Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tony Krowiak | 7310 | 81.67% | 46 | 54.76% |
Pierre Morel | 1055 | 11.79% | 3 | 3.57% |
Jason Gunthorpe | 241 | 2.69% | 10 | 11.90% |
Matthew Rosato | 91 | 1.02% | 2 | 2.38% |
Yi L Liu | 74 | 0.83% | 1 | 1.19% |
Christoph Hellwig | 43 | 0.48% | 4 | 4.76% |
Nicolin Chen | 34 | 0.38% | 3 | 3.57% |
Christophe Jaillet | 26 | 0.29% | 1 | 1.19% |
Harald Freudenberger | 25 | 0.28% | 4 | 4.76% |
Linus Torvalds | 12 | 0.13% | 1 | 1.19% |
Halil Pasic | 10 | 0.11% | 1 | 1.19% |
Christian Bornträger | 9 | 0.10% | 1 | 1.19% |
Heiko Carstens | 5 | 0.06% | 2 | 2.38% |
Wang Qing | 5 | 0.06% | 1 | 1.19% |
Randy Dunlap | 4 | 0.04% | 1 | 1.19% |
Nico Boehr | 3 | 0.03% | 1 | 1.19% |
Joe Perches | 2 | 0.02% | 1 | 1.19% |
Jens Freimann | 2 | 0.02% | 1 | 1.19% |
Total | 8951 | 84 |
// SPDX-License-Identifier: GPL-2.0+ /* * Adjunct processor matrix VFIO device driver callbacks. * * Copyright IBM Corp. 2018 * * Author(s): Tony Krowiak <akrowiak@linux.ibm.com> * Halil Pasic <pasic@linux.ibm.com> * Pierre Morel <pmorel@linux.ibm.com> */ #include <linux/string.h> #include <linux/vfio.h> #include <linux/device.h> #include <linux/list.h> #include <linux/ctype.h> #include <linux/bitops.h> #include <linux/kvm_host.h> #include <linux/module.h> #include <linux/uuid.h> #include <asm/kvm.h> #include <asm/zcrypt.h> #include "vfio_ap_private.h" #include "vfio_ap_debug.h" #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough" #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device" #define AP_QUEUE_ASSIGNED "assigned" #define AP_QUEUE_UNASSIGNED "unassigned" #define AP_QUEUE_IN_USE "in use" #define MAX_RESET_CHECK_WAIT 200 /* Sleep max 200ms for reset check */ #define AP_RESET_INTERVAL 20 /* Reset sleep interval (20ms) */ static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable); static struct vfio_ap_queue *vfio_ap_find_queue(int apqn); static const struct vfio_device_ops vfio_ap_matrix_dev_ops; static int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q); /** * get_update_locks_for_kvm: Acquire the locks required to dynamically update a * KVM guest's APCB in the proper order. * * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB. * * The proper locking order is: * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM * guest's APCB. * 2. kvm->lock: required to update a guest's APCB * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev * * Note: If @kvm is NULL, the KVM lock will not be taken. */ static inline void get_update_locks_for_kvm(struct kvm *kvm) { mutex_lock(&matrix_dev->guests_lock); if (kvm) mutex_lock(&kvm->lock); mutex_lock(&matrix_dev->mdevs_lock); } /** * release_update_locks_for_kvm: Release the locks used to dynamically update a * KVM guest's APCB in the proper order. * * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB. * * The proper unlocking order is: * 1. matrix_dev->mdevs_lock * 2. kvm->lock * 3. matrix_dev->guests_lock * * Note: If @kvm is NULL, the KVM lock will not be released. */ static inline void release_update_locks_for_kvm(struct kvm *kvm) { mutex_unlock(&matrix_dev->mdevs_lock); if (kvm) mutex_unlock(&kvm->lock); mutex_unlock(&matrix_dev->guests_lock); } /** * get_update_locks_for_mdev: Acquire the locks required to dynamically update a * KVM guest's APCB in the proper order. * * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP * configuration data to use to update a KVM guest's APCB. * * The proper locking order is: * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM * guest's APCB. * 2. matrix_mdev->kvm->lock: required to update a guest's APCB * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev * * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM * lock will not be taken. */ static inline void get_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev) { mutex_lock(&matrix_dev->guests_lock); if (matrix_mdev && matrix_mdev->kvm) mutex_lock(&matrix_mdev->kvm->lock); mutex_lock(&matrix_dev->mdevs_lock); } /** * release_update_locks_for_mdev: Release the locks used to dynamically update a * KVM guest's APCB in the proper order. * * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP * configuration data to use to update a KVM guest's APCB. * * The proper unlocking order is: * 1. matrix_dev->mdevs_lock * 2. matrix_mdev->kvm->lock * 3. matrix_dev->guests_lock * * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM * lock will not be released. */ static inline void release_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev) { mutex_unlock(&matrix_dev->mdevs_lock); if (matrix_mdev && matrix_mdev->kvm) mutex_unlock(&matrix_mdev->kvm->lock); mutex_unlock(&matrix_dev->guests_lock); } /** * get_update_locks_by_apqn: Find the mdev to which an APQN is assigned and * acquire the locks required to update the APCB of * the KVM guest to which the mdev is attached. * * @apqn: the APQN of a queue device. * * The proper locking order is: * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM * guest's APCB. * 2. matrix_mdev->kvm->lock: required to update a guest's APCB * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev * * Note: If @apqn is not assigned to a matrix_mdev, the matrix_mdev->kvm->lock * will not be taken. * * Return: the ap_matrix_mdev object to which @apqn is assigned or NULL if @apqn * is not assigned to an ap_matrix_mdev. */ static struct ap_matrix_mdev *get_update_locks_by_apqn(int apqn) { struct ap_matrix_mdev *matrix_mdev; mutex_lock(&matrix_dev->guests_lock); list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { if (test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm) && test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm)) { if (matrix_mdev->kvm) mutex_lock(&matrix_mdev->kvm->lock); mutex_lock(&matrix_dev->mdevs_lock); return matrix_mdev; } } mutex_lock(&matrix_dev->mdevs_lock); return NULL; } /** * get_update_locks_for_queue: get the locks required to update the APCB of the * KVM guest to which the matrix mdev linked to a * vfio_ap_queue object is attached. * * @q: a pointer to a vfio_ap_queue object. * * The proper locking order is: * 1. q->matrix_dev->guests_lock: required to use the KVM pointer to update a * KVM guest's APCB. * 2. q->matrix_mdev->kvm->lock: required to update a guest's APCB * 3. matrix_dev->mdevs_lock: required to access data stored in matrix_mdev * * Note: if @queue is not linked to an ap_matrix_mdev object, the KVM lock * will not be taken. */ static inline void get_update_locks_for_queue(struct vfio_ap_queue *q) { mutex_lock(&matrix_dev->guests_lock); if (q->matrix_mdev && q->matrix_mdev->kvm) mutex_lock(&q->matrix_mdev->kvm->lock); mutex_lock(&matrix_dev->mdevs_lock); } /** * vfio_ap_mdev_get_queue - retrieve a queue with a specific APQN from a * hash table of queues assigned to a matrix mdev * @matrix_mdev: the matrix mdev * @apqn: The APQN of a queue device * * Return: the pointer to the vfio_ap_queue struct representing the queue or * NULL if the queue is not assigned to @matrix_mdev */ static struct vfio_ap_queue *vfio_ap_mdev_get_queue( struct ap_matrix_mdev *matrix_mdev, int apqn) { struct vfio_ap_queue *q; hash_for_each_possible(matrix_mdev->qtable.queues, q, mdev_qnode, apqn) { if (q && q->apqn == apqn) return q; } return NULL; } /** * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries * @apqn: The AP Queue number * * Checks the IRQ bit for the status of this APQN using ap_tapq. * Returns if the ap_tapq function succeeded and the bit is clear. * Returns if ap_tapq function failed with invalid, deconfigured or * checkstopped AP. * Otherwise retries up to 5 times after waiting 20ms. */ static void vfio_ap_wait_for_irqclear(int apqn) { struct ap_queue_status status; int retry = 5; do { status = ap_tapq(apqn, NULL); switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_RESET_IN_PROGRESS: if (!status.irq_enabled) return; fallthrough; case AP_RESPONSE_BUSY: msleep(20); break; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: default: WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__, status.response_code, apqn); return; } } while (--retry); WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n", __func__, status.response_code, apqn); } /** * vfio_ap_free_aqic_resources - free vfio_ap_queue resources * @q: The vfio_ap_queue * * Unregisters the ISC in the GIB when the saved ISC not invalid. * Unpins the guest's page holding the NIB when it exists. * Resets the saved_iova and saved_isc to invalid values. */ static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q) { if (!q) return; if (q->saved_isc != VFIO_AP_ISC_INVALID && !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) { kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc); q->saved_isc = VFIO_AP_ISC_INVALID; } if (q->saved_iova && !WARN_ON(!q->matrix_mdev)) { vfio_unpin_pages(&q->matrix_mdev->vdev, q->saved_iova, 1); q->saved_iova = 0; } } /** * vfio_ap_irq_disable - disables and clears an ap_queue interrupt * @q: The vfio_ap_queue * * Uses ap_aqic to disable the interruption and in case of success, reset * in progress or IRQ disable command already proceeded: calls * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear * and calls vfio_ap_free_aqic_resources() to free the resources associated * with the AP interrupt handling. * * In the case the AP is busy, or a reset is in progress, * retries after 20ms, up to 5 times. * * Returns if ap_aqic function failed with invalid, deconfigured or * checkstopped AP. * * Return: &struct ap_queue_status */ static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q) { union ap_qirq_ctrl aqic_gisa = { .value = 0 }; struct ap_queue_status status; int retries = 5; do { status = ap_aqic(q->apqn, aqic_gisa, 0); switch (status.response_code) { case AP_RESPONSE_OTHERWISE_CHANGED: case AP_RESPONSE_NORMAL: vfio_ap_wait_for_irqclear(q->apqn); goto end_free; case AP_RESPONSE_RESET_IN_PROGRESS: case AP_RESPONSE_BUSY: msleep(20); break; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: case AP_RESPONSE_INVALID_ADDRESS: default: /* All cases in default means AP not operational */ WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__, status.response_code); goto end_free; } } while (retries--); WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__, status.response_code); end_free: vfio_ap_free_aqic_resources(q); return status; } /** * vfio_ap_validate_nib - validate a notification indicator byte (nib) address. * * @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction. * @nib: the location for storing the nib address. * * When the PQAP(AQIC) instruction is executed, general register 2 contains the * address of the notification indicator byte (nib) used for IRQ notification. * This function parses and validates the nib from gr2. * * Return: returns zero if the nib address is a valid; otherwise, returns * -EINVAL. */ static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, dma_addr_t *nib) { *nib = vcpu->run->s.regs.gprs[2]; if (!*nib) return -EINVAL; if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *nib >> PAGE_SHIFT))) return -EINVAL; return 0; } /** * vfio_ap_irq_enable - Enable Interruption for a APQN * * @q: the vfio_ap_queue holding AQIC parameters * @isc: the guest ISC to register with the GIB interface * @vcpu: the vcpu object containing the registers specifying the parameters * passed to the PQAP(AQIC) instruction. * * Pin the NIB saved in *q * Register the guest ISC to GIB interface and retrieve the * host ISC to issue the host side PQAP/AQIC * * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the * vfio_pin_pages failed. * * Otherwise return the ap_queue_status returned by the ap_aqic(), * all retry handling will be done by the guest. * * Return: &struct ap_queue_status */ static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q, int isc, struct kvm_vcpu *vcpu) { union ap_qirq_ctrl aqic_gisa = { .value = 0 }; struct ap_queue_status status = {}; struct kvm_s390_gisa *gisa; struct page *h_page; int nisc; struct kvm *kvm; phys_addr_t h_nib; dma_addr_t nib; int ret; /* Verify that the notification indicator byte address is valid */ if (vfio_ap_validate_nib(vcpu, &nib)) { VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%pad, apqn=%#04x\n", __func__, &nib, q->apqn); status.response_code = AP_RESPONSE_INVALID_ADDRESS; return status; } ret = vfio_pin_pages(&q->matrix_mdev->vdev, nib, 1, IOMMU_READ | IOMMU_WRITE, &h_page); switch (ret) { case 1: break; default: VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d," "nib=%pad, apqn=%#04x\n", __func__, ret, &nib, q->apqn); status.response_code = AP_RESPONSE_INVALID_ADDRESS; return status; } kvm = q->matrix_mdev->kvm; gisa = kvm->arch.gisa_int.origin; h_nib = page_to_phys(h_page) | (nib & ~PAGE_MASK); aqic_gisa.gisc = isc; nisc = kvm_s390_gisc_register(kvm, isc); if (nisc < 0) { VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n", __func__, nisc, isc, q->apqn); status.response_code = AP_RESPONSE_INVALID_GISA; return status; } aqic_gisa.isc = nisc; aqic_gisa.ir = 1; aqic_gisa.gisa = virt_to_phys(gisa) >> 4; status = ap_aqic(q->apqn, aqic_gisa, h_nib); switch (status.response_code) { case AP_RESPONSE_NORMAL: /* See if we did clear older IRQ configuration */ vfio_ap_free_aqic_resources(q); q->saved_iova = nib; q->saved_isc = isc; break; case AP_RESPONSE_OTHERWISE_CHANGED: /* We could not modify IRQ settings: clear new configuration */ vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1); kvm_s390_gisc_unregister(kvm, isc); break; default: pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn, status.response_code); vfio_ap_irq_disable(q); break; } if (status.response_code != AP_RESPONSE_NORMAL) { VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: " "zone=%#x, ir=%#x, gisc=%#x, f=%#x," "gisa=%#x, isc=%#x, apqn=%#04x\n", __func__, status.response_code, aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc, aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc, q->apqn); } return status; } /** * vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array * of big endian elements that can be passed by * value to an s390dbf sprintf event function to * format a UUID string. * * @guid: the object containing the little endian guid * @uuid: a six-element array of long values that can be passed by value as * arguments for a formatting string specifying a UUID. * * The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf * event functions if the memory for the passed string is available as long as * the debug feature exists. Since a mediated device can be removed at any * time, it's name can not be used because %s passes the reference to the string * in memory and the reference will go stale once the device is removed . * * The s390dbf string formatting function allows a maximum of 9 arguments for a * message to be displayed in the 'sprintf' view. In order to use the bytes * comprising the mediated device's UUID to display the mediated device name, * they will have to be converted into an array whose elements can be passed by * value to sprintf. For example: * * guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 } * mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804 * array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 } * formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx" */ static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid) { /* * The input guid is ordered in little endian, so it needs to be * reordered for displaying a UUID as a string. This specifies the * guid indices in proper order. */ uuid[0] = le32_to_cpup((__le32 *)guid); uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]); uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]); uuid[3] = *((__u16 *)&guid->b[8]); uuid[4] = *((__u16 *)&guid->b[10]); uuid[5] = *((__u32 *)&guid->b[12]); } /** * handle_pqap - PQAP instruction callback * * @vcpu: The vcpu on which we received the PQAP instruction * * Get the general register contents to initialize internal variables. * REG[0]: APQN * REG[1]: IR and ISC * REG[2]: NIB * * Response.status may be set to following Response Code: * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available * - AP_RESPONSE_DECONFIGURED: if the queue is not configured * - AP_RESPONSE_NORMAL (0) : in case of success * Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC. * We take the matrix_dev lock to ensure serialization on queues and * mediated device access. * * Return: 0 if we could handle the request inside KVM. * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault. */ static int handle_pqap(struct kvm_vcpu *vcpu) { uint64_t status; uint16_t apqn; unsigned long uuid[6]; struct vfio_ap_queue *q; struct ap_queue_status qstatus = { .response_code = AP_RESPONSE_Q_NOT_AVAIL, }; struct ap_matrix_mdev *matrix_mdev; apqn = vcpu->run->s.regs.gprs[0] & 0xffff; /* If we do not use the AIV facility just go to userland */ if (!(vcpu->arch.sie_block->eca & ECA_AIV)) { VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n", __func__, apqn, vcpu->arch.sie_block->eca); return -EOPNOTSUPP; } mutex_lock(&matrix_dev->mdevs_lock); if (!vcpu->kvm->arch.crypto.pqap_hook) { VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n", __func__, apqn); goto out_unlock; } matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook, struct ap_matrix_mdev, pqap_hook); /* If the there is no guest using the mdev, there is nothing to do */ if (!matrix_mdev->kvm) { vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid); VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n", __func__, uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], apqn); goto out_unlock; } q = vfio_ap_mdev_get_queue(matrix_mdev, apqn); if (!q) { VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n", __func__, AP_QID_CARD(apqn), AP_QID_QUEUE(apqn)); goto out_unlock; } status = vcpu->run->s.regs.gprs[1]; /* If IR bit(16) is set we enable the interrupt */ if ((status >> (63 - 16)) & 0x01) qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu); else qstatus = vfio_ap_irq_disable(q); out_unlock: memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus)); vcpu->run->s.regs.gprs[1] >>= 32; mutex_unlock(&matrix_dev->mdevs_lock); return 0; } static void vfio_ap_matrix_init(struct ap_config_info *info, struct ap_matrix *matrix) { matrix->apm_max = info->apxa ? info->na : 63; matrix->aqm_max = info->apxa ? info->nd : 15; matrix->adm_max = info->apxa ? info->nd : 15; } static void vfio_ap_mdev_update_guest_apcb(struct ap_matrix_mdev *matrix_mdev) { if (matrix_mdev->kvm) kvm_arch_crypto_set_masks(matrix_mdev->kvm, matrix_mdev->shadow_apcb.apm, matrix_mdev->shadow_apcb.aqm, matrix_mdev->shadow_apcb.adm); } static bool vfio_ap_mdev_filter_cdoms(struct ap_matrix_mdev *matrix_mdev) { DECLARE_BITMAP(prev_shadow_adm, AP_DOMAINS); bitmap_copy(prev_shadow_adm, matrix_mdev->shadow_apcb.adm, AP_DOMAINS); bitmap_and(matrix_mdev->shadow_apcb.adm, matrix_mdev->matrix.adm, (unsigned long *)matrix_dev->info.adm, AP_DOMAINS); return !bitmap_equal(prev_shadow_adm, matrix_mdev->shadow_apcb.adm, AP_DOMAINS); } /* * vfio_ap_mdev_filter_matrix - filter the APQNs assigned to the matrix mdev * to ensure no queue devices are passed through to * the guest that are not bound to the vfio_ap * device driver. * * @matrix_mdev: the matrix mdev whose matrix is to be filtered. * * Note: If an APQN referencing a queue device that is not bound to the vfio_ap * driver, its APID will be filtered from the guest's APCB. The matrix * structure precludes filtering an individual APQN, so its APID will be * filtered. * * Return: a boolean value indicating whether the KVM guest's APCB was changed * by the filtering or not. */ static bool vfio_ap_mdev_filter_matrix(unsigned long *apm, unsigned long *aqm, struct ap_matrix_mdev *matrix_mdev) { unsigned long apid, apqi, apqn; DECLARE_BITMAP(prev_shadow_apm, AP_DEVICES); DECLARE_BITMAP(prev_shadow_aqm, AP_DOMAINS); struct vfio_ap_queue *q; bitmap_copy(prev_shadow_apm, matrix_mdev->shadow_apcb.apm, AP_DEVICES); bitmap_copy(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm, AP_DOMAINS); vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb); /* * Copy the adapters, domains and control domains to the shadow_apcb * from the matrix mdev, but only those that are assigned to the host's * AP configuration. */ bitmap_and(matrix_mdev->shadow_apcb.apm, matrix_mdev->matrix.apm, (unsigned long *)matrix_dev->info.apm, AP_DEVICES); bitmap_and(matrix_mdev->shadow_apcb.aqm, matrix_mdev->matrix.aqm, (unsigned long *)matrix_dev->info.aqm, AP_DOMAINS); for_each_set_bit_inv(apid, apm, AP_DEVICES) { for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) { /* * If the APQN is not bound to the vfio_ap device * driver, then we can't assign it to the guest's * AP configuration. The AP architecture won't * allow filtering of a single APQN, so let's filter * the APID since an adapter represents a physical * hardware device. */ apqn = AP_MKQID(apid, apqi); q = vfio_ap_mdev_get_queue(matrix_mdev, apqn); if (!q || q->reset_rc) { clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm); break; } } } return !bitmap_equal(prev_shadow_apm, matrix_mdev->shadow_apcb.apm, AP_DEVICES) || !bitmap_equal(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm, AP_DOMAINS); } static int vfio_ap_mdev_init_dev(struct vfio_device *vdev) { struct ap_matrix_mdev *matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev); matrix_mdev->mdev = to_mdev_device(vdev->dev); vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix); matrix_mdev->pqap_hook = handle_pqap; vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb); hash_init(matrix_mdev->qtable.queues); return 0; } static int vfio_ap_mdev_probe(struct mdev_device *mdev) { struct ap_matrix_mdev *matrix_mdev; int ret; matrix_mdev = vfio_alloc_device(ap_matrix_mdev, vdev, &mdev->dev, &vfio_ap_matrix_dev_ops); if (IS_ERR(matrix_mdev)) return PTR_ERR(matrix_mdev); ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev); if (ret) goto err_put_vdev; matrix_mdev->req_trigger = NULL; dev_set_drvdata(&mdev->dev, matrix_mdev); mutex_lock(&matrix_dev->mdevs_lock); list_add(&matrix_mdev->node, &matrix_dev->mdev_list); mutex_unlock(&matrix_dev->mdevs_lock); return 0; err_put_vdev: vfio_put_device(&matrix_mdev->vdev); return ret; } static void vfio_ap_mdev_link_queue(struct ap_matrix_mdev *matrix_mdev, struct vfio_ap_queue *q) { if (q) { q->matrix_mdev = matrix_mdev; hash_add(matrix_mdev->qtable.queues, &q->mdev_qnode, q->apqn); } } static void vfio_ap_mdev_link_apqn(struct ap_matrix_mdev *matrix_mdev, int apqn) { struct vfio_ap_queue *q; q = vfio_ap_find_queue(apqn); vfio_ap_mdev_link_queue(matrix_mdev, q); } static void vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue *q) { hash_del(&q->mdev_qnode); } static void vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue *q) { q->matrix_mdev = NULL; } static void vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev *matrix_mdev) { struct vfio_ap_queue *q; unsigned long apid, apqi; for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) { for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) { q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi)); if (q) q->matrix_mdev = NULL; } } } static void vfio_ap_mdev_remove(struct mdev_device *mdev) { struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev); vfio_unregister_group_dev(&matrix_mdev->vdev); mutex_lock(&matrix_dev->guests_lock); mutex_lock(&matrix_dev->mdevs_lock); vfio_ap_mdev_reset_queues(&matrix_mdev->qtable); vfio_ap_mdev_unlink_fr_queues(matrix_mdev); list_del(&matrix_mdev->node); mutex_unlock(&matrix_dev->mdevs_lock); mutex_unlock(&matrix_dev->guests_lock); vfio_put_device(&matrix_mdev->vdev); } #define MDEV_SHARING_ERR "Userspace may not re-assign queue %02lx.%04lx " \ "already assigned to %s" static void vfio_ap_mdev_log_sharing_err(struct ap_matrix_mdev *matrix_mdev, unsigned long *apm, unsigned long *aqm) { unsigned long apid, apqi; const struct device *dev = mdev_dev(matrix_mdev->mdev); const char *mdev_name = dev_name(dev); for_each_set_bit_inv(apid, apm, AP_DEVICES) for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) dev_warn(dev, MDEV_SHARING_ERR, apid, apqi, mdev_name); } /** * vfio_ap_mdev_verify_no_sharing - verify APQNs are not shared by matrix mdevs * * @mdev_apm: mask indicating the APIDs of the APQNs to be verified * @mdev_aqm: mask indicating the APQIs of the APQNs to be verified * * Verifies that each APQN derived from the Cartesian product of a bitmap of * AP adapter IDs and AP queue indexes is not configured for any matrix * mediated device. AP queue sharing is not allowed. * * Return: 0 if the APQNs are not shared; otherwise return -EADDRINUSE. */ static int vfio_ap_mdev_verify_no_sharing(unsigned long *mdev_apm, unsigned long *mdev_aqm) { struct ap_matrix_mdev *matrix_mdev; DECLARE_BITMAP(apm, AP_DEVICES); DECLARE_BITMAP(aqm, AP_DOMAINS); list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { /* * If the input apm and aqm are fields of the matrix_mdev * object, then move on to the next matrix_mdev. */ if (mdev_apm == matrix_mdev->matrix.apm && mdev_aqm == matrix_mdev->matrix.aqm) continue; memset(apm, 0, sizeof(apm)); memset(aqm, 0, sizeof(aqm)); /* * We work on full longs, as we can only exclude the leftover * bits in non-inverse order. The leftover is all zeros. */ if (!bitmap_and(apm, mdev_apm, matrix_mdev->matrix.apm, AP_DEVICES)) continue; if (!bitmap_and(aqm, mdev_aqm, matrix_mdev->matrix.aqm, AP_DOMAINS)) continue; vfio_ap_mdev_log_sharing_err(matrix_mdev, apm, aqm); return -EADDRINUSE; } return 0; } /** * vfio_ap_mdev_validate_masks - verify that the APQNs assigned to the mdev are * not reserved for the default zcrypt driver and * are not assigned to another mdev. * * @matrix_mdev: the mdev to which the APQNs being validated are assigned. * * Return: One of the following values: * o the error returned from the ap_apqn_in_matrix_owned_by_def_drv() function, * most likely -EBUSY indicating the ap_perms_mutex lock is already held. * o EADDRNOTAVAIL if an APQN assigned to @matrix_mdev is reserved for the * zcrypt default driver. * o EADDRINUSE if an APQN assigned to @matrix_mdev is assigned to another mdev * o A zero indicating validation succeeded. */ static int vfio_ap_mdev_validate_masks(struct ap_matrix_mdev *matrix_mdev) { if (ap_apqn_in_matrix_owned_by_def_drv(matrix_mdev->matrix.apm, matrix_mdev->matrix.aqm)) return -EADDRNOTAVAIL; return vfio_ap_mdev_verify_no_sharing(matrix_mdev->matrix.apm, matrix_mdev->matrix.aqm); } static void vfio_ap_mdev_link_adapter(struct ap_matrix_mdev *matrix_mdev, unsigned long apid) { unsigned long apqi; for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) vfio_ap_mdev_link_apqn(matrix_mdev, AP_MKQID(apid, apqi)); } /** * assign_adapter_store - parses the APID from @buf and sets the * corresponding bit in the mediated matrix device's APM * * @dev: the matrix device * @attr: the mediated matrix device's assign_adapter attribute * @buf: a buffer containing the AP adapter number (APID) to * be assigned * @count: the number of bytes in @buf * * Return: the number of bytes processed if the APID is valid; otherwise, * returns one of the following errors: * * 1. -EINVAL * The APID is not a valid number * * 2. -ENODEV * The APID exceeds the maximum value configured for the system * * 3. -EADDRNOTAVAIL * An APQN derived from the cross product of the APID being assigned * and the APQIs previously assigned is not bound to the vfio_ap device * driver; or, if no APQIs have yet been assigned, the APID is not * contained in an APQN bound to the vfio_ap device driver. * * 4. -EADDRINUSE * An APQN derived from the cross product of the APID being assigned * and the APQIs previously assigned is being used by another mediated * matrix device * * 5. -EAGAIN * A lock required to validate the mdev's AP configuration could not * be obtained. */ static ssize_t assign_adapter_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; unsigned long apid; DECLARE_BITMAP(apm_delta, AP_DEVICES); struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); mutex_lock(&ap_perms_mutex); get_update_locks_for_mdev(matrix_mdev); ret = kstrtoul(buf, 0, &apid); if (ret) goto done; if (apid > matrix_mdev->matrix.apm_max) { ret = -ENODEV; goto done; } if (test_bit_inv(apid, matrix_mdev->matrix.apm)) { ret = count; goto done; } set_bit_inv(apid, matrix_mdev->matrix.apm); ret = vfio_ap_mdev_validate_masks(matrix_mdev); if (ret) { clear_bit_inv(apid, matrix_mdev->matrix.apm); goto done; } vfio_ap_mdev_link_adapter(matrix_mdev, apid); memset(apm_delta, 0, sizeof(apm_delta)); set_bit_inv(apid, apm_delta); if (vfio_ap_mdev_filter_matrix(apm_delta, matrix_mdev->matrix.aqm, matrix_mdev)) vfio_ap_mdev_update_guest_apcb(matrix_mdev); ret = count; done: release_update_locks_for_mdev(matrix_mdev); mutex_unlock(&ap_perms_mutex); return ret; } static DEVICE_ATTR_WO(assign_adapter); static struct vfio_ap_queue *vfio_ap_unlink_apqn_fr_mdev(struct ap_matrix_mdev *matrix_mdev, unsigned long apid, unsigned long apqi) { struct vfio_ap_queue *q = NULL; q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi)); /* If the queue is assigned to the matrix mdev, unlink it. */ if (q) vfio_ap_unlink_queue_fr_mdev(q); return q; } /** * vfio_ap_mdev_unlink_adapter - unlink all queues associated with unassigned * adapter from the matrix mdev to which the * adapter was assigned. * @matrix_mdev: the matrix mediated device to which the adapter was assigned. * @apid: the APID of the unassigned adapter. * @qtable: table for storing queues associated with unassigned adapter. */ static void vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev *matrix_mdev, unsigned long apid, struct ap_queue_table *qtable) { unsigned long apqi; struct vfio_ap_queue *q; for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) { q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi); if (q && qtable) { if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) && test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) hash_add(qtable->queues, &q->mdev_qnode, q->apqn); } } } static void vfio_ap_mdev_hot_unplug_adapter(struct ap_matrix_mdev *matrix_mdev, unsigned long apid) { int loop_cursor; struct vfio_ap_queue *q; struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL); hash_init(qtable->queues); vfio_ap_mdev_unlink_adapter(matrix_mdev, apid, qtable); if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm)) { clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm); vfio_ap_mdev_update_guest_apcb(matrix_mdev); } vfio_ap_mdev_reset_queues(qtable); hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) { vfio_ap_unlink_mdev_fr_queue(q); hash_del(&q->mdev_qnode); } kfree(qtable); } /** * unassign_adapter_store - parses the APID from @buf and clears the * corresponding bit in the mediated matrix device's APM * * @dev: the matrix device * @attr: the mediated matrix device's unassign_adapter attribute * @buf: a buffer containing the adapter number (APID) to be unassigned * @count: the number of bytes in @buf * * Return: the number of bytes processed if the APID is valid; otherwise, * returns one of the following errors: * -EINVAL if the APID is not a number * -ENODEV if the APID it exceeds the maximum value configured for the * system */ static ssize_t unassign_adapter_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; unsigned long apid; struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); get_update_locks_for_mdev(matrix_mdev); ret = kstrtoul(buf, 0, &apid); if (ret) goto done; if (apid > matrix_mdev->matrix.apm_max) { ret = -ENODEV; goto done; } if (!test_bit_inv(apid, matrix_mdev->matrix.apm)) { ret = count; goto done; } clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm); vfio_ap_mdev_hot_unplug_adapter(matrix_mdev, apid); ret = count; done: release_update_locks_for_mdev(matrix_mdev); return ret; } static DEVICE_ATTR_WO(unassign_adapter); static void vfio_ap_mdev_link_domain(struct ap_matrix_mdev *matrix_mdev, unsigned long apqi) { unsigned long apid; for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) vfio_ap_mdev_link_apqn(matrix_mdev, AP_MKQID(apid, apqi)); } /** * assign_domain_store - parses the APQI from @buf and sets the * corresponding bit in the mediated matrix device's AQM * * @dev: the matrix device * @attr: the mediated matrix device's assign_domain attribute * @buf: a buffer containing the AP queue index (APQI) of the domain to * be assigned * @count: the number of bytes in @buf * * Return: the number of bytes processed if the APQI is valid; otherwise returns * one of the following errors: * * 1. -EINVAL * The APQI is not a valid number * * 2. -ENODEV * The APQI exceeds the maximum value configured for the system * * 3. -EADDRNOTAVAIL * An APQN derived from the cross product of the APQI being assigned * and the APIDs previously assigned is not bound to the vfio_ap device * driver; or, if no APIDs have yet been assigned, the APQI is not * contained in an APQN bound to the vfio_ap device driver. * * 4. -EADDRINUSE * An APQN derived from the cross product of the APQI being assigned * and the APIDs previously assigned is being used by another mediated * matrix device * * 5. -EAGAIN * The lock required to validate the mdev's AP configuration could not * be obtained. */ static ssize_t assign_domain_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; unsigned long apqi; DECLARE_BITMAP(aqm_delta, AP_DOMAINS); struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); mutex_lock(&ap_perms_mutex); get_update_locks_for_mdev(matrix_mdev); ret = kstrtoul(buf, 0, &apqi); if (ret) goto done; if (apqi > matrix_mdev->matrix.aqm_max) { ret = -ENODEV; goto done; } if (test_bit_inv(apqi, matrix_mdev->matrix.aqm)) { ret = count; goto done; } set_bit_inv(apqi, matrix_mdev->matrix.aqm); ret = vfio_ap_mdev_validate_masks(matrix_mdev); if (ret) { clear_bit_inv(apqi, matrix_mdev->matrix.aqm); goto done; } vfio_ap_mdev_link_domain(matrix_mdev, apqi); memset(aqm_delta, 0, sizeof(aqm_delta)); set_bit_inv(apqi, aqm_delta); if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm, aqm_delta, matrix_mdev)) vfio_ap_mdev_update_guest_apcb(matrix_mdev); ret = count; done: release_update_locks_for_mdev(matrix_mdev); mutex_unlock(&ap_perms_mutex); return ret; } static DEVICE_ATTR_WO(assign_domain); static void vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev *matrix_mdev, unsigned long apqi, struct ap_queue_table *qtable) { unsigned long apid; struct vfio_ap_queue *q; for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) { q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi); if (q && qtable) { if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) && test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) hash_add(qtable->queues, &q->mdev_qnode, q->apqn); } } } static void vfio_ap_mdev_hot_unplug_domain(struct ap_matrix_mdev *matrix_mdev, unsigned long apqi) { int loop_cursor; struct vfio_ap_queue *q; struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL); hash_init(qtable->queues); vfio_ap_mdev_unlink_domain(matrix_mdev, apqi, qtable); if (test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) { clear_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm); vfio_ap_mdev_update_guest_apcb(matrix_mdev); } vfio_ap_mdev_reset_queues(qtable); hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) { vfio_ap_unlink_mdev_fr_queue(q); hash_del(&q->mdev_qnode); } kfree(qtable); } /** * unassign_domain_store - parses the APQI from @buf and clears the * corresponding bit in the mediated matrix device's AQM * * @dev: the matrix device * @attr: the mediated matrix device's unassign_domain attribute * @buf: a buffer containing the AP queue index (APQI) of the domain to * be unassigned * @count: the number of bytes in @buf * * Return: the number of bytes processed if the APQI is valid; otherwise, * returns one of the following errors: * -EINVAL if the APQI is not a number * -ENODEV if the APQI exceeds the maximum value configured for the system */ static ssize_t unassign_domain_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; unsigned long apqi; struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); get_update_locks_for_mdev(matrix_mdev); ret = kstrtoul(buf, 0, &apqi); if (ret) goto done; if (apqi > matrix_mdev->matrix.aqm_max) { ret = -ENODEV; goto done; } if (!test_bit_inv(apqi, matrix_mdev->matrix.aqm)) { ret = count; goto done; } clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm); vfio_ap_mdev_hot_unplug_domain(matrix_mdev, apqi); ret = count; done: release_update_locks_for_mdev(matrix_mdev); return ret; } static DEVICE_ATTR_WO(unassign_domain); /** * assign_control_domain_store - parses the domain ID from @buf and sets * the corresponding bit in the mediated matrix device's ADM * * @dev: the matrix device * @attr: the mediated matrix device's assign_control_domain attribute * @buf: a buffer containing the domain ID to be assigned * @count: the number of bytes in @buf * * Return: the number of bytes processed if the domain ID is valid; otherwise, * returns one of the following errors: * -EINVAL if the ID is not a number * -ENODEV if the ID exceeds the maximum value configured for the system */ static ssize_t assign_control_domain_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; unsigned long id; struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); get_update_locks_for_mdev(matrix_mdev); ret = kstrtoul(buf, 0, &id); if (ret) goto done; if (id > matrix_mdev->matrix.adm_max) { ret = -ENODEV; goto done; } if (test_bit_inv(id, matrix_mdev->matrix.adm)) { ret = count; goto done; } /* Set the bit in the ADM (bitmask) corresponding to the AP control * domain number (id). The bits in the mask, from most significant to * least significant, correspond to IDs 0 up to the one less than the * number of control domains that can be assigned. */ set_bit_inv(id, matrix_mdev->matrix.adm); if (vfio_ap_mdev_filter_cdoms(matrix_mdev)) vfio_ap_mdev_update_guest_apcb(matrix_mdev); ret = count; done: release_update_locks_for_mdev(matrix_mdev); return ret; } static DEVICE_ATTR_WO(assign_control_domain); /** * unassign_control_domain_store - parses the domain ID from @buf and * clears the corresponding bit in the mediated matrix device's ADM * * @dev: the matrix device * @attr: the mediated matrix device's unassign_control_domain attribute * @buf: a buffer containing the domain ID to be unassigned * @count: the number of bytes in @buf * * Return: the number of bytes processed if the domain ID is valid; otherwise, * returns one of the following errors: * -EINVAL if the ID is not a number * -ENODEV if the ID exceeds the maximum value configured for the system */ static ssize_t unassign_control_domain_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; unsigned long domid; struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); get_update_locks_for_mdev(matrix_mdev); ret = kstrtoul(buf, 0, &domid); if (ret) goto done; if (domid > matrix_mdev->matrix.adm_max) { ret = -ENODEV; goto done; } if (!test_bit_inv(domid, matrix_mdev->matrix.adm)) { ret = count; goto done; } clear_bit_inv(domid, matrix_mdev->matrix.adm); if (test_bit_inv(domid, matrix_mdev->shadow_apcb.adm)) { clear_bit_inv(domid, matrix_mdev->shadow_apcb.adm); vfio_ap_mdev_update_guest_apcb(matrix_mdev); } ret = count; done: release_update_locks_for_mdev(matrix_mdev); return ret; } static DEVICE_ATTR_WO(unassign_control_domain); static ssize_t control_domains_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { unsigned long id; int nchars = 0; int n; char *bufpos = buf; struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); unsigned long max_domid = matrix_mdev->matrix.adm_max; mutex_lock(&matrix_dev->mdevs_lock); for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) { n = sprintf(bufpos, "%04lx\n", id); bufpos += n; nchars += n; } mutex_unlock(&matrix_dev->mdevs_lock); return nchars; } static DEVICE_ATTR_RO(control_domains); static ssize_t vfio_ap_mdev_matrix_show(struct ap_matrix *matrix, char *buf) { char *bufpos = buf; unsigned long apid; unsigned long apqi; unsigned long apid1; unsigned long apqi1; unsigned long napm_bits = matrix->apm_max + 1; unsigned long naqm_bits = matrix->aqm_max + 1; int nchars = 0; int n; apid1 = find_first_bit_inv(matrix->apm, napm_bits); apqi1 = find_first_bit_inv(matrix->aqm, naqm_bits); if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) { for_each_set_bit_inv(apid, matrix->apm, napm_bits) { for_each_set_bit_inv(apqi, matrix->aqm, naqm_bits) { n = sprintf(bufpos, "%02lx.%04lx\n", apid, apqi); bufpos += n; nchars += n; } } } else if (apid1 < napm_bits) { for_each_set_bit_inv(apid, matrix->apm, napm_bits) { n = sprintf(bufpos, "%02lx.\n", apid); bufpos += n; nchars += n; } } else if (apqi1 < naqm_bits) { for_each_set_bit_inv(apqi, matrix->aqm, naqm_bits) { n = sprintf(bufpos, ".%04lx\n", apqi); bufpos += n; nchars += n; } } return nchars; } static ssize_t matrix_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t nchars; struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); mutex_lock(&matrix_dev->mdevs_lock); nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->matrix, buf); mutex_unlock(&matrix_dev->mdevs_lock); return nchars; } static DEVICE_ATTR_RO(matrix); static ssize_t guest_matrix_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t nchars; struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); mutex_lock(&matrix_dev->mdevs_lock); nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->shadow_apcb, buf); mutex_unlock(&matrix_dev->mdevs_lock); return nchars; } static DEVICE_ATTR_RO(guest_matrix); static struct attribute *vfio_ap_mdev_attrs[] = { &dev_attr_assign_adapter.attr, &dev_attr_unassign_adapter.attr, &dev_attr_assign_domain.attr, &dev_attr_unassign_domain.attr, &dev_attr_assign_control_domain.attr, &dev_attr_unassign_control_domain.attr, &dev_attr_control_domains.attr, &dev_attr_matrix.attr, &dev_attr_guest_matrix.attr, NULL, }; static struct attribute_group vfio_ap_mdev_attr_group = { .attrs = vfio_ap_mdev_attrs }; static const struct attribute_group *vfio_ap_mdev_attr_groups[] = { &vfio_ap_mdev_attr_group, NULL }; /** * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed * to manage AP resources for the guest whose state is represented by @kvm * * @matrix_mdev: a mediated matrix device * @kvm: reference to KVM instance * * Return: 0 if no other mediated matrix device has a reference to @kvm; * otherwise, returns an -EPERM. */ static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev, struct kvm *kvm) { struct ap_matrix_mdev *m; if (kvm->arch.crypto.crycbd) { down_write(&kvm->arch.crypto.pqap_hook_rwsem); kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook; up_write(&kvm->arch.crypto.pqap_hook_rwsem); get_update_locks_for_kvm(kvm); list_for_each_entry(m, &matrix_dev->mdev_list, node) { if (m != matrix_mdev && m->kvm == kvm) { release_update_locks_for_kvm(kvm); return -EPERM; } } kvm_get_kvm(kvm); matrix_mdev->kvm = kvm; vfio_ap_mdev_update_guest_apcb(matrix_mdev); release_update_locks_for_kvm(kvm); } return 0; } static void unmap_iova(struct ap_matrix_mdev *matrix_mdev, u64 iova, u64 length) { struct ap_queue_table *qtable = &matrix_mdev->qtable; struct vfio_ap_queue *q; int loop_cursor; hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) { if (q->saved_iova >= iova && q->saved_iova < iova + length) vfio_ap_irq_disable(q); } } static void vfio_ap_mdev_dma_unmap(struct vfio_device *vdev, u64 iova, u64 length) { struct ap_matrix_mdev *matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev); mutex_lock(&matrix_dev->mdevs_lock); unmap_iova(matrix_mdev, iova, length); mutex_unlock(&matrix_dev->mdevs_lock); } /** * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed * by @matrix_mdev. * * @matrix_mdev: a matrix mediated device */ static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev) { struct kvm *kvm = matrix_mdev->kvm; if (kvm && kvm->arch.crypto.crycbd) { down_write(&kvm->arch.crypto.pqap_hook_rwsem); kvm->arch.crypto.pqap_hook = NULL; up_write(&kvm->arch.crypto.pqap_hook_rwsem); get_update_locks_for_kvm(kvm); kvm_arch_crypto_clear_masks(kvm); vfio_ap_mdev_reset_queues(&matrix_mdev->qtable); kvm_put_kvm(kvm); matrix_mdev->kvm = NULL; release_update_locks_for_kvm(kvm); } } static struct vfio_ap_queue *vfio_ap_find_queue(int apqn) { struct ap_queue *queue; struct vfio_ap_queue *q = NULL; queue = ap_get_qdev(apqn); if (!queue) return NULL; if (queue->ap_dev.device.driver == &matrix_dev->vfio_ap_drv->driver) q = dev_get_drvdata(&queue->ap_dev.device); put_device(&queue->ap_dev.device); return q; } static int apq_status_check(int apqn, struct ap_queue_status *status) { switch (status->response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_RESET_IN_PROGRESS: if (status->queue_empty && !status->irq_enabled) return 0; return -EBUSY; case AP_RESPONSE_DECONFIGURED: /* * If the AP queue is deconfigured, any subsequent AP command * targeting the queue will fail with the same response code. On the * other hand, when an AP adapter is deconfigured, the associated * queues are reset, so let's return a value indicating the reset * for which we're waiting completed successfully. */ return 0; default: WARN(true, "failed to verify reset of queue %02x.%04x: TAPQ rc=%u\n", AP_QID_CARD(apqn), AP_QID_QUEUE(apqn), status->response_code); return -EIO; } } static int apq_reset_check(struct vfio_ap_queue *q) { int ret; int iters = MAX_RESET_CHECK_WAIT / AP_RESET_INTERVAL; struct ap_queue_status status; for (; iters > 0; iters--) { msleep(AP_RESET_INTERVAL); status = ap_tapq(q->apqn, NULL); ret = apq_status_check(q->apqn, &status); if (ret != -EBUSY) return ret; } WARN_ONCE(iters <= 0, "timeout verifying reset of queue %02x.%04x (%u, %u, %u)", AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn), status.queue_empty, status.irq_enabled, status.response_code); return ret; } static int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q) { struct ap_queue_status status; int ret; if (!q) return 0; retry_zapq: status = ap_zapq(q->apqn, 0); q->reset_rc = status.response_code; switch (status.response_code) { case AP_RESPONSE_NORMAL: ret = 0; /* if the reset has not completed, wait for it to take effect */ if (!status.queue_empty || status.irq_enabled) ret = apq_reset_check(q); break; case AP_RESPONSE_RESET_IN_PROGRESS: /* * There is a reset issued by another process in progress. Let's wait * for that to complete. Since we have no idea whether it was a RAPQ or * ZAPQ, then if it completes successfully, let's issue the ZAPQ. */ ret = apq_reset_check(q); if (ret) break; goto retry_zapq; case AP_RESPONSE_DECONFIGURED: /* * When an AP adapter is deconfigured, the associated * queues are reset, so let's return a value indicating the reset * completed successfully. */ ret = 0; break; default: WARN(true, "PQAP/ZAPQ for %02x.%04x failed with invalid rc=%u\n", AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn), status.response_code); return -EIO; } vfio_ap_free_aqic_resources(q); return ret; } static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable) { int ret, loop_cursor, rc = 0; struct vfio_ap_queue *q; hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) { ret = vfio_ap_mdev_reset_queue(q); /* * Regardless whether a queue turns out to be busy, or * is not operational, we need to continue resetting * the remaining queues. */ if (ret) rc = ret; } return rc; } static int vfio_ap_mdev_open_device(struct vfio_device *vdev) { struct ap_matrix_mdev *matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev); if (!vdev->kvm) return -EINVAL; return vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm); } static void vfio_ap_mdev_close_device(struct vfio_device *vdev) { struct ap_matrix_mdev *matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev); vfio_ap_mdev_unset_kvm(matrix_mdev); } static void vfio_ap_mdev_request(struct vfio_device *vdev, unsigned int count) { struct device *dev = vdev->dev; struct ap_matrix_mdev *matrix_mdev; matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev); if (matrix_mdev->req_trigger) { if (!(count % 10)) dev_notice_ratelimited(dev, "Relaying device request to user (#%u)\n", count); eventfd_signal(matrix_mdev->req_trigger, 1); } else if (count == 0) { dev_notice(dev, "No device request registered, blocked until released by user\n"); } } static int vfio_ap_mdev_get_device_info(unsigned long arg) { unsigned long minsz; struct vfio_device_info info; minsz = offsetofend(struct vfio_device_info, num_irqs); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET; info.num_regions = 0; info.num_irqs = VFIO_AP_NUM_IRQS; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } static ssize_t vfio_ap_get_irq_info(unsigned long arg) { unsigned long minsz; struct vfio_irq_info info; minsz = offsetofend(struct vfio_irq_info, count); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz || info.index >= VFIO_AP_NUM_IRQS) return -EINVAL; switch (info.index) { case VFIO_AP_REQ_IRQ_INDEX: info.count = 1; info.flags = VFIO_IRQ_INFO_EVENTFD; break; default: return -EINVAL; } return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } static int vfio_ap_irq_set_init(struct vfio_irq_set *irq_set, unsigned long arg) { int ret; size_t data_size; unsigned long minsz; minsz = offsetofend(struct vfio_irq_set, count); if (copy_from_user(irq_set, (void __user *)arg, minsz)) return -EFAULT; ret = vfio_set_irqs_validate_and_prepare(irq_set, 1, VFIO_AP_NUM_IRQS, &data_size); if (ret) return ret; if (!(irq_set->flags & VFIO_IRQ_SET_ACTION_TRIGGER)) return -EINVAL; return 0; } static int vfio_ap_set_request_irq(struct ap_matrix_mdev *matrix_mdev, unsigned long arg) { s32 fd; void __user *data; unsigned long minsz; struct eventfd_ctx *req_trigger; minsz = offsetofend(struct vfio_irq_set, count); data = (void __user *)(arg + minsz); if (get_user(fd, (s32 __user *)data)) return -EFAULT; if (fd == -1) { if (matrix_mdev->req_trigger) eventfd_ctx_put(matrix_mdev->req_trigger); matrix_mdev->req_trigger = NULL; } else if (fd >= 0) { req_trigger = eventfd_ctx_fdget(fd); if (IS_ERR(req_trigger)) return PTR_ERR(req_trigger); if (matrix_mdev->req_trigger) eventfd_ctx_put(matrix_mdev->req_trigger); matrix_mdev->req_trigger = req_trigger; } else { return -EINVAL; } return 0; } static int vfio_ap_set_irqs(struct ap_matrix_mdev *matrix_mdev, unsigned long arg) { int ret; struct vfio_irq_set irq_set; ret = vfio_ap_irq_set_init(&irq_set, arg); if (ret) return ret; switch (irq_set.flags & VFIO_IRQ_SET_DATA_TYPE_MASK) { case VFIO_IRQ_SET_DATA_EVENTFD: switch (irq_set.index) { case VFIO_AP_REQ_IRQ_INDEX: return vfio_ap_set_request_irq(matrix_mdev, arg); default: return -EINVAL; } default: return -EINVAL; } } static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev, unsigned int cmd, unsigned long arg) { struct ap_matrix_mdev *matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev); int ret; mutex_lock(&matrix_dev->mdevs_lock); switch (cmd) { case VFIO_DEVICE_GET_INFO: ret = vfio_ap_mdev_get_device_info(arg); break; case VFIO_DEVICE_RESET: ret = vfio_ap_mdev_reset_queues(&matrix_mdev->qtable); break; case VFIO_DEVICE_GET_IRQ_INFO: ret = vfio_ap_get_irq_info(arg); break; case VFIO_DEVICE_SET_IRQS: ret = vfio_ap_set_irqs(matrix_mdev, arg); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&matrix_dev->mdevs_lock); return ret; } static struct ap_matrix_mdev *vfio_ap_mdev_for_queue(struct vfio_ap_queue *q) { struct ap_matrix_mdev *matrix_mdev; unsigned long apid = AP_QID_CARD(q->apqn); unsigned long apqi = AP_QID_QUEUE(q->apqn); list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { if (test_bit_inv(apid, matrix_mdev->matrix.apm) && test_bit_inv(apqi, matrix_mdev->matrix.aqm)) return matrix_mdev; } return NULL; } static ssize_t status_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t nchars = 0; struct vfio_ap_queue *q; struct ap_matrix_mdev *matrix_mdev; struct ap_device *apdev = to_ap_dev(dev); mutex_lock(&matrix_dev->mdevs_lock); q = dev_get_drvdata(&apdev->device); matrix_mdev = vfio_ap_mdev_for_queue(q); if (matrix_mdev) { if (matrix_mdev->kvm) nchars = scnprintf(buf, PAGE_SIZE, "%s\n", AP_QUEUE_IN_USE); else nchars = scnprintf(buf, PAGE_SIZE, "%s\n", AP_QUEUE_ASSIGNED); } else { nchars = scnprintf(buf, PAGE_SIZE, "%s\n", AP_QUEUE_UNASSIGNED); } mutex_unlock(&matrix_dev->mdevs_lock); return nchars; } static DEVICE_ATTR_RO(status); static struct attribute *vfio_queue_attrs[] = { &dev_attr_status.attr, NULL, }; static const struct attribute_group vfio_queue_attr_group = { .attrs = vfio_queue_attrs, }; static const struct vfio_device_ops vfio_ap_matrix_dev_ops = { .init = vfio_ap_mdev_init_dev, .open_device = vfio_ap_mdev_open_device, .close_device = vfio_ap_mdev_close_device, .ioctl = vfio_ap_mdev_ioctl, .dma_unmap = vfio_ap_mdev_dma_unmap, .bind_iommufd = vfio_iommufd_emulated_bind, .unbind_iommufd = vfio_iommufd_emulated_unbind, .attach_ioas = vfio_iommufd_emulated_attach_ioas, .request = vfio_ap_mdev_request }; static struct mdev_driver vfio_ap_matrix_driver = { .device_api = VFIO_DEVICE_API_AP_STRING, .max_instances = MAX_ZDEV_ENTRIES_EXT, .driver = { .name = "vfio_ap_mdev", .owner = THIS_MODULE, .mod_name = KBUILD_MODNAME, .dev_groups = vfio_ap_mdev_attr_groups, }, .probe = vfio_ap_mdev_probe, .remove = vfio_ap_mdev_remove, }; int vfio_ap_mdev_register(void) { int ret; ret = mdev_register_driver(&vfio_ap_matrix_driver); if (ret) return ret; matrix_dev->mdev_type.sysfs_name = VFIO_AP_MDEV_TYPE_HWVIRT; matrix_dev->mdev_type.pretty_name = VFIO_AP_MDEV_NAME_HWVIRT; matrix_dev->mdev_types[0] = &matrix_dev->mdev_type; ret = mdev_register_parent(&matrix_dev->parent, &matrix_dev->device, &vfio_ap_matrix_driver, matrix_dev->mdev_types, 1); if (ret) goto err_driver; return 0; err_driver: mdev_unregister_driver(&vfio_ap_matrix_driver); return ret; } void vfio_ap_mdev_unregister(void) { mdev_unregister_parent(&matrix_dev->parent); mdev_unregister_driver(&vfio_ap_matrix_driver); } int vfio_ap_mdev_probe_queue(struct ap_device *apdev) { int ret; struct vfio_ap_queue *q; struct ap_matrix_mdev *matrix_mdev; ret = sysfs_create_group(&apdev->device.kobj, &vfio_queue_attr_group); if (ret) return ret; q = kzalloc(sizeof(*q), GFP_KERNEL); if (!q) { ret = -ENOMEM; goto err_remove_group; } q->apqn = to_ap_queue(&apdev->device)->qid; q->saved_isc = VFIO_AP_ISC_INVALID; matrix_mdev = get_update_locks_by_apqn(q->apqn); if (matrix_mdev) { vfio_ap_mdev_link_queue(matrix_mdev, q); if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm, matrix_mdev->matrix.aqm, matrix_mdev)) vfio_ap_mdev_update_guest_apcb(matrix_mdev); } dev_set_drvdata(&apdev->device, q); release_update_locks_for_mdev(matrix_mdev); return 0; err_remove_group: sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group); return ret; } void vfio_ap_mdev_remove_queue(struct ap_device *apdev) { unsigned long apid, apqi; struct vfio_ap_queue *q; struct ap_matrix_mdev *matrix_mdev; sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group); q = dev_get_drvdata(&apdev->device); get_update_locks_for_queue(q); matrix_mdev = q->matrix_mdev; if (matrix_mdev) { vfio_ap_unlink_queue_fr_mdev(q); apid = AP_QID_CARD(q->apqn); apqi = AP_QID_QUEUE(q->apqn); /* * If the queue is assigned to the guest's APCB, then remove * the adapter's APID from the APCB and hot it into the guest. */ if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) && test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) { clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm); vfio_ap_mdev_update_guest_apcb(matrix_mdev); } } vfio_ap_mdev_reset_queue(q); dev_set_drvdata(&apdev->device, NULL); kfree(q); release_update_locks_for_mdev(matrix_mdev); } /** * vfio_ap_mdev_resource_in_use: check whether any of a set of APQNs is * assigned to a mediated device under the control * of the vfio_ap device driver. * * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check. * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check. * * Return: * * -EADDRINUSE if one or more of the APQNs specified via @apm/@aqm are * assigned to a mediated device under the control of the vfio_ap * device driver. * * Otherwise, return 0. */ int vfio_ap_mdev_resource_in_use(unsigned long *apm, unsigned long *aqm) { int ret; mutex_lock(&matrix_dev->guests_lock); mutex_lock(&matrix_dev->mdevs_lock); ret = vfio_ap_mdev_verify_no_sharing(apm, aqm); mutex_unlock(&matrix_dev->mdevs_lock); mutex_unlock(&matrix_dev->guests_lock); return ret; } /** * vfio_ap_mdev_hot_unplug_cfg - hot unplug the adapters, domains and control * domains that have been removed from the host's * AP configuration from a guest. * * @matrix_mdev: an ap_matrix_mdev object attached to a KVM guest. * @aprem: the adapters that have been removed from the host's AP configuration * @aqrem: the domains that have been removed from the host's AP configuration * @cdrem: the control domains that have been removed from the host's AP * configuration. */ static void vfio_ap_mdev_hot_unplug_cfg(struct ap_matrix_mdev *matrix_mdev, unsigned long *aprem, unsigned long *aqrem, unsigned long *cdrem) { int do_hotplug = 0; if (!bitmap_empty(aprem, AP_DEVICES)) { do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.apm, matrix_mdev->shadow_apcb.apm, aprem, AP_DEVICES); } if (!bitmap_empty(aqrem, AP_DOMAINS)) { do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.aqm, matrix_mdev->shadow_apcb.aqm, aqrem, AP_DEVICES); } if (!bitmap_empty(cdrem, AP_DOMAINS)) do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.adm, matrix_mdev->shadow_apcb.adm, cdrem, AP_DOMAINS); if (do_hotplug) vfio_ap_mdev_update_guest_apcb(matrix_mdev); } /** * vfio_ap_mdev_cfg_remove - determines which guests are using the adapters, * domains and control domains that have been removed * from the host AP configuration and unplugs them * from those guests. * * @ap_remove: bitmap specifying which adapters have been removed from the host * config. * @aq_remove: bitmap specifying which domains have been removed from the host * config. * @cd_remove: bitmap specifying which control domains have been removed from * the host config. */ static void vfio_ap_mdev_cfg_remove(unsigned long *ap_remove, unsigned long *aq_remove, unsigned long *cd_remove) { struct ap_matrix_mdev *matrix_mdev; DECLARE_BITMAP(aprem, AP_DEVICES); DECLARE_BITMAP(aqrem, AP_DOMAINS); DECLARE_BITMAP(cdrem, AP_DOMAINS); int do_remove = 0; list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { mutex_lock(&matrix_mdev->kvm->lock); mutex_lock(&matrix_dev->mdevs_lock); do_remove |= bitmap_and(aprem, ap_remove, matrix_mdev->matrix.apm, AP_DEVICES); do_remove |= bitmap_and(aqrem, aq_remove, matrix_mdev->matrix.aqm, AP_DOMAINS); do_remove |= bitmap_andnot(cdrem, cd_remove, matrix_mdev->matrix.adm, AP_DOMAINS); if (do_remove) vfio_ap_mdev_hot_unplug_cfg(matrix_mdev, aprem, aqrem, cdrem); mutex_unlock(&matrix_dev->mdevs_lock); mutex_unlock(&matrix_mdev->kvm->lock); } } /** * vfio_ap_mdev_on_cfg_remove - responds to the removal of adapters, domains and * control domains from the host AP configuration * by unplugging them from the guests that are * using them. * @cur_config_info: the current host AP configuration information * @prev_config_info: the previous host AP configuration information */ static void vfio_ap_mdev_on_cfg_remove(struct ap_config_info *cur_config_info, struct ap_config_info *prev_config_info) { int do_remove; DECLARE_BITMAP(aprem, AP_DEVICES); DECLARE_BITMAP(aqrem, AP_DOMAINS); DECLARE_BITMAP(cdrem, AP_DOMAINS); do_remove = bitmap_andnot(aprem, (unsigned long *)prev_config_info->apm, (unsigned long *)cur_config_info->apm, AP_DEVICES); do_remove |= bitmap_andnot(aqrem, (unsigned long *)prev_config_info->aqm, (unsigned long *)cur_config_info->aqm, AP_DEVICES); do_remove |= bitmap_andnot(cdrem, (unsigned long *)prev_config_info->adm, (unsigned long *)cur_config_info->adm, AP_DEVICES); if (do_remove) vfio_ap_mdev_cfg_remove(aprem, aqrem, cdrem); } /** * vfio_ap_filter_apid_by_qtype: filter APIDs from an AP mask for adapters that * are older than AP type 10 (CEX4). * @apm: a bitmap of the APIDs to examine * @aqm: a bitmap of the APQIs of the queues to query for the AP type. */ static void vfio_ap_filter_apid_by_qtype(unsigned long *apm, unsigned long *aqm) { bool apid_cleared; struct ap_queue_status status; unsigned long apid, apqi; struct ap_tapq_gr2 info; for_each_set_bit_inv(apid, apm, AP_DEVICES) { apid_cleared = false; for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) { status = ap_test_queue(AP_MKQID(apid, apqi), 1, &info); switch (status.response_code) { /* * According to the architecture in each case * below, the queue's info should be filled. */ case AP_RESPONSE_NORMAL: case AP_RESPONSE_RESET_IN_PROGRESS: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: case AP_RESPONSE_BUSY: /* * The vfio_ap device driver only * supports CEX4 and newer adapters, so * remove the APID if the adapter is * older than a CEX4. */ if (info.at < AP_DEVICE_TYPE_CEX4) { clear_bit_inv(apid, apm); apid_cleared = true; } break; default: /* * If we don't know the adapter type, * clear its APID since it can't be * determined whether the vfio_ap * device driver supports it. */ clear_bit_inv(apid, apm); apid_cleared = true; break; } /* * If we've already cleared the APID from the apm, there * is no need to continue examining the remainin AP * queues to determine the type of the adapter. */ if (apid_cleared) continue; } } } /** * vfio_ap_mdev_cfg_add - store bitmaps specifying the adapters, domains and * control domains that have been added to the host's * AP configuration for each matrix mdev to which they * are assigned. * * @apm_add: a bitmap specifying the adapters that have been added to the AP * configuration. * @aqm_add: a bitmap specifying the domains that have been added to the AP * configuration. * @adm_add: a bitmap specifying the control domains that have been added to the * AP configuration. */ static void vfio_ap_mdev_cfg_add(unsigned long *apm_add, unsigned long *aqm_add, unsigned long *adm_add) { struct ap_matrix_mdev *matrix_mdev; if (list_empty(&matrix_dev->mdev_list)) return; vfio_ap_filter_apid_by_qtype(apm_add, aqm_add); list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { bitmap_and(matrix_mdev->apm_add, matrix_mdev->matrix.apm, apm_add, AP_DEVICES); bitmap_and(matrix_mdev->aqm_add, matrix_mdev->matrix.aqm, aqm_add, AP_DOMAINS); bitmap_and(matrix_mdev->adm_add, matrix_mdev->matrix.adm, adm_add, AP_DEVICES); } } /** * vfio_ap_mdev_on_cfg_add - responds to the addition of adapters, domains and * control domains to the host AP configuration * by updating the bitmaps that specify what adapters, * domains and control domains have been added so they * can be hot plugged into the guest when the AP bus * scan completes (see vfio_ap_on_scan_complete * function). * @cur_config_info: the current AP configuration information * @prev_config_info: the previous AP configuration information */ static void vfio_ap_mdev_on_cfg_add(struct ap_config_info *cur_config_info, struct ap_config_info *prev_config_info) { bool do_add; DECLARE_BITMAP(apm_add, AP_DEVICES); DECLARE_BITMAP(aqm_add, AP_DOMAINS); DECLARE_BITMAP(adm_add, AP_DOMAINS); do_add = bitmap_andnot(apm_add, (unsigned long *)cur_config_info->apm, (unsigned long *)prev_config_info->apm, AP_DEVICES); do_add |= bitmap_andnot(aqm_add, (unsigned long *)cur_config_info->aqm, (unsigned long *)prev_config_info->aqm, AP_DOMAINS); do_add |= bitmap_andnot(adm_add, (unsigned long *)cur_config_info->adm, (unsigned long *)prev_config_info->adm, AP_DOMAINS); if (do_add) vfio_ap_mdev_cfg_add(apm_add, aqm_add, adm_add); } /** * vfio_ap_on_cfg_changed - handles notification of changes to the host AP * configuration. * * @cur_cfg_info: the current host AP configuration * @prev_cfg_info: the previous host AP configuration */ void vfio_ap_on_cfg_changed(struct ap_config_info *cur_cfg_info, struct ap_config_info *prev_cfg_info) { if (!cur_cfg_info || !prev_cfg_info) return; mutex_lock(&matrix_dev->guests_lock); vfio_ap_mdev_on_cfg_remove(cur_cfg_info, prev_cfg_info); vfio_ap_mdev_on_cfg_add(cur_cfg_info, prev_cfg_info); memcpy(&matrix_dev->info, cur_cfg_info, sizeof(*cur_cfg_info)); mutex_unlock(&matrix_dev->guests_lock); } static void vfio_ap_mdev_hot_plug_cfg(struct ap_matrix_mdev *matrix_mdev) { bool do_hotplug = false; int filter_domains = 0; int filter_adapters = 0; DECLARE_BITMAP(apm, AP_DEVICES); DECLARE_BITMAP(aqm, AP_DOMAINS); mutex_lock(&matrix_mdev->kvm->lock); mutex_lock(&matrix_dev->mdevs_lock); filter_adapters = bitmap_and(apm, matrix_mdev->matrix.apm, matrix_mdev->apm_add, AP_DEVICES); filter_domains = bitmap_and(aqm, matrix_mdev->matrix.aqm, matrix_mdev->aqm_add, AP_DOMAINS); if (filter_adapters && filter_domains) do_hotplug |= vfio_ap_mdev_filter_matrix(apm, aqm, matrix_mdev); else if (filter_adapters) do_hotplug |= vfio_ap_mdev_filter_matrix(apm, matrix_mdev->shadow_apcb.aqm, matrix_mdev); else do_hotplug |= vfio_ap_mdev_filter_matrix(matrix_mdev->shadow_apcb.apm, aqm, matrix_mdev); if (bitmap_intersects(matrix_mdev->matrix.adm, matrix_mdev->adm_add, AP_DOMAINS)) do_hotplug |= vfio_ap_mdev_filter_cdoms(matrix_mdev); if (do_hotplug) vfio_ap_mdev_update_guest_apcb(matrix_mdev); mutex_unlock(&matrix_dev->mdevs_lock); mutex_unlock(&matrix_mdev->kvm->lock); } void vfio_ap_on_scan_complete(struct ap_config_info *new_config_info, struct ap_config_info *old_config_info) { struct ap_matrix_mdev *matrix_mdev; mutex_lock(&matrix_dev->guests_lock); list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { if (bitmap_empty(matrix_mdev->apm_add, AP_DEVICES) && bitmap_empty(matrix_mdev->aqm_add, AP_DOMAINS) && bitmap_empty(matrix_mdev->adm_add, AP_DOMAINS)) continue; vfio_ap_mdev_hot_plug_cfg(matrix_mdev); bitmap_clear(matrix_mdev->apm_add, 0, AP_DEVICES); bitmap_clear(matrix_mdev->aqm_add, 0, AP_DOMAINS); bitmap_clear(matrix_mdev->adm_add, 0, AP_DOMAINS); } mutex_unlock(&matrix_dev->guests_lock); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1