Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mahesh Rajashekhara | 2498 | 39.07% | 11 | 13.58% |
Raghava Aditya Renukunta | 1889 | 29.55% | 20 | 24.69% |
Alan Cox | 762 | 11.92% | 2 | 2.47% |
Mark Haverkamp | 723 | 11.31% | 17 | 20.99% |
Mark Salyzyn | 242 | 3.79% | 7 | 8.64% |
Sagar Biradar | 101 | 1.58% | 1 | 1.23% |
James Bottomley | 43 | 0.67% | 2 | 2.47% |
Benjamin Collins | 31 | 0.48% | 3 | 3.70% |
Guilherme G. Piccoli | 24 | 0.38% | 2 | 2.47% |
Tomas Henzl | 21 | 0.33% | 1 | 1.23% |
Balsundar P | 19 | 0.30% | 1 | 1.23% |
Arnd Bergmann | 12 | 0.19% | 3 | 3.70% |
Maximilian Attems | 9 | 0.14% | 1 | 1.23% |
Paul Bolle | 4 | 0.06% | 1 | 1.23% |
Lee Jones | 3 | 0.05% | 1 | 1.23% |
Christoph Hellwig | 2 | 0.03% | 1 | 1.23% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 1.23% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.23% |
Masanari Iida | 2 | 0.03% | 1 | 1.23% |
Adrian Bunk | 1 | 0.02% | 1 | 1.23% |
Baoyou Xie | 1 | 0.02% | 1 | 1.23% |
Arnaldo Carvalho de Melo | 1 | 0.02% | 1 | 1.23% |
Fengguang Wu | 1 | 0.02% | 1 | 1.23% |
Total | 6393 | 81 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) * * Module Name: * src.c * * Abstract: Hardware Device Interface for PMC SRC based controllers */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/completion.h> #include <linux/time.h> #include <linux/interrupt.h> #include <scsi/scsi_host.h> #include "aacraid.h" static int aac_src_get_sync_status(struct aac_dev *dev); static irqreturn_t aac_src_intr_message(int irq, void *dev_id) { struct aac_msix_ctx *ctx; struct aac_dev *dev; unsigned long bellbits, bellbits_shifted; int vector_no; int isFastResponse, mode; u32 index, handle; ctx = (struct aac_msix_ctx *)dev_id; dev = ctx->dev; vector_no = ctx->vector_no; if (dev->msi_enabled) { mode = AAC_INT_MODE_MSI; if (vector_no == 0) { bellbits = src_readl(dev, MUnit.ODR_MSI); if (bellbits & 0x40000) mode |= AAC_INT_MODE_AIF; if (bellbits & 0x1000) mode |= AAC_INT_MODE_SYNC; } } else { mode = AAC_INT_MODE_INTX; bellbits = src_readl(dev, MUnit.ODR_R); if (bellbits & PmDoorBellResponseSent) { bellbits = PmDoorBellResponseSent; src_writel(dev, MUnit.ODR_C, bellbits); src_readl(dev, MUnit.ODR_C); } else { bellbits_shifted = (bellbits >> SRC_ODR_SHIFT); src_writel(dev, MUnit.ODR_C, bellbits); src_readl(dev, MUnit.ODR_C); if (bellbits_shifted & DoorBellAifPending) mode |= AAC_INT_MODE_AIF; else if (bellbits_shifted & OUTBOUNDDOORBELL_0) mode |= AAC_INT_MODE_SYNC; } } if (mode & AAC_INT_MODE_SYNC) { unsigned long sflags; struct list_head *entry; int send_it = 0; extern int aac_sync_mode; if (!aac_sync_mode && !dev->msi_enabled) { src_writel(dev, MUnit.ODR_C, bellbits); src_readl(dev, MUnit.ODR_C); } if (dev->sync_fib) { if (dev->sync_fib->callback) dev->sync_fib->callback(dev->sync_fib->callback_data, dev->sync_fib); spin_lock_irqsave(&dev->sync_fib->event_lock, sflags); if (dev->sync_fib->flags & FIB_CONTEXT_FLAG_WAIT) { dev->management_fib_count--; complete(&dev->sync_fib->event_wait); } spin_unlock_irqrestore(&dev->sync_fib->event_lock, sflags); spin_lock_irqsave(&dev->sync_lock, sflags); if (!list_empty(&dev->sync_fib_list)) { entry = dev->sync_fib_list.next; dev->sync_fib = list_entry(entry, struct fib, fiblink); list_del(entry); send_it = 1; } else { dev->sync_fib = NULL; } spin_unlock_irqrestore(&dev->sync_lock, sflags); if (send_it) { aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, (u32)dev->sync_fib->hw_fib_pa, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } } if (!dev->msi_enabled) mode = 0; } if (mode & AAC_INT_MODE_AIF) { /* handle AIF */ if (dev->sa_firmware) { u32 events = src_readl(dev, MUnit.SCR0); aac_intr_normal(dev, events, 1, 0, NULL); writel(events, &dev->IndexRegs->Mailbox[0]); src_writel(dev, MUnit.IDR, 1 << 23); } else { if (dev->aif_thread && dev->fsa_dev) aac_intr_normal(dev, 0, 2, 0, NULL); } if (dev->msi_enabled) aac_src_access_devreg(dev, AAC_CLEAR_AIF_BIT); mode = 0; } if (mode) { index = dev->host_rrq_idx[vector_no]; for (;;) { isFastResponse = 0; /* remove toggle bit (31) */ handle = le32_to_cpu((dev->host_rrq[index]) & 0x7fffffff); /* check fast response bits (30, 1) */ if (handle & 0x40000000) isFastResponse = 1; handle &= 0x0000ffff; if (handle == 0) break; handle >>= 2; if (dev->msi_enabled && dev->max_msix > 1) atomic_dec(&dev->rrq_outstanding[vector_no]); aac_intr_normal(dev, handle, 0, isFastResponse, NULL); dev->host_rrq[index++] = 0; if (index == (vector_no + 1) * dev->vector_cap) index = vector_no * dev->vector_cap; dev->host_rrq_idx[vector_no] = index; } mode = 0; } return IRQ_HANDLED; } /** * aac_src_disable_interrupt - Disable interrupts * @dev: Adapter */ static void aac_src_disable_interrupt(struct aac_dev *dev) { src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff); } /** * aac_src_enable_interrupt_message - Enable interrupts * @dev: Adapter */ static void aac_src_enable_interrupt_message(struct aac_dev *dev) { aac_src_access_devreg(dev, AAC_ENABLE_INTERRUPT); } /** * src_sync_cmd - send a command and wait * @dev: Adapter * @command: Command to execute * @p1: first parameter * @p2: second parameter * @p3: third parameter * @p4: forth parameter * @p5: fifth parameter * @p6: sixth parameter * @status: adapter status * @r1: first return value * @r2: second return valu * @r3: third return value * @r4: forth return value * * This routine will send a synchronous command to the adapter and wait * for its completion. */ static int src_sync_cmd(struct aac_dev *dev, u32 command, u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6, u32 *status, u32 * r1, u32 * r2, u32 * r3, u32 * r4) { unsigned long start; unsigned long delay; int ok; /* * Write the command into Mailbox 0 */ writel(command, &dev->IndexRegs->Mailbox[0]); /* * Write the parameters into Mailboxes 1 - 6 */ writel(p1, &dev->IndexRegs->Mailbox[1]); writel(p2, &dev->IndexRegs->Mailbox[2]); writel(p3, &dev->IndexRegs->Mailbox[3]); writel(p4, &dev->IndexRegs->Mailbox[4]); /* * Clear the synch command doorbell to start on a clean slate. */ if (!dev->msi_enabled) src_writel(dev, MUnit.ODR_C, OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); /* * Disable doorbell interrupts */ src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff); /* * Force the completion of the mask register write before issuing * the interrupt. */ src_readl(dev, MUnit.OIMR); /* * Signal that there is a new synch command */ src_writel(dev, MUnit.IDR, INBOUNDDOORBELL_0 << SRC_IDR_SHIFT); if ((!dev->sync_mode || command != SEND_SYNCHRONOUS_FIB) && !dev->in_soft_reset) { ok = 0; start = jiffies; if (command == IOP_RESET_ALWAYS) { /* Wait up to 10 sec */ delay = 10*HZ; } else { /* Wait up to 5 minutes */ delay = 300*HZ; } while (time_before(jiffies, start+delay)) { udelay(5); /* Delay 5 microseconds to let Mon960 get info. */ /* * Mon960 will set doorbell0 bit when it has completed the command. */ if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) { /* * Clear the doorbell. */ if (dev->msi_enabled) aac_src_access_devreg(dev, AAC_CLEAR_SYNC_BIT); else src_writel(dev, MUnit.ODR_C, OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); ok = 1; break; } /* * Yield the processor in case we are slow */ msleep(1); } if (unlikely(ok != 1)) { /* * Restore interrupt mask even though we timed out */ aac_adapter_enable_int(dev); return -ETIMEDOUT; } /* * Pull the synch status from Mailbox 0. */ if (status) *status = readl(&dev->IndexRegs->Mailbox[0]); if (r1) *r1 = readl(&dev->IndexRegs->Mailbox[1]); if (r2) *r2 = readl(&dev->IndexRegs->Mailbox[2]); if (r3) *r3 = readl(&dev->IndexRegs->Mailbox[3]); if (r4) *r4 = readl(&dev->IndexRegs->Mailbox[4]); if (command == GET_COMM_PREFERRED_SETTINGS) dev->max_msix = readl(&dev->IndexRegs->Mailbox[5]) & 0xFFFF; /* * Clear the synch command doorbell. */ if (!dev->msi_enabled) src_writel(dev, MUnit.ODR_C, OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); } /* * Restore interrupt mask */ aac_adapter_enable_int(dev); return 0; } /** * aac_src_interrupt_adapter - interrupt adapter * @dev: Adapter * * Send an interrupt to the i960 and breakpoint it. */ static void aac_src_interrupt_adapter(struct aac_dev *dev) { src_sync_cmd(dev, BREAKPOINT_REQUEST, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } /** * aac_src_notify_adapter - send an event to the adapter * @dev: Adapter * @event: Event to send * * Notify the i960 that something it probably cares about has * happened. */ static void aac_src_notify_adapter(struct aac_dev *dev, u32 event) { switch (event) { case AdapNormCmdQue: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_1 << SRC_ODR_SHIFT); break; case HostNormRespNotFull: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_4 << SRC_ODR_SHIFT); break; case AdapNormRespQue: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_2 << SRC_ODR_SHIFT); break; case HostNormCmdNotFull: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_3 << SRC_ODR_SHIFT); break; case FastIo: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_6 << SRC_ODR_SHIFT); break; case AdapPrintfDone: src_writel(dev, MUnit.ODR_C, INBOUNDDOORBELL_5 << SRC_ODR_SHIFT); break; default: BUG(); break; } } /** * aac_src_start_adapter - activate adapter * @dev: Adapter * * Start up processing on an i960 based AAC adapter */ static void aac_src_start_adapter(struct aac_dev *dev) { union aac_init *init; int i; /* reset host_rrq_idx first */ for (i = 0; i < dev->max_msix; i++) { dev->host_rrq_idx[i] = i * dev->vector_cap; atomic_set(&dev->rrq_outstanding[i], 0); } atomic_set(&dev->msix_counter, 0); dev->fibs_pushed_no = 0; init = dev->init; if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { init->r8.host_elapsed_seconds = cpu_to_le32(ktime_get_real_seconds()); src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS, lower_32_bits(dev->init_pa), upper_32_bits(dev->init_pa), sizeof(struct _r8) + (AAC_MAX_HRRQ - 1) * sizeof(struct _rrq), 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } else { init->r7.host_elapsed_seconds = cpu_to_le32(ktime_get_real_seconds()); // We can only use a 32 bit address here src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS, (u32)(ulong)dev->init_pa, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } } /** * aac_src_check_health * @dev: device to check if healthy * * Will attempt to determine if the specified adapter is alive and * capable of handling requests, returning 0 if alive. */ static int aac_src_check_health(struct aac_dev *dev) { u32 status = src_readl(dev, MUnit.OMR); /* * Check to see if the board panic'd. */ if (unlikely(status & KERNEL_PANIC)) goto err_blink; /* * Check to see if the board failed any self tests. */ if (unlikely(status & SELF_TEST_FAILED)) goto err_out; /* * Check to see if the board failed any self tests. */ if (unlikely(status & MONITOR_PANIC)) goto err_out; /* * Wait for the adapter to be up and running. */ if (unlikely(!(status & KERNEL_UP_AND_RUNNING))) return -3; /* * Everything is OK */ return 0; err_out: return -1; err_blink: return (status >> 16) & 0xFF; } static inline u32 aac_get_vector(struct aac_dev *dev) { return atomic_inc_return(&dev->msix_counter)%dev->max_msix; } /** * aac_src_deliver_message * @fib: fib to issue * * Will send a fib, returning 0 if successful. */ static int aac_src_deliver_message(struct fib *fib) { struct aac_dev *dev = fib->dev; struct aac_queue *q = &dev->queues->queue[AdapNormCmdQueue]; u32 fibsize; dma_addr_t address; struct aac_fib_xporthdr *pFibX; int native_hba; #if !defined(writeq) unsigned long flags; #endif u16 vector_no; struct scsi_cmnd *scmd; u32 blk_tag; struct Scsi_Host *shost = dev->scsi_host_ptr; struct blk_mq_queue_map *qmap; atomic_inc(&q->numpending); native_hba = (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) ? 1 : 0; if (dev->msi_enabled && dev->max_msix > 1 && (native_hba || fib->hw_fib_va->header.Command != AifRequest)) { if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && dev->sa_firmware) vector_no = aac_get_vector(dev); else { if (!fib->vector_no || !fib->callback_data) { if (shost && dev->use_map_queue) { qmap = &shost->tag_set.map[HCTX_TYPE_DEFAULT]; vector_no = qmap->mq_map[raw_smp_processor_id()]; } /* * We hardcode the vector_no for * reserved commands as a valid shost is * absent during the init */ else vector_no = 0; } else { scmd = (struct scsi_cmnd *)fib->callback_data; blk_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); vector_no = blk_mq_unique_tag_to_hwq(blk_tag); } } if (native_hba) { if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) { struct aac_hba_tm_req *tm_req; tm_req = (struct aac_hba_tm_req *) fib->hw_fib_va; if (tm_req->iu_type == HBA_IU_TYPE_SCSI_TM_REQ) { ((struct aac_hba_tm_req *) fib->hw_fib_va)->reply_qid = vector_no; ((struct aac_hba_tm_req *) fib->hw_fib_va)->request_id += (vector_no << 16); } else { ((struct aac_hba_reset_req *) fib->hw_fib_va)->reply_qid = vector_no; ((struct aac_hba_reset_req *) fib->hw_fib_va)->request_id += (vector_no << 16); } } else { ((struct aac_hba_cmd_req *) fib->hw_fib_va)->reply_qid = vector_no; ((struct aac_hba_cmd_req *) fib->hw_fib_va)->request_id += (vector_no << 16); } } else { fib->hw_fib_va->header.Handle += (vector_no << 16); } } else { vector_no = 0; } atomic_inc(&dev->rrq_outstanding[vector_no]); if (native_hba) { address = fib->hw_fib_pa; fibsize = (fib->hbacmd_size + 127) / 128 - 1; if (fibsize > 31) fibsize = 31; address |= fibsize; #if defined(writeq) src_writeq(dev, MUnit.IQN_L, (u64)address); #else spin_lock_irqsave(&fib->dev->iq_lock, flags); src_writel(dev, MUnit.IQN_H, upper_32_bits(address) & 0xffffffff); src_writel(dev, MUnit.IQN_L, address & 0xffffffff); spin_unlock_irqrestore(&fib->dev->iq_lock, flags); #endif } else { if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { /* Calculate the amount to the fibsize bits */ fibsize = (le16_to_cpu(fib->hw_fib_va->header.Size) + 127) / 128 - 1; /* New FIB header, 32-bit */ address = fib->hw_fib_pa; fib->hw_fib_va->header.StructType = FIB_MAGIC2; fib->hw_fib_va->header.SenderFibAddress = cpu_to_le32((u32)address); fib->hw_fib_va->header.u.TimeStamp = 0; WARN_ON(upper_32_bits(address) != 0L); } else { /* Calculate the amount to the fibsize bits */ fibsize = (sizeof(struct aac_fib_xporthdr) + le16_to_cpu(fib->hw_fib_va->header.Size) + 127) / 128 - 1; /* Fill XPORT header */ pFibX = (struct aac_fib_xporthdr *) ((unsigned char *)fib->hw_fib_va - sizeof(struct aac_fib_xporthdr)); pFibX->Handle = fib->hw_fib_va->header.Handle; pFibX->HostAddress = cpu_to_le64((u64)fib->hw_fib_pa); pFibX->Size = cpu_to_le32( le16_to_cpu(fib->hw_fib_va->header.Size)); address = fib->hw_fib_pa - (u64)sizeof(struct aac_fib_xporthdr); } if (fibsize > 31) fibsize = 31; address |= fibsize; #if defined(writeq) src_writeq(dev, MUnit.IQ_L, (u64)address); #else spin_lock_irqsave(&fib->dev->iq_lock, flags); src_writel(dev, MUnit.IQ_H, upper_32_bits(address) & 0xffffffff); src_writel(dev, MUnit.IQ_L, address & 0xffffffff); spin_unlock_irqrestore(&fib->dev->iq_lock, flags); #endif } return 0; } /** * aac_src_ioremap * @dev: device ioremap * @size: mapping resize request * */ static int aac_src_ioremap(struct aac_dev *dev, u32 size) { if (!size) { iounmap(dev->regs.src.bar1); dev->regs.src.bar1 = NULL; iounmap(dev->regs.src.bar0); dev->base = dev->regs.src.bar0 = NULL; return 0; } dev->regs.src.bar1 = ioremap(pci_resource_start(dev->pdev, 2), AAC_MIN_SRC_BAR1_SIZE); dev->base = NULL; if (dev->regs.src.bar1 == NULL) return -1; dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size); if (dev->base == NULL) { iounmap(dev->regs.src.bar1); dev->regs.src.bar1 = NULL; return -1; } dev->IndexRegs = &((struct src_registers __iomem *) dev->base)->u.tupelo.IndexRegs; return 0; } /** * aac_srcv_ioremap * @dev: device ioremap * @size: mapping resize request * */ static int aac_srcv_ioremap(struct aac_dev *dev, u32 size) { if (!size) { iounmap(dev->regs.src.bar0); dev->base = dev->regs.src.bar0 = NULL; return 0; } dev->regs.src.bar1 = ioremap(pci_resource_start(dev->pdev, 2), AAC_MIN_SRCV_BAR1_SIZE); dev->base = NULL; if (dev->regs.src.bar1 == NULL) return -1; dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size); if (dev->base == NULL) { iounmap(dev->regs.src.bar1); dev->regs.src.bar1 = NULL; return -1; } dev->IndexRegs = &((struct src_registers __iomem *) dev->base)->u.denali.IndexRegs; return 0; } void aac_set_intx_mode(struct aac_dev *dev) { if (dev->msi_enabled) { aac_src_access_devreg(dev, AAC_ENABLE_INTX); dev->msi_enabled = 0; msleep(5000); /* Delay 5 seconds */ } } static void aac_clear_omr(struct aac_dev *dev) { u32 omr_value = 0; omr_value = src_readl(dev, MUnit.OMR); /* * Check for PCI Errors or Kernel Panic */ if ((omr_value == INVALID_OMR) || (omr_value & KERNEL_PANIC)) omr_value = 0; /* * Preserve MSIX Value if any */ src_writel(dev, MUnit.OMR, omr_value & AAC_INT_MODE_MSIX); src_readl(dev, MUnit.OMR); } static void aac_dump_fw_fib_iop_reset(struct aac_dev *dev) { __le32 supported_options3; if (!aac_fib_dump) return; supported_options3 = dev->supplement_adapter_info.supported_options3; if (!(supported_options3 & AAC_OPTION_SUPPORTED3_IOP_RESET_FIB_DUMP)) return; aac_adapter_sync_cmd(dev, IOP_RESET_FW_FIB_DUMP, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } static bool aac_is_ctrl_up_and_running(struct aac_dev *dev) { bool ctrl_up = true; unsigned long status, start; bool is_up = false; start = jiffies; do { schedule(); status = src_readl(dev, MUnit.OMR); if (status == 0xffffffff) status = 0; if (status & KERNEL_BOOTING) { start = jiffies; continue; } if (time_after(jiffies, start+HZ*SOFT_RESET_TIME)) { ctrl_up = false; break; } is_up = status & KERNEL_UP_AND_RUNNING; } while (!is_up); return ctrl_up; } static void aac_src_drop_io(struct aac_dev *dev) { if (!dev->soft_reset_support) return; aac_adapter_sync_cmd(dev, DROP_IO, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } static void aac_notify_fw_of_iop_reset(struct aac_dev *dev) { aac_adapter_sync_cmd(dev, IOP_RESET_ALWAYS, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); aac_src_drop_io(dev); } static void aac_send_iop_reset(struct aac_dev *dev) { aac_dump_fw_fib_iop_reset(dev); aac_notify_fw_of_iop_reset(dev); aac_set_intx_mode(dev); aac_clear_omr(dev); src_writel(dev, MUnit.IDR, IOP_SRC_RESET_MASK); msleep(5000); } static void aac_send_hardware_soft_reset(struct aac_dev *dev) { u_int32_t val; aac_clear_omr(dev); val = readl(((char *)(dev->base) + IBW_SWR_OFFSET)); val |= 0x01; writel(val, ((char *)(dev->base) + IBW_SWR_OFFSET)); msleep_interruptible(20000); } static int aac_src_restart_adapter(struct aac_dev *dev, int bled, u8 reset_type) { bool is_ctrl_up; int ret = 0; if (bled < 0) goto invalid_out; if (bled) dev_err(&dev->pdev->dev, "adapter kernel panic'd %x.\n", bled); /* * When there is a BlinkLED, IOP_RESET has not effect */ if (bled >= 2 && dev->sa_firmware && reset_type & HW_IOP_RESET) reset_type &= ~HW_IOP_RESET; dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; dev_err(&dev->pdev->dev, "Controller reset type is %d\n", reset_type); if (reset_type & HW_IOP_RESET) { dev_info(&dev->pdev->dev, "Issuing IOP reset\n"); aac_send_iop_reset(dev); /* * Creates a delay or wait till up and running comes thru */ is_ctrl_up = aac_is_ctrl_up_and_running(dev); if (!is_ctrl_up) dev_err(&dev->pdev->dev, "IOP reset failed\n"); else { dev_info(&dev->pdev->dev, "IOP reset succeeded\n"); goto set_startup; } } if (!dev->sa_firmware) { dev_err(&dev->pdev->dev, "ARC Reset attempt failed\n"); ret = -ENODEV; goto out; } if (reset_type & HW_SOFT_RESET) { dev_info(&dev->pdev->dev, "Issuing SOFT reset\n"); aac_send_hardware_soft_reset(dev); dev->msi_enabled = 0; is_ctrl_up = aac_is_ctrl_up_and_running(dev); if (!is_ctrl_up) { dev_err(&dev->pdev->dev, "SOFT reset failed\n"); ret = -ENODEV; goto out; } else dev_info(&dev->pdev->dev, "SOFT reset succeeded\n"); } set_startup: if (startup_timeout < 300) startup_timeout = 300; out: return ret; invalid_out: if (src_readl(dev, MUnit.OMR) & KERNEL_PANIC) ret = -ENODEV; goto out; } /** * aac_src_select_comm - Select communications method * @dev: Adapter * @comm: communications method */ static int aac_src_select_comm(struct aac_dev *dev, int comm) { switch (comm) { case AAC_COMM_MESSAGE: dev->a_ops.adapter_intr = aac_src_intr_message; dev->a_ops.adapter_deliver = aac_src_deliver_message; break; default: return 1; } return 0; } /** * aac_src_init - initialize an Cardinal Frey Bar card * @dev: device to configure * */ int aac_src_init(struct aac_dev *dev) { unsigned long start; unsigned long status; int restart = 0; int instance = dev->id; const char *name = dev->name; dev->a_ops.adapter_ioremap = aac_src_ioremap; dev->a_ops.adapter_comm = aac_src_select_comm; dev->base_size = AAC_MIN_SRC_BAR0_SIZE; if (aac_adapter_ioremap(dev, dev->base_size)) { printk(KERN_WARNING "%s: unable to map adapter.\n", name); goto error_iounmap; } /* Failure to reset here is an option ... */ dev->a_ops.adapter_sync_cmd = src_sync_cmd; dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; if (dev->init_reset) { dev->init_reset = false; if (!aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET)) ++restart; } /* * Check to see if the board panic'd while booting. */ status = src_readl(dev, MUnit.OMR); if (status & KERNEL_PANIC) { if (aac_src_restart_adapter(dev, aac_src_check_health(dev), IOP_HWSOFT_RESET)) goto error_iounmap; ++restart; } /* * Check to see if the board failed any self tests. */ status = src_readl(dev, MUnit.OMR); if (status & SELF_TEST_FAILED) { printk(KERN_ERR "%s%d: adapter self-test failed.\n", dev->name, instance); goto error_iounmap; } /* * Check to see if the monitor panic'd while booting. */ if (status & MONITOR_PANIC) { printk(KERN_ERR "%s%d: adapter monitor panic.\n", dev->name, instance); goto error_iounmap; } start = jiffies; /* * Wait for the adapter to be up and running. Wait up to 3 minutes */ while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING)) { if ((restart && (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) || time_after(jiffies, start+HZ*startup_timeout)) { printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n", dev->name, instance, status); goto error_iounmap; } if (!restart && ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) || time_after(jiffies, start + HZ * ((startup_timeout > 60) ? (startup_timeout - 60) : (startup_timeout / 2))))) { if (likely(!aac_src_restart_adapter(dev, aac_src_check_health(dev), IOP_HWSOFT_RESET))) start = jiffies; ++restart; } msleep(1); } if (restart && aac_commit) aac_commit = 1; /* * Fill in the common function dispatch table. */ dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter; dev->a_ops.adapter_disable_int = aac_src_disable_interrupt; dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; dev->a_ops.adapter_notify = aac_src_notify_adapter; dev->a_ops.adapter_sync_cmd = src_sync_cmd; dev->a_ops.adapter_check_health = aac_src_check_health; dev->a_ops.adapter_restart = aac_src_restart_adapter; dev->a_ops.adapter_start = aac_src_start_adapter; /* * First clear out all interrupts. Then enable the one's that we * can handle. */ aac_adapter_comm(dev, AAC_COMM_MESSAGE); aac_adapter_disable_int(dev); src_writel(dev, MUnit.ODR_C, 0xffffffff); aac_adapter_enable_int(dev); if (aac_init_adapter(dev) == NULL) goto error_iounmap; if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE1) goto error_iounmap; dev->msi = !pci_enable_msi(dev->pdev); dev->aac_msix[0].vector_no = 0; dev->aac_msix[0].dev = dev; if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, IRQF_SHARED, "aacraid", &(dev->aac_msix[0])) < 0) { if (dev->msi) pci_disable_msi(dev->pdev); printk(KERN_ERR "%s%d: Interrupt unavailable.\n", name, instance); goto error_iounmap; } dev->dbg_base = pci_resource_start(dev->pdev, 2); dev->dbg_base_mapped = dev->regs.src.bar1; dev->dbg_size = AAC_MIN_SRC_BAR1_SIZE; dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message; aac_adapter_enable_int(dev); if (!dev->sync_mode) { /* * Tell the adapter that all is configured, and it can * start accepting requests */ aac_src_start_adapter(dev); } return 0; error_iounmap: return -1; } static int aac_src_wait_sync(struct aac_dev *dev, int *status) { unsigned long start = jiffies; unsigned long usecs = 0; int delay = 5 * HZ; int rc = 1; while (time_before(jiffies, start+delay)) { /* * Delay 5 microseconds to let Mon960 get info. */ udelay(5); /* * Mon960 will set doorbell0 bit when it has completed the * command. */ if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) { /* * Clear: the doorbell. */ if (dev->msi_enabled) aac_src_access_devreg(dev, AAC_CLEAR_SYNC_BIT); else src_writel(dev, MUnit.ODR_C, OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); rc = 0; break; } /* * Yield the processor in case we are slow */ usecs = 1 * USEC_PER_MSEC; usleep_range(usecs, usecs + 50); } /* * Pull the synch status from Mailbox 0. */ if (status && !rc) { status[0] = readl(&dev->IndexRegs->Mailbox[0]); status[1] = readl(&dev->IndexRegs->Mailbox[1]); status[2] = readl(&dev->IndexRegs->Mailbox[2]); status[3] = readl(&dev->IndexRegs->Mailbox[3]); status[4] = readl(&dev->IndexRegs->Mailbox[4]); } return rc; } /** * aac_src_soft_reset - perform soft reset to speed up * access * * Assumptions: That the controller is in a state where we can * bring it back to life with an init struct. We can only use * fast sync commands, as the timeout is 5 seconds. * * @dev: device to configure * */ static int aac_src_soft_reset(struct aac_dev *dev) { u32 status_omr = src_readl(dev, MUnit.OMR); u32 status[5]; int rc = 1; int state = 0; char *state_str[7] = { "GET_ADAPTER_PROPERTIES Failed", "GET_ADAPTER_PROPERTIES timeout", "SOFT_RESET not supported", "DROP_IO Failed", "DROP_IO timeout", "Check Health failed" }; if (status_omr == INVALID_OMR) return 1; // pcie hosed if (!(status_omr & KERNEL_UP_AND_RUNNING)) return 1; // not up and running /* * We go into soft reset mode to allow us to handle response */ dev->in_soft_reset = 1; dev->msi_enabled = status_omr & AAC_INT_MODE_MSIX; /* Get adapter properties */ rc = aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES, 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, status+3, status+4); if (rc) goto out; state++; if (aac_src_wait_sync(dev, status)) { rc = 1; goto out; } state++; if (!(status[1] & le32_to_cpu(AAC_OPT_EXTENDED) && (status[4] & le32_to_cpu(AAC_EXTOPT_SOFT_RESET)))) { rc = 2; goto out; } if ((status[1] & le32_to_cpu(AAC_OPT_EXTENDED)) && (status[4] & le32_to_cpu(AAC_EXTOPT_SA_FIRMWARE))) dev->sa_firmware = 1; state++; rc = aac_adapter_sync_cmd(dev, DROP_IO, 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, status+3, status+4); if (rc) goto out; state++; if (aac_src_wait_sync(dev, status)) { rc = 3; goto out; } if (status[1]) dev_err(&dev->pdev->dev, "%s: %d outstanding I/O pending\n", __func__, status[1]); state++; rc = aac_src_check_health(dev); out: dev->in_soft_reset = 0; dev->msi_enabled = 0; if (rc) dev_err(&dev->pdev->dev, "%s: %s status = %d", __func__, state_str[state], rc); return rc; } /** * aac_srcv_init - initialize an SRCv card * @dev: device to configure * */ int aac_srcv_init(struct aac_dev *dev) { unsigned long start; unsigned long status; int restart = 0; int instance = dev->id; const char *name = dev->name; dev->a_ops.adapter_ioremap = aac_srcv_ioremap; dev->a_ops.adapter_comm = aac_src_select_comm; dev->base_size = AAC_MIN_SRCV_BAR0_SIZE; if (aac_adapter_ioremap(dev, dev->base_size)) { printk(KERN_WARNING "%s: unable to map adapter.\n", name); goto error_iounmap; } /* Failure to reset here is an option ... */ dev->a_ops.adapter_sync_cmd = src_sync_cmd; dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; if (dev->init_reset) { dev->init_reset = false; if (aac_src_soft_reset(dev)) { aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET); ++restart; } } /* * Check to see if flash update is running. * Wait for the adapter to be up and running. Wait up to 5 minutes */ status = src_readl(dev, MUnit.OMR); if (status & FLASH_UPD_PENDING) { start = jiffies; do { status = src_readl(dev, MUnit.OMR); if (time_after(jiffies, start+HZ*FWUPD_TIMEOUT)) { printk(KERN_ERR "%s%d: adapter flash update failed.\n", dev->name, instance); goto error_iounmap; } } while (!(status & FLASH_UPD_SUCCESS) && !(status & FLASH_UPD_FAILED)); /* Delay 10 seconds. * Because right now FW is doing a soft reset, * do not read scratch pad register at this time */ ssleep(10); } /* * Check to see if the board panic'd while booting. */ status = src_readl(dev, MUnit.OMR); if (status & KERNEL_PANIC) { if (aac_src_restart_adapter(dev, aac_src_check_health(dev), IOP_HWSOFT_RESET)) goto error_iounmap; ++restart; } /* * Check to see if the board failed any self tests. */ status = src_readl(dev, MUnit.OMR); if (status & SELF_TEST_FAILED) { printk(KERN_ERR "%s%d: adapter self-test failed.\n", dev->name, instance); goto error_iounmap; } /* * Check to see if the monitor panic'd while booting. */ if (status & MONITOR_PANIC) { printk(KERN_ERR "%s%d: adapter monitor panic.\n", dev->name, instance); goto error_iounmap; } start = jiffies; /* * Wait for the adapter to be up and running. Wait up to 3 minutes */ do { status = src_readl(dev, MUnit.OMR); if (status == INVALID_OMR) status = 0; if ((restart && (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) || time_after(jiffies, start+HZ*startup_timeout)) { printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n", dev->name, instance, status); goto error_iounmap; } if (!restart && ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) || time_after(jiffies, start + HZ * ((startup_timeout > 60) ? (startup_timeout - 60) : (startup_timeout / 2))))) { if (likely(!aac_src_restart_adapter(dev, aac_src_check_health(dev), IOP_HWSOFT_RESET))) start = jiffies; ++restart; } msleep(1); } while (!(status & KERNEL_UP_AND_RUNNING)); if (restart && aac_commit) aac_commit = 1; /* * Fill in the common function dispatch table. */ dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter; dev->a_ops.adapter_disable_int = aac_src_disable_interrupt; dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; dev->a_ops.adapter_notify = aac_src_notify_adapter; dev->a_ops.adapter_sync_cmd = src_sync_cmd; dev->a_ops.adapter_check_health = aac_src_check_health; dev->a_ops.adapter_restart = aac_src_restart_adapter; dev->a_ops.adapter_start = aac_src_start_adapter; /* * First clear out all interrupts. Then enable the one's that we * can handle. */ aac_adapter_comm(dev, AAC_COMM_MESSAGE); aac_adapter_disable_int(dev); src_writel(dev, MUnit.ODR_C, 0xffffffff); aac_adapter_enable_int(dev); if (aac_init_adapter(dev) == NULL) goto error_iounmap; if ((dev->comm_interface != AAC_COMM_MESSAGE_TYPE2) && (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)) goto error_iounmap; if (dev->msi_enabled) aac_src_access_devreg(dev, AAC_ENABLE_MSIX); if (aac_acquire_irq(dev)) goto error_iounmap; dev->dbg_base = pci_resource_start(dev->pdev, 2); dev->dbg_base_mapped = dev->regs.src.bar1; dev->dbg_size = AAC_MIN_SRCV_BAR1_SIZE; dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message; aac_adapter_enable_int(dev); if (!dev->sync_mode) { /* * Tell the adapter that all is configured, and it can * start accepting requests */ aac_src_start_adapter(dev); } return 0; error_iounmap: return -1; } void aac_src_access_devreg(struct aac_dev *dev, int mode) { u_int32_t val; switch (mode) { case AAC_ENABLE_INTERRUPT: src_writel(dev, MUnit.OIMR, dev->OIMR = (dev->msi_enabled ? AAC_INT_ENABLE_TYPE1_MSIX : AAC_INT_ENABLE_TYPE1_INTX)); break; case AAC_DISABLE_INTERRUPT: src_writel(dev, MUnit.OIMR, dev->OIMR = AAC_INT_DISABLE_ALL); break; case AAC_ENABLE_MSIX: /* set bit 6 */ val = src_readl(dev, MUnit.IDR); val |= 0x40; src_writel(dev, MUnit.IDR, val); src_readl(dev, MUnit.IDR); /* unmask int. */ val = PMC_ALL_INTERRUPT_BITS; src_writel(dev, MUnit.IOAR, val); val = src_readl(dev, MUnit.OIMR); src_writel(dev, MUnit.OIMR, val & (~(PMC_GLOBAL_INT_BIT2 | PMC_GLOBAL_INT_BIT0))); break; case AAC_DISABLE_MSIX: /* reset bit 6 */ val = src_readl(dev, MUnit.IDR); val &= ~0x40; src_writel(dev, MUnit.IDR, val); src_readl(dev, MUnit.IDR); break; case AAC_CLEAR_AIF_BIT: /* set bit 5 */ val = src_readl(dev, MUnit.IDR); val |= 0x20; src_writel(dev, MUnit.IDR, val); src_readl(dev, MUnit.IDR); break; case AAC_CLEAR_SYNC_BIT: /* set bit 4 */ val = src_readl(dev, MUnit.IDR); val |= 0x10; src_writel(dev, MUnit.IDR, val); src_readl(dev, MUnit.IDR); break; case AAC_ENABLE_INTX: /* set bit 7 */ val = src_readl(dev, MUnit.IDR); val |= 0x80; src_writel(dev, MUnit.IDR, val); src_readl(dev, MUnit.IDR); /* unmask int. */ val = PMC_ALL_INTERRUPT_BITS; src_writel(dev, MUnit.IOAR, val); src_readl(dev, MUnit.IOAR); val = src_readl(dev, MUnit.OIMR); src_writel(dev, MUnit.OIMR, val & (~(PMC_GLOBAL_INT_BIT2))); break; default: break; } } static int aac_src_get_sync_status(struct aac_dev *dev) { int msix_val = 0; int legacy_val = 0; msix_val = src_readl(dev, MUnit.ODR_MSI) & SRC_MSI_READ_MASK ? 1 : 0; if (!dev->msi_enabled) { /* * if Legacy int status indicates cmd is not complete * sample MSIx register to see if it indiactes cmd complete, * if yes set the controller in MSIx mode and consider cmd * completed */ legacy_val = src_readl(dev, MUnit.ODR_R) >> SRC_ODR_SHIFT; if (!(legacy_val & 1) && msix_val) dev->msi_enabled = 1; return legacy_val; } return msix_val; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1