRENT_LIMIT_MASK GENMASK(4, 0) #define LAB_CURRENT_LIMIT_OVERRIDE_EN BIT(3) #define LABIBB_CURRENT_LIMIT_EN BIT(7) #define REG_IBB_PWRUP_PWRDN_CTL_1 0x58 #define IBB_CTL_1_DISCHARGE_EN BIT(2) #define REG_LABIBB_SOFT_START_CTL 0x5f #define REG_LABIBB_SEC_ACCESS 0xd0 #define LABIBB_SEC_UNLOCK_CODE 0xa5 #define LAB_ENABLE_CTL_MASK BIT(7) #define IBB_ENABLE_CTL_MASK (BIT(7) | BIT(6)) #define LABIBB_OFF_ON_DELAY 1000 #define LAB_ENABLE_TIME (LABIBB_OFF_ON_DELAY * 2) #define IBB_ENABLE_TIME (LABIBB_OFF_ON_DELAY * 10) #define LABIBB_POLL_ENABLED_TIME 1000 #define OCP_RECOVERY_INTERVAL_MS 500 #define SC_RECOVERY_INTERVAL_MS 250 #define LABIBB_MAX_OCP_COUNT 4 #define LABIBB_MAX_SC_COUNT 3 #define LABIBB_MAX_FATAL_COUNT 2 struct labibb_current_limits { u32 uA_min; u32 uA_step; u8 ovr_val; }; struct labibb_regulator { struct regulator_desc desc; struct device *dev; struct regmap *regmap; struct regulator_dev *rdev; struct labibb_current_limits uA_limits; struct delayed_work ocp_recovery_work; struct delayed_work sc_recovery_work; u16 base; u8 type; u8 dischg_sel; u8 soft_start_sel; int sc_irq; int sc_count; int ocp_irq; int ocp_irq_count; int fatal_count; }; struct labibb_regulator_data { const char *name; u8 type; u16 base; const struct regulator_desc *desc; }; static int qcom_labibb_ocp_hw_enable(struct regulator_dev *rdev) { struct labibb_regulator *vreg = rdev_get_drvdata(rdev); int ret; /* Clear irq latch status to avoid spurious event */ ret = regmap_update_bits(rdev->regmap, vreg->base + REG_LABIBB_INT_LATCHED_CLR, LABIBB_INT_VREG_OK, 1); if (ret) return ret; /* Enable OCP HW interrupt */ return regmap_update_bits(rdev->regmap, vreg->base + REG_LABIBB_INT_EN_SET, LABIBB_INT_VREG_OK, 1); } static int qcom_labibb_ocp_hw_disable(struct regulator_dev *rdev) { struct labibb_regulator *vreg = rdev_get_drvdata(rdev); return regmap_update_bits(rdev->regmap, vreg->base + REG_LABIBB_INT_EN_CLR, LABIBB_INT_VREG_OK, 1); } /** * qcom_labibb_check_ocp_status - Check the Over-Current Protection status * @vreg: Main driver structure * * This function checks the STATUS1 register for the VREG_OK bit: if it is * set, then there is no Over-Current event. * * Returns: Zero if there is no over-current, 1 if in over-current or * negative number for error */ static int qcom_labibb_check_ocp_status(struct labibb_regulator *vreg) { u32 cur_status; int ret; ret = regmap_read(vreg->rdev->regmap, vreg->base + REG_LABIBB_STATUS1, &cur_status); if (ret) return ret; return !(cur_status & LABIBB_STATUS1_VREG_OK_BIT); } /** * qcom_labibb_ocp_recovery_worker - Handle OCP event * @work: OCP work structure * * This is the worker function to handle the Over Current Protection * hardware event; This will check if the hardware is still * signaling an over-current condition and will eventually stop * the regulator if such condition is still signaled after * LABIBB_MAX_OCP_COUNT times. * * If the driver that is consuming the regulator did not take action * for the OCP condition, or the hardware did not stabilize, a cut * of the LAB and IBB regulators will be forced (regulators will be * disabled). * * As last, if the writes to shut down the LAB/IBB regulators fail * for more than LABIBB_MAX_FATAL_COUNT, then a kernel panic will be * triggered, as a last resort to protect the hardware from burning; * this, however, is expected to never happen, but this is kept to * try to further ensure that we protect the hardware at all costs. */ static void qcom_labibb_ocp_recovery_worker(struct work_struct *work) { struct labibb_regulator *vreg; const struct regulator_ops *ops; int ret; vreg = container_of(work, struct labibb_regulator, ocp_recovery_work.work); ops = vreg->rdev->desc->ops; if (vreg->ocp_irq_count >= LABIBB_MAX_OCP_COUNT) { /* * If we tried to disable the regulator multiple times but * we kept failing, there's only one last hope to save our * hardware from the death: raise a kernel bug, reboot and * hope that the bootloader kindly saves us. This, though * is done only as paranoid checking, because failing the * regmap write to disable the vreg is almost impossible, * since we got here after multiple regmap R/W. */ BUG_ON(vreg->fatal_count > LABIBB_MAX_FATAL_COUNT); dev_err(&vreg->rdev->dev, "LABIBB: CRITICAL: Disabling regulator\n"); /* Disable the regulator immediately to avoid damage */ ret = ops->disable(vreg->rdev); if (ret) { vreg->fatal_count++; goto reschedule; } enable_irq(vreg->ocp_irq); vreg->fatal_count = 0; return; } ret = qcom_labibb_check_ocp_status(vreg); if (ret != 0) { vreg->ocp_irq_count++; goto reschedule; } ret = qcom_labibb_ocp_hw_enable(vreg->rdev); if (ret) { /* We cannot trust it without OCP enabled. */ dev_err(vreg->dev, "Cannot enable OCP IRQ\n"); vreg->ocp_irq_count++; goto reschedule; } enable_irq(vreg->ocp_irq); /* Everything went fine: reset the OCP count! */ vreg->ocp_irq_count = 0; return; reschedule: mod_delayed_work(system_wq, &vreg->ocp_recovery_work, msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS)); } /** * qcom_labibb_ocp_isr - Interrupt routine for OverCurrent Protection * @irq: Interrupt number * @chip: Main driver structure * * Over Current Protection (OCP) will signal to the client driver * that an over-current event has happened and then will schedule * a recovery worker. * * Disabling and eventually re-enabling the regulator is expected * to be done by the driver, as some hardware may be triggering an * over-current condition only at first initialization or it may * be expected only for a very brief amount of time, after which * the attached hardware may be expected to stabilize its current * draw. * * Returns: IRQ_HANDLED for success or IRQ_NONE for failure. */ static irqreturn_t qcom_labibb_ocp_isr(int irq, void *chip) { struct labibb_regulator *vreg = chip; const struct regulator_ops *ops = vreg->rdev->desc->ops; int ret; /* If the regulator is not enabled, this is a fake event */ if (!ops->is_enabled(vreg->rdev)) return IRQ_HANDLED; /* If we tried to recover for too many times it's not getting better */ if (vreg->ocp_irq_count > LABIBB_MAX_OCP_COUNT) return IRQ_NONE; /* * If we (unlikely) can't read this register, to prevent hardware * damage at all costs, we assume that the overcurrent event was * real; Moreover, if the status register is not signaling OCP, * it was a spurious event, so it's all ok. */ ret = qcom_labibb_check_ocp_status(vreg); if (ret == 0) { vreg->ocp_irq_count = 0; goto end; } vreg->ocp_irq_count++; /* * Disable the interrupt temporarily, or it will fire continuously; * we will re-enable it in the recovery worker function. */ disable_irq_nosync(irq); /* Warn the user for overcurrent */ dev_warn(vreg->dev, "Over-Current interrupt fired!\n"); /* Disable the interrupt to avoid hogging */ ret = qcom_labibb_ocp_hw_disable(vreg->rdev); if (ret) goto end; /* Signal overcurrent event to drivers */ regulator_notifier_call_chain(vreg->rdev, REGULATOR_EVENT_OVER_CURRENT, NULL); end: /* Schedule the recovery work */ schedule_delayed_work(&vreg->ocp_recovery_work, msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS)); if (ret) return IRQ_NONE; return IRQ_HANDLED; } static int qcom_labibb_set_ocp(struct regulator_dev *rdev, int lim, int severity, bool enable) { struct labibb_regulator *vreg = rdev_get_drvdata(rdev); char *ocp_irq_name; u32 irq_flags = IRQF_ONESHOT; int irq_trig_low, ret; /* * labibb supports only protection - and does not support setting * limit. Furthermore, we don't support disabling protection. */ if (lim || severity != REGULATOR_SEVERITY_PROT || !enable) return -EINVAL; /* If there is no OCP interrupt, there's nothing to set */ if (vreg->ocp_irq <= 0) return -EINVAL; ocp_irq_name = devm_kasprintf(vreg->dev, GFP_KERNEL, "%s-over-current", vreg->desc.name); if (!ocp_irq_name) return -ENOMEM; /* IRQ polarities - LAB: trigger-low, IBB: trigger-high */ switch (vreg->type) { case QCOM_LAB_TYPE: irq_flags |= IRQF_TRIGGER_LOW; irq_trig_low = 1; break; case QCOM_IBB_TYPE: irq_flags |= IRQF_TRIGGER_HIGH; irq_trig_low = 0; break; default: return -EINVAL; } /* Activate OCP HW level interrupt */ ret = regmap_update_bits(rdev->regmap, vreg->base + REG_LABIBB_INT_SET_TYPE, LABIBB_INT_VREG_OK, LABIBB_INT_VREG_TYPE_LEVEL); if (ret) return ret; /* Set OCP interrupt polarity */ ret = regmap_update_bits(rdev->regmap, vreg->base + REG_LABIBB_INT_POLARITY_HIGH, LABIBB_INT_VREG_OK, !irq_trig_low); if (ret) return ret; ret = regmap_update_bits(rdev->regmap, vreg->base + REG_LABIBB_INT_POLARITY_LOW, LABIBB_INT_VREG_OK, irq_trig_low); if (ret) return ret; ret = qcom_labibb_ocp_hw_enable(rdev); if (ret) return ret; return devm_request_threaded_irq(vreg->dev, vreg->ocp_irq, NULL, qcom_labibb_ocp_isr, irq_flags, ocp_irq_name, vreg); } /** * qcom_labibb_check_sc_status - Check the Short Circuit Protection status * @vreg: Main driver structure * * This function checks the STATUS1 register on both LAB and IBB regulators * for the ShortCircuit bit: if it is set on *any* of them, then we have * experienced a short-circuit event. * * Returns: Zero if there is no short-circuit, 1 if in short-circuit or * negative number for error */ static int qcom_labibb_check_sc_status(struct labibb_regulator *vreg) { u32 ibb_status, ibb_reg, lab_status, lab_reg; int ret; /* We have to work on both regulators due to PBS... */ lab_reg = ibb_reg = vreg->base + REG_LABIBB_STATUS1; if (vreg->type == QCOM_LAB_TYPE) ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET; else lab_reg += PMI8998_IBB_LAB_REG_OFFSET; ret = regmap_read(vreg->rdev->regmap, lab_reg, &lab_status); if (ret) return ret; ret = regmap_read(vreg->rdev->regmap, ibb_reg, &ibb_status); if (ret) return ret; return !!(lab_status & LABIBB_STATUS1_SC_BIT) || !!(ibb_status & LABIBB_STATUS1_SC_BIT); } /** * qcom_labibb_sc_recovery_worker - Handle Short Circuit event * @work: SC work structure * * This is the worker function to handle the Short Circuit Protection * hardware event; This will check if the hardware is still * signaling a short-circuit condition and will eventually never * re-enable the regulator if such condition is still signaled after * LABIBB_MAX_SC_COUNT times. * * If the driver that is consuming the regulator did not take action * for the SC condition, or the hardware did not stabilize, this * worker will stop rescheduling, leaving the regulators disabled * as already done by the Portable Batch System (PBS). * * Returns: IRQ_HANDLED for success or IRQ_NONE for failure. */ static void qcom_labibb_sc_recovery_worker(struct work_struct *work) { struct labibb_regulator *vreg; const struct regulator_ops *ops; u32 lab_reg, ibb_reg, lab_val, ibb_val, val; bool pbs_cut = false; int i, sc, ret; vreg = container_of(work, struct labibb_regulator, sc_recovery_work.work); ops = vreg->rdev->desc->ops; /* * If we tried to check the regulator status multiple times but we * kept failing, then just bail out, as the Portable Batch System * (PBS) will disable the vregs for us, preventing hardware damage. */ if (vreg->fatal_count > LABIBB_MAX_FATAL_COUNT) return; /* Too many short-circuit events. Throw in the towel. */ if (vreg->sc_count > LABIBB_MAX_SC_COUNT) return; /* * The Portable Batch System (PBS) automatically disables LAB * and IBB when a short-circuit event is detected, so we have to * check and work on both of them at the same time. */ lab_reg = ibb_reg = vreg->base + REG_LABIBB_ENABLE_CTL; if (vreg->type == QCOM_LAB_TYPE) ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET; else lab_reg += PMI8998_IBB_LAB_REG_OFFSET; sc = qcom_labibb_check_sc_status(vreg); if (sc) goto reschedule; for (i = 0; i < LABIBB_MAX_SC_COUNT; i++) { ret = regmap_read(vreg->regmap, lab_reg, &lab_val); if (ret) { vreg->fatal_count++; goto reschedule; } ret = regmap_read(vreg->regmap, ibb_reg, &ibb_val); if (ret) { vreg->fatal_count++; goto reschedule; } val = lab_val & ibb_val; if (!(val & LABIBB_CONTROL_ENABLE)) { pbs_cut = true; break; } usleep_range(5000, 6000); } if (pbs_cut) goto reschedule; /* * If we have reached this point, we either have successfully * recovered from the SC condition or we had a spurious SC IRQ, * which means that we can re-enable the regulators, if they * have ever been disabled by the PBS. */ ret = ops->enable(vreg->rdev); if (ret) goto reschedule; /* Everything went fine: reset the OCP count! */ vreg->sc_count = 0; enable_irq(vreg->sc_irq); return; reschedule: /* * Now that we have done basic handling of the short-circuit, * reschedule this worker in the regular system workqueue, as * taking action is not truly urgent anymore. */ vreg->sc_count++; mod_delayed_work(system_wq, &vreg->sc_recovery_work, msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS)); } /** * qcom_labibb_sc_isr - Interrupt routine for Short Circuit Protection * @irq: Interrupt number * @chip: Main driver structure * * Short Circuit Protection (SCP) will signal to the client driver * that a regulation-out event has happened and then will schedule * a recovery worker. * * The LAB and IBB regulators will be automatically disabled by the * Portable Batch System (PBS) and they will be enabled again by * the worker function if the hardware stops signaling the short * circuit event. * * Returns: IRQ_HANDLED for success or IRQ_NONE for failure. */ static irqreturn_t qcom_labibb_sc_isr(int irq, void *chip) { struct labibb_regulator *vreg = chip; if (vreg->sc_count > LABIBB_MAX_SC_COUNT) return IRQ_NONE; /* Warn the user for short circuit */ dev_warn(vreg->dev, "Short-Circuit interrupt fired!\n"); /* * Disable the interrupt temporarily, or it will fire continuously; * we will re-enable it in the recovery worker function. */ disable_irq_nosync(irq); /* Signal out of regulation event to drivers */ regulator_notifier_call_chain(vreg->rdev, REGULATOR_EVENT_REGULATION_OUT, NULL); /* Schedule the short-circuit handling as high-priority work */ mod_delayed_work(system_highpri_wq, &vreg->sc_recovery_work, msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS)); return IRQ_HANDLED; } static int qcom_labibb_set_current_limit(struct regulator_dev *rdev, int min_uA, int max_uA) { struct labibb_regulator *vreg = rdev_get_drvdata(rdev); struct regulator_desc *desc = &vreg->desc; struct labibb_current_limits *lim = &vreg->uA_limits; u32 mask, val; int i, ret, sel = -1; if (min_uA < lim->uA_min || max_uA < lim->uA_min) return -EINVAL; for (i = 0; i < desc->n_current_limits; i++) { int uA_limit = (lim->uA_step * i) + lim->uA_min; if (max_uA >= uA_limit && min_uA <= uA_limit) sel = i; } if (sel < 0) return -EINVAL; /* Current limit setting needs secure access */ ret = regmap_write(vreg->regmap, vreg->base + REG_LABIBB_SEC_ACCESS, LABIBB_SEC_UNLOCK_CODE); if (ret) return ret; mask = desc->csel_mask | lim->ovr_val; mask |= LABIBB_CURRENT_LIMIT_EN; val = (u32)sel | lim->ovr_val; val |= LABIBB_CURRENT_LIMIT_EN; return regmap_update_bits(vreg->regmap, desc->csel_reg, mask, val); } static int qcom_labibb_get_current_limit(struct regulator_dev *rdev) { struct labibb_regulator *vreg = rdev_get_drvdata(rdev); struct regulator_desc *desc = &vreg->desc; struct labibb_current_limits *lim = &vreg->uA_limits; unsigned int cur_step; int ret; ret = regmap_read(vreg->regmap, desc->csel_reg, &cur_step); if (ret) return ret; cur_step &= desc->csel_mask; return (cur_step * lim->uA_step) + lim->uA_min; } static int qcom_labibb_set_soft_start(struct regulator_dev *rdev) { struct labibb_regulator *vreg = rdev_get_drvdata(rdev); u32 val = 0; if (vreg->type == QCOM_IBB_TYPE) val = vreg->dischg_sel; else val = vreg->soft_start_sel; return regmap_write(rdev->regmap, rdev->desc->soft_start_reg, val); } static int qcom_labibb_get_table_sel(const int *table, int sz, u32 value) { int i; for (i = 0; i < sz; i++) if (table[i] == value) return i; return -EINVAL; } /* IBB discharge resistor values in KOhms */ static const int dischg_resistor_values[] = { 300, 64, 32, 16 }; /* Soft start time in microseconds */ static const int soft_start_values[] = { 200, 400, 600, 800 }; static int qcom_labibb_of_parse_cb(struct device_node *np, const struct regulator_desc *desc, struct regulator_config *config) { struct labibb_regulator *vreg = config->driver_data; u32 dischg_kohms, soft_start_time; int ret; ret = of_property_read_u32(np, "qcom,discharge-resistor-kohms", &dischg_kohms); if (ret) dischg_kohms = 300; ret = qcom_labibb_get_table_sel(dischg_resistor_values, ARRAY_SIZE(dischg_resistor_values), dischg_kohms); if (ret < 0) return ret; vreg->dischg_sel = (u8)ret; ret = of_property_read_u32(np, "qcom,soft-start-us", &soft_start_time); if (ret) soft_start_time = 200; ret = qcom_labibb_get_table_sel(soft_start_values, ARRAY_SIZE(soft_start_values), soft_start_time); if (ret < 0) return ret; vreg->soft_start_sel = (u8)ret; return 0; } static const struct regulator_ops qcom_labibb_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .list_voltage = regulator_list_voltage_linear, .map_voltage = regulator_map_voltage_linear, .set_active_discharge = regulator_set_active_discharge_regmap, .set_pull_down = regulator_set_pull_down_regmap, .set_current_limit = qcom_labibb_set_current_limit, .get_current_limit = qcom_labibb_get_current_limit, .set_soft_start = qcom_labibb_set_soft_start, .set_over_current_protection = qcom_labibb_set_ocp, }; static const struct regulator_desc pmi8998_lab_desc = { .enable_mask = LAB_ENABLE_CTL_MASK, .enable_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_ENABLE_CTL), .enable_val = LABIBB_CONTROL_ENABLE, .enable_time = LAB_ENABLE_TIME, .poll_enabled_time = LABIBB_POLL_ENABLED_TIME, .soft_start_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_SOFT_START_CTL), .pull_down_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_PD_CTL), .pull_down_mask = LAB_PD_CTL_MASK, .pull_down_val_on = LAB_PD_CTL_STRONG_PULL, .vsel_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE), .vsel_mask = LAB_VOLTAGE_SET_MASK, .apply_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE), .apply_bit = LABIBB_VOLTAGE_OVERRIDE_EN, .csel_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_CURRENT_LIMIT), .csel_mask = LAB_CURRENT_LIMIT_MASK, .n_current_limits = 8, .off_on_delay = LABIBB_OFF_ON_DELAY, .owner = THIS_MODULE, .type = REGULATOR_VOLTAGE, .min_uV = 4600000, .uV_step = 100000, .n_voltages = 16, .ops = &qcom_labibb_ops, .of_parse_cb = qcom_labibb_of_parse_cb, }; static const struct regulator_desc pmi8998_ibb_desc = { .enable_mask = IBB_ENABLE_CTL_MASK, .enable_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_ENABLE_CTL), .enable_val = LABIBB_CONTROL_ENABLE, .enable_time = IBB_ENABLE_TIME, .poll_enabled_time = LABIBB_POLL_ENABLED_TIME, .soft_start_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_SOFT_START_CTL), .active_discharge_off = 0, .active_discharge_on = IBB_CTL_1_DISCHARGE_EN, .active_discharge_mask = IBB_CTL_1_DISCHARGE_EN, .active_discharge_reg = (PMI8998_IBB_REG_BASE + REG_IBB_PWRUP_PWRDN_CTL_1), .pull_down_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_PD_CTL), .pull_down_mask = IBB_PD_CTL_MASK, .pull_down_val_on = IBB_PD_CTL_HALF_STRENGTH | IBB_PD_CTL_EN, .vsel_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE), .vsel_mask = IBB_VOLTAGE_SET_MASK, .apply_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE), .apply_bit = LABIBB_VOLTAGE_OVERRIDE_EN, .csel_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_CURRENT_LIMIT), .csel_mask = IBB_CURRENT_LIMIT_MASK, .n_current_limits = 32, .off_on_delay = LABIBB_OFF_ON_DELAY, .owner = THIS_MODULE, .type = REGULATOR_VOLTAGE, .min_uV = 1400000, .uV_step = 100000, .n_voltages = 64, .ops = &qcom_labibb_ops, .of_parse_cb = qcom_labibb_of_parse_cb, }; static const struct labibb_regulator_data pmi8998_labibb_data[] = { {"lab", QCOM_LAB_TYPE, PMI8998_LAB_REG_BASE, &pmi8998_lab_desc}, {"ibb", QCOM_IBB_TYPE, PMI8998_IBB_REG_BASE, &pmi8998_ibb_desc}, { }, }; static const struct of_device_id qcom_labibb_match[] = { { .compatible = "qcom,pmi8998-lab-ibb", .data = &pmi8998_labibb_data}, { }, }; MODULE_DEVICE_TABLE(of, qcom_labibb_match); static int qcom_labibb_regulator_probe(struct platform_device *pdev) { struct labibb_regulator *vreg; struct device *dev = &pdev->dev; struct regulator_config cfg = {}; struct device_node *reg_node; const struct of_device_id *match; const struct labibb_regulator_data *reg_data; struct regmap *reg_regmap; unsigned int type; int ret; reg_regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!reg_regmap) { dev_err(&pdev->dev, "Couldn't get parent's regmap\n"); return -ENODEV; } match = of_match_device(qcom_labibb_match, &pdev->dev); if (!match) return -ENODEV; for (reg_data = match->data; reg_data->name; reg_data++) { char *sc_irq_name; int irq = 0; /* Validate if the type of regulator is indeed * what's mentioned in DT. */ ret = regmap_read(reg_regmap, reg_data->base + REG_PERPH_TYPE, &type); if (ret < 0) { dev_err(dev, "Peripheral type read failed ret=%d\n", ret); return -EINVAL; } if (WARN_ON((type != QCOM_LAB_TYPE) && (type != QCOM_IBB_TYPE)) || WARN_ON(type != reg_data->type)) return -EINVAL; vreg = devm_kzalloc(&pdev->dev, sizeof(*vreg), GFP_KERNEL); if (!vreg) return -ENOMEM; sc_irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s-short-circuit", reg_data->name); if (!sc_irq_name) return -ENOMEM; reg_node = of_get_child_by_name(pdev->dev.of_node, reg_data->name); if (!reg_node) return -EINVAL; /* The Short Circuit interrupt is critical */ irq = of_irq_get_byname(reg_node, "sc-err"); if (irq <= 0) { if (irq == 0) irq = -EINVAL; of_node_put(reg_node); return dev_err_probe(vreg->dev, irq, "Short-circuit irq not found.\n"); } vreg->sc_irq = irq; /* OverCurrent Protection IRQ is optional */ irq = of_irq_get_byname(reg_node, "ocp"); vreg->ocp_irq = irq; vreg->ocp_irq_count = 0; of_node_put(reg_node); vreg->regmap = reg_regmap; vreg->dev = dev; vreg->base = reg_data->base; vreg->type = reg_data->type; INIT_DELAYED_WORK(&vreg->sc_recovery_work, qcom_labibb_sc_recovery_worker); if (vreg->ocp_irq > 0) INIT_DELAYED_WORK(&vreg->ocp_recovery_work, qcom_labibb_ocp_recovery_worker); switch (vreg->type) { case QCOM_LAB_TYPE: /* LAB Limits: 200-1600mA */ vreg->uA_limits.uA_min = 200000; vreg->uA_limits.uA_step = 200000; vreg->uA_limits.ovr_val = LAB_CURRENT_LIMIT_OVERRIDE_EN; break; case QCOM_IBB_TYPE: /* IBB Limits: 0-1550mA */ vreg->uA_limits.uA_min = 0; vreg->uA_limits.uA_step = 50000; vreg->uA_limits.ovr_val = 0; /* No override bit */ break; default: return -EINVAL; } memcpy(&vreg->desc, reg_data->desc, sizeof(vreg->desc)); vreg->desc.of_match = reg_data->name; vreg->desc.name = reg_data->name; cfg.dev = vreg->dev; cfg.driver_data = vreg; cfg.regmap = vreg->regmap; vreg->rdev = devm_regulator_register(vreg->dev, &vreg->desc, &cfg); if (IS_ERR(vreg->rdev)) { dev_err(dev, "qcom_labibb: error registering %s : %d\n", reg_data->name, ret); return PTR_ERR(vreg->rdev); } ret = devm_request_threaded_irq(vreg->dev, vreg->sc_irq, NULL, qcom_labibb_sc_isr, IRQF_ONESHOT | IRQF_TRIGGER_RISING, sc_irq_name, vreg); if (ret) return ret; } return 0; } static struct platform_driver qcom_labibb_regulator_driver = { .driver = { .name = "qcom-lab-ibb-regulator", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = qcom_labibb_match, }, .probe = qcom_labibb_regulator_probe, }; module_platform_driver(qcom_labibb_regulator_driver); MODULE_DESCRIPTION("Qualcomm labibb driver"); MODULE_AUTHOR("Nisha Kumari <nishakumari@codeaurora.org>"); MODULE_AUTHOR("Sumit Semwal <sumit.semwal@linaro.org>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1