Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alan Cox | 1136 | 33.92% | 2 | 3.28% |
Mahesh Rajashekhara | 889 | 26.55% | 13 | 21.31% |
Raghava Aditya Renukunta | 670 | 20.01% | 11 | 18.03% |
Mark Haverkamp | 416 | 12.42% | 14 | 22.95% |
Hannes Reinecke | 82 | 2.45% | 2 | 3.28% |
James Bottomley | 36 | 1.07% | 2 | 3.28% |
Achim Leubner | 33 | 0.99% | 1 | 1.64% |
Mark Salyzyn | 21 | 0.63% | 3 | 4.92% |
Balsundar P | 18 | 0.54% | 1 | 1.64% |
Penchala Narasimha Reddy Chilakala, ERS-HCLTech | 15 | 0.45% | 1 | 1.64% |
Benjamin Collins | 14 | 0.42% | 2 | 3.28% |
Dave Carroll | 6 | 0.18% | 1 | 1.64% |
Bart Van Assche | 4 | 0.12% | 1 | 1.64% |
Matthew Wilcox | 2 | 0.06% | 1 | 1.64% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.64% |
Adrian Bunk | 2 | 0.06% | 2 | 3.28% |
Al Viro | 1 | 0.03% | 1 | 1.64% |
Christoph Hellwig | 1 | 0.03% | 1 | 1.64% |
André Goddard Rosa | 1 | 0.03% | 1 | 1.64% |
Total | 3349 | 61 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) * * Module Name: * comminit.c * * Abstract: This supports the initialization of the host adapter commuication interface. * This is a platform dependent module for the pci cyclone board. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/completion.h> #include <linux/mm.h> #include <scsi/scsi_host.h> #include <scsi/scsi_device.h> #include <scsi/scsi_cmnd.h> #include "aacraid.h" struct aac_common aac_config = { .irq_mod = 1 }; static inline int aac_is_msix_mode(struct aac_dev *dev) { u32 status = 0; if (aac_is_src(dev)) status = src_readl(dev, MUnit.OMR); return (status & AAC_INT_MODE_MSIX); } static inline void aac_change_to_intx(struct aac_dev *dev) { aac_src_access_devreg(dev, AAC_DISABLE_MSIX); aac_src_access_devreg(dev, AAC_ENABLE_INTX); } static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign) { unsigned char *base; unsigned long size, align; const unsigned long fibsize = dev->max_fib_size; const unsigned long printfbufsiz = 256; unsigned long host_rrq_size, aac_init_size; union aac_init *init; dma_addr_t phys; unsigned long aac_max_hostphysmempages; if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) || (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) || (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3 && !dev->sa_firmware)) { host_rrq_size = (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) * sizeof(u32); aac_init_size = sizeof(union aac_init); } else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3 && dev->sa_firmware) { host_rrq_size = (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) * sizeof(u32) * AAC_MAX_MSIX; aac_init_size = sizeof(union aac_init) + (AAC_MAX_HRRQ - 1) * sizeof(struct _rrq); } else { host_rrq_size = 0; aac_init_size = sizeof(union aac_init); } size = fibsize + aac_init_size + commsize + commalign + printfbufsiz + host_rrq_size; base = dma_alloc_coherent(&dev->pdev->dev, size, &phys, GFP_KERNEL); if (base == NULL) { printk(KERN_ERR "aacraid: unable to create mapping.\n"); return 0; } dev->comm_addr = (void *)base; dev->comm_phys = phys; dev->comm_size = size; if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) || (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) || (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3)) { dev->host_rrq = (u32 *)(base + fibsize); dev->host_rrq_pa = phys + fibsize; memset(dev->host_rrq, 0, host_rrq_size); } dev->init = (union aac_init *)(base + fibsize + host_rrq_size); dev->init_pa = phys + fibsize + host_rrq_size; init = dev->init; if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { int i; u64 addr; init->r8.init_struct_revision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_8); init->r8.init_flags = cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED | INITFLAGS_DRIVER_USES_UTC_TIME | INITFLAGS_DRIVER_SUPPORTS_PM); init->r8.init_flags |= cpu_to_le32(INITFLAGS_DRIVER_SUPPORTS_HBA_MODE); init->r8.rr_queue_count = cpu_to_le32(dev->max_msix); init->r8.max_io_size = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9); init->r8.max_num_aif = init->r8.reserved1 = init->r8.reserved2 = 0; for (i = 0; i < dev->max_msix; i++) { addr = (u64)dev->host_rrq_pa + dev->vector_cap * i * sizeof(u32); init->r8.rrq[i].host_addr_high = cpu_to_le32( upper_32_bits(addr)); init->r8.rrq[i].host_addr_low = cpu_to_le32( lower_32_bits(addr)); init->r8.rrq[i].msix_id = i; init->r8.rrq[i].element_count = cpu_to_le16( (u16)dev->vector_cap); init->r8.rrq[i].comp_thresh = init->r8.rrq[i].unused = 0; } pr_warn("aacraid: Comm Interface type3 enabled\n"); } else { init->r7.init_struct_revision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION); if (dev->max_fib_size != sizeof(struct hw_fib)) init->r7.init_struct_revision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4); init->r7.no_of_msix_vectors = cpu_to_le32(SA_MINIPORT_REVISION); init->r7.fsrev = cpu_to_le32(dev->fsrev); /* * Adapter Fibs are the first thing allocated so that they * start page aligned */ dev->aif_base_va = (struct hw_fib *)base; init->r7.adapter_fibs_virtual_address = 0; init->r7.adapter_fibs_physical_address = cpu_to_le32((u32)phys); init->r7.adapter_fibs_size = cpu_to_le32(fibsize); init->r7.adapter_fib_align = cpu_to_le32(sizeof(struct hw_fib)); /* * number of 4k pages of host physical memory. The aacraid fw * needs this number to be less than 4gb worth of pages. New * firmware doesn't have any issues with the mapping system, but * older Firmware did, and had *troubles* dealing with the math * overloading past 32 bits, thus we must limit this field. */ aac_max_hostphysmempages = dma_get_required_mask(&dev->pdev->dev) >> 12; if (aac_max_hostphysmempages < AAC_MAX_HOSTPHYSMEMPAGES) init->r7.host_phys_mem_pages = cpu_to_le32(aac_max_hostphysmempages); else init->r7.host_phys_mem_pages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES); init->r7.init_flags = cpu_to_le32(INITFLAGS_DRIVER_USES_UTC_TIME | INITFLAGS_DRIVER_SUPPORTS_PM); init->r7.max_io_commands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); init->r7.max_io_size = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9); init->r7.max_fib_size = cpu_to_le32(dev->max_fib_size); init->r7.max_num_aif = cpu_to_le32(dev->max_num_aif); if (dev->comm_interface == AAC_COMM_MESSAGE) { init->r7.init_flags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED); pr_warn("aacraid: Comm Interface enabled\n"); } else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) { init->r7.init_struct_revision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_6); init->r7.init_flags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED | INITFLAGS_NEW_COMM_TYPE1_SUPPORTED | INITFLAGS_FAST_JBOD_SUPPORTED); init->r7.host_rrq_addr_high = cpu_to_le32(upper_32_bits(dev->host_rrq_pa)); init->r7.host_rrq_addr_low = cpu_to_le32(lower_32_bits(dev->host_rrq_pa)); pr_warn("aacraid: Comm Interface type1 enabled\n"); } else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) { init->r7.init_struct_revision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_7); init->r7.init_flags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED | INITFLAGS_NEW_COMM_TYPE2_SUPPORTED | INITFLAGS_FAST_JBOD_SUPPORTED); init->r7.host_rrq_addr_high = cpu_to_le32(upper_32_bits(dev->host_rrq_pa)); init->r7.host_rrq_addr_low = cpu_to_le32(lower_32_bits(dev->host_rrq_pa)); init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); /* must be the COMM_PREFERRED_SETTINGS values */ pr_warn("aacraid: Comm Interface type2 enabled\n"); } } /* * Increment the base address by the amount already used */ base = base + fibsize + host_rrq_size + aac_init_size; phys = (dma_addr_t)((ulong)phys + fibsize + host_rrq_size + aac_init_size); /* * Align the beginning of Headers to commalign */ align = (commalign - ((uintptr_t)(base) & (commalign - 1))); base = base + align; phys = phys + align; /* * Fill in addresses of the Comm Area Headers and Queues */ *commaddr = base; if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) init->r7.comm_header_address = cpu_to_le32((u32)phys); /* * Increment the base address by the size of the CommArea */ base = base + commsize; phys = phys + commsize; /* * Place the Printf buffer area after the Fast I/O comm area. */ dev->printfbuf = (void *)base; if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) { init->r7.printfbuf = cpu_to_le32(phys); init->r7.printfbufsiz = cpu_to_le32(printfbufsiz); } memset(base, 0, printfbufsiz); return 1; } static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize) { atomic_set(&q->numpending, 0); q->dev = dev; init_waitqueue_head(&q->cmdready); INIT_LIST_HEAD(&q->cmdq); init_waitqueue_head(&q->qfull); spin_lock_init(&q->lockdata); q->lock = &q->lockdata; q->headers.producer = (__le32 *)mem; q->headers.consumer = (__le32 *)(mem+1); *(q->headers.producer) = cpu_to_le32(qsize); *(q->headers.consumer) = cpu_to_le32(qsize); q->entries = qsize; } static bool wait_for_io_iter(struct scsi_cmnd *cmd, void *data) { int *active = data; if (aac_priv(cmd)->owner == AAC_OWNER_FIRMWARE) *active = *active + 1; return true; } static void aac_wait_for_io_completion(struct aac_dev *aac) { int i = 0, active; for (i = 60; i; --i) { active = 0; scsi_host_busy_iter(aac->scsi_host_ptr, wait_for_io_iter, &active); /* * We can exit If all the commands are complete */ if (active == 0) break; dev_info(&aac->pdev->dev, "Wait for %d commands to complete\n", active); ssleep(1); } if (active) dev_err(&aac->pdev->dev, "%d outstanding commands during shutdown\n", active); } /** * aac_send_shutdown - shutdown an adapter * @dev: Adapter to shutdown * * This routine will send a VM_CloseAll (shutdown) request to the adapter. */ int aac_send_shutdown(struct aac_dev * dev) { struct fib * fibctx; struct aac_close *cmd; int status = 0; if (aac_adapter_check_health(dev)) return status; if (!dev->adapter_shutdown) { mutex_lock(&dev->ioctl_mutex); dev->adapter_shutdown = 1; mutex_unlock(&dev->ioctl_mutex); } aac_wait_for_io_completion(dev); fibctx = aac_fib_alloc(dev); if (!fibctx) return -ENOMEM; aac_fib_init(fibctx); cmd = (struct aac_close *) fib_data(fibctx); cmd->command = cpu_to_le32(VM_CloseAll); cmd->cid = cpu_to_le32(0xfffffffe); status = aac_fib_send(ContainerCommand, fibctx, sizeof(struct aac_close), FsaNormal, -2 /* Timeout silently */, 1, NULL, NULL); if (status >= 0) aac_fib_complete(fibctx); /* FIB should be freed only after getting the response from the F/W */ if (status != -ERESTARTSYS) aac_fib_free(fibctx); if (aac_is_src(dev) && dev->msi_enabled) aac_set_intx_mode(dev); return status; } /** * aac_comm_init - Initialise FSA data structures * @dev: Adapter to initialise * * Initializes the data structures that are required for the FSA commuication * interface to operate. * Returns * 1 - if we were able to init the commuication interface. * 0 - If there were errors initing. This is a fatal error. */ static int aac_comm_init(struct aac_dev * dev) { unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2; unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES; u32 *headers; struct aac_entry * queues; unsigned long size; struct aac_queue_block * comm = dev->queues; /* * Now allocate and initialize the zone structures used as our * pool of FIB context records. The size of the zone is based * on the system memory size. We also initialize the mutex used * to protect the zone. */ spin_lock_init(&dev->fib_lock); /* * Allocate the physically contiguous space for the commuication * queue headers. */ size = hdrsize + queuesize; if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT)) return -ENOMEM; queues = (struct aac_entry *)(((ulong)headers) + hdrsize); /* Adapter to Host normal priority Command queue */ comm->queue[HostNormCmdQueue].base = queues; aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES); queues += HOST_NORM_CMD_ENTRIES; headers += 2; /* Adapter to Host high priority command queue */ comm->queue[HostHighCmdQueue].base = queues; aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES); queues += HOST_HIGH_CMD_ENTRIES; headers +=2; /* Host to adapter normal priority command queue */ comm->queue[AdapNormCmdQueue].base = queues; aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES); queues += ADAP_NORM_CMD_ENTRIES; headers += 2; /* host to adapter high priority command queue */ comm->queue[AdapHighCmdQueue].base = queues; aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES); queues += ADAP_HIGH_CMD_ENTRIES; headers += 2; /* adapter to host normal priority response queue */ comm->queue[HostNormRespQueue].base = queues; aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES); queues += HOST_NORM_RESP_ENTRIES; headers += 2; /* adapter to host high priority response queue */ comm->queue[HostHighRespQueue].base = queues; aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES); queues += HOST_HIGH_RESP_ENTRIES; headers += 2; /* host to adapter normal priority response queue */ comm->queue[AdapNormRespQueue].base = queues; aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES); queues += ADAP_NORM_RESP_ENTRIES; headers += 2; /* host to adapter high priority response queue */ comm->queue[AdapHighRespQueue].base = queues; aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES); comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock; comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock; comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock; comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock; return 0; } void aac_define_int_mode(struct aac_dev *dev) { int i, msi_count, min_msix; msi_count = i = 0; /* max. vectors from GET_COMM_PREFERRED_SETTINGS */ if (dev->max_msix == 0 || dev->pdev->device == PMC_DEVICE_S6 || dev->sync_mode) { dev->max_msix = 1; dev->vector_cap = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; return; } /* Don't bother allocating more MSI-X vectors than cpus */ msi_count = min(dev->max_msix, (unsigned int)num_online_cpus()); dev->max_msix = msi_count; if (msi_count > AAC_MAX_MSIX) msi_count = AAC_MAX_MSIX; if (msi_count > 1 && pci_find_capability(dev->pdev, PCI_CAP_ID_MSIX)) { min_msix = 2; i = pci_alloc_irq_vectors(dev->pdev, min_msix, msi_count, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); if (i > 0) { dev->msi_enabled = 1; msi_count = i; } else { dev->msi_enabled = 0; dev_err(&dev->pdev->dev, "MSIX not supported!! Will try INTX 0x%x.\n", i); } } if (!dev->msi_enabled) dev->max_msix = msi_count = 1; else { if (dev->max_msix > msi_count) dev->max_msix = msi_count; } if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3 && dev->sa_firmware) dev->vector_cap = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; else dev->vector_cap = (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) / msi_count; } struct aac_dev *aac_init_adapter(struct aac_dev *dev) { u32 status[5]; struct Scsi_Host * host = dev->scsi_host_ptr; extern int aac_sync_mode; /* * Check the preferred comm settings, defaults from template. */ dev->management_fib_count = 0; spin_lock_init(&dev->manage_lock); spin_lock_init(&dev->sync_lock); spin_lock_init(&dev->iq_lock); dev->max_fib_size = sizeof(struct hw_fib); dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size - sizeof(struct aac_fibhdr) - sizeof(struct aac_write) + sizeof(struct sgentry)) / sizeof(struct sgentry); dev->comm_interface = AAC_COMM_PRODUCER; dev->raw_io_interface = dev->raw_io_64 = 0; /* * Enable INTX mode, if not done already Enabled */ if (aac_is_msix_mode(dev)) { aac_change_to_intx(dev); dev_info(&dev->pdev->dev, "Changed firmware to INTX mode"); } if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES, 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, status+3, status+4)) && (status[0] == 0x00000001)) { dev->doorbell_mask = status[3]; if (status[1] & AAC_OPT_NEW_COMM_64) dev->raw_io_64 = 1; dev->sync_mode = aac_sync_mode; if (dev->a_ops.adapter_comm && (status[1] & AAC_OPT_NEW_COMM)) { dev->comm_interface = AAC_COMM_MESSAGE; dev->raw_io_interface = 1; if ((status[1] & AAC_OPT_NEW_COMM_TYPE1)) { /* driver supports TYPE1 (Tupelo) */ dev->comm_interface = AAC_COMM_MESSAGE_TYPE1; } else if (status[1] & AAC_OPT_NEW_COMM_TYPE2) { /* driver supports TYPE2 (Denali, Yosemite) */ dev->comm_interface = AAC_COMM_MESSAGE_TYPE2; } else if (status[1] & AAC_OPT_NEW_COMM_TYPE3) { /* driver supports TYPE3 (Yosemite, Thor) */ dev->comm_interface = AAC_COMM_MESSAGE_TYPE3; } else if (status[1] & AAC_OPT_NEW_COMM_TYPE4) { /* not supported TYPE - switch to sync. mode */ dev->comm_interface = AAC_COMM_MESSAGE_TYPE2; dev->sync_mode = 1; } } if ((status[1] & le32_to_cpu(AAC_OPT_EXTENDED)) && (status[4] & le32_to_cpu(AAC_EXTOPT_SA_FIRMWARE))) dev->sa_firmware = 1; else dev->sa_firmware = 0; if (status[4] & le32_to_cpu(AAC_EXTOPT_SOFT_RESET)) dev->soft_reset_support = 1; else dev->soft_reset_support = 0; if ((dev->comm_interface == AAC_COMM_MESSAGE) && (status[2] > dev->base_size)) { aac_adapter_ioremap(dev, 0); dev->base_size = status[2]; if (aac_adapter_ioremap(dev, status[2])) { /* remap failed, go back ... */ dev->comm_interface = AAC_COMM_PRODUCER; if (aac_adapter_ioremap(dev, AAC_MIN_FOOTPRINT_SIZE)) { printk(KERN_WARNING "aacraid: unable to map adapter.\n"); return NULL; } } } } dev->max_msix = 0; dev->msi_enabled = 0; dev->adapter_shutdown = 0; if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS, 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, status+3, status+4)) && (status[0] == 0x00000001)) { /* * status[1] >> 16 maximum command size in KB * status[1] & 0xFFFF maximum FIB size * status[2] >> 16 maximum SG elements to driver * status[2] & 0xFFFF maximum SG elements from driver * status[3] & 0xFFFF maximum number FIBs outstanding */ host->max_sectors = (status[1] >> 16) << 1; /* Multiple of 32 for PMC */ dev->max_fib_size = status[1] & 0xFFE0; host->sg_tablesize = status[2] >> 16; dev->sg_tablesize = status[2] & 0xFFFF; if (aac_is_src(dev)) { if (host->can_queue > (status[3] >> 16) - AAC_NUM_MGT_FIB) host->can_queue = (status[3] >> 16) - AAC_NUM_MGT_FIB; } else if (host->can_queue > (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB) host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB; dev->max_num_aif = status[4] & 0xFFFF; } if (numacb > 0) { if (numacb < host->can_queue) host->can_queue = numacb; else pr_warn("numacb=%d ignored\n", numacb); } if (aac_is_src(dev)) aac_define_int_mode(dev); /* * Ok now init the communication subsystem */ dev->queues = kzalloc(sizeof(struct aac_queue_block), GFP_KERNEL); if (dev->queues == NULL) { printk(KERN_ERR "Error could not allocate comm region.\n"); return NULL; } if (aac_comm_init(dev)<0){ kfree(dev->queues); return NULL; } /* * Initialize the list of fibs */ if (aac_fib_setup(dev) < 0) { kfree(dev->queues); return NULL; } INIT_LIST_HEAD(&dev->fib_list); INIT_LIST_HEAD(&dev->sync_fib_list); return dev; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1