Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bradley Grove | 8818 | 99.12% | 2 | 13.33% |
Tomas Henzl | 25 | 0.28% | 3 | 20.00% |
Alan One Thousand Gnomes | 19 | 0.21% | 1 | 6.67% |
Binoy Jayan | 10 | 0.11% | 2 | 13.33% |
Al Viro | 9 | 0.10% | 2 | 13.33% |
Nathan Chancellor | 5 | 0.06% | 1 | 6.67% |
Frederick Lawler | 5 | 0.06% | 1 | 6.67% |
Peter Zijlstra | 2 | 0.02% | 1 | 6.67% |
Kees Cook | 2 | 0.02% | 1 | 6.67% |
Colin Ian King | 1 | 0.01% | 1 | 6.67% |
Total | 8896 | 15 |
/* * linux/drivers/scsi/esas2r/esas2r_ioctl.c * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers * * Copyright (c) 2001-2013 ATTO Technology, Inc. * (mailto:linuxdrivers@attotech.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * NO WARRANTY * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is * solely responsible for determining the appropriateness of using and * distributing the Program and assumes all risks associated with its * exercise of rights under this Agreement, including but not limited to * the risks and costs of program errors, damage to or loss of data, * programs or equipment, and unavailability or interruption of operations. * * DISCLAIMER OF LIABILITY * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. */ #include "esas2r.h" /* * Buffered ioctl handlers. A buffered ioctl is one which requires that we * allocate a DMA-able memory area to communicate with the firmware. In * order to prevent continually allocating and freeing consistent memory, * we will allocate a global buffer the first time we need it and re-use * it for subsequent ioctl calls that require it. */ u8 *esas2r_buffered_ioctl; dma_addr_t esas2r_buffered_ioctl_addr; u32 esas2r_buffered_ioctl_size; struct pci_dev *esas2r_buffered_ioctl_pcid; static DEFINE_SEMAPHORE(buffered_ioctl_semaphore, 1); typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *, struct esas2r_request *, struct esas2r_sg_context *, void *); typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *, struct esas2r_request *, void *); struct esas2r_buffered_ioctl { struct esas2r_adapter *a; void *ioctl; u32 length; u32 control_code; u32 offset; BUFFERED_IOCTL_CALLBACK callback; void *context; BUFFERED_IOCTL_DONE_CALLBACK done_callback; void *done_context; }; static void complete_fm_api_req(struct esas2r_adapter *a, struct esas2r_request *rq) { a->fm_api_command_done = 1; wake_up_interruptible(&a->fm_api_waiter); } /* Callbacks for building scatter/gather lists for FM API requests */ static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr) { struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; int offset = sgc->cur_offset - a->save_offset; (*addr) = a->firmware.phys + offset; return a->firmware.orig_len - offset; } static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr) { struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; int offset = sgc->cur_offset - a->save_offset; (*addr) = a->firmware.header_buff_phys + offset; return sizeof(struct esas2r_flash_img) - offset; } /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */ static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi) { struct esas2r_request *rq; if (mutex_lock_interruptible(&a->fm_api_mutex)) { fi->status = FI_STAT_BUSY; return; } rq = esas2r_alloc_request(a); if (rq == NULL) { fi->status = FI_STAT_BUSY; goto free_sem; } if (fi == &a->firmware.header) { a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev, (size_t)sizeof( struct esas2r_flash_img), (dma_addr_t *)&a-> firmware. header_buff_phys, GFP_KERNEL); if (a->firmware.header_buff == NULL) { esas2r_debug("failed to allocate header buffer!"); fi->status = FI_STAT_BUSY; goto free_req; } memcpy(a->firmware.header_buff, fi, sizeof(struct esas2r_flash_img)); a->save_offset = a->firmware.header_buff; a->fm_api_sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fm_api_header; } else { a->save_offset = (u8 *)fi; a->fm_api_sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fm_api; } rq->comp_cb = complete_fm_api_req; a->fm_api_command_done = 0; a->fm_api_sgc.cur_offset = a->save_offset; if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq, &a->fm_api_sgc)) goto all_done; /* Now wait around for it to complete. */ while (!a->fm_api_command_done) wait_event_interruptible(a->fm_api_waiter, a->fm_api_command_done); all_done: if (fi == &a->firmware.header) { memcpy(fi, a->firmware.header_buff, sizeof(struct esas2r_flash_img)); dma_free_coherent(&a->pcid->dev, (size_t)sizeof(struct esas2r_flash_img), a->firmware.header_buff, (dma_addr_t)a->firmware.header_buff_phys); } free_req: esas2r_free_request(a, (struct esas2r_request *)rq); free_sem: mutex_unlock(&a->fm_api_mutex); return; } static void complete_nvr_req(struct esas2r_adapter *a, struct esas2r_request *rq) { a->nvram_command_done = 1; wake_up_interruptible(&a->nvram_waiter); } /* Callback for building scatter/gather lists for buffered ioctls */ static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc, u64 *addr) { int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl; (*addr) = esas2r_buffered_ioctl_addr + offset; return esas2r_buffered_ioctl_size - offset; } static void complete_buffered_ioctl_req(struct esas2r_adapter *a, struct esas2r_request *rq) { a->buffered_ioctl_done = 1; wake_up_interruptible(&a->buffered_ioctl_waiter); } static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi) { struct esas2r_adapter *a = bi->a; struct esas2r_request *rq; struct esas2r_sg_context sgc; u8 result = IOCTL_SUCCESS; if (down_interruptible(&buffered_ioctl_semaphore)) return IOCTL_OUT_OF_RESOURCES; /* allocate a buffer or use the existing buffer. */ if (esas2r_buffered_ioctl) { if (esas2r_buffered_ioctl_size < bi->length) { /* free the too-small buffer and get a new one */ dma_free_coherent(&a->pcid->dev, (size_t)esas2r_buffered_ioctl_size, esas2r_buffered_ioctl, esas2r_buffered_ioctl_addr); goto allocate_buffer; } } else { allocate_buffer: esas2r_buffered_ioctl_size = bi->length; esas2r_buffered_ioctl_pcid = a->pcid; esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev, (size_t) esas2r_buffered_ioctl_size, & esas2r_buffered_ioctl_addr, GFP_KERNEL); } if (!esas2r_buffered_ioctl) { esas2r_log(ESAS2R_LOG_CRIT, "could not allocate %d bytes of consistent memory " "for a buffered ioctl!", bi->length); esas2r_debug("buffered ioctl alloc failure"); result = IOCTL_OUT_OF_RESOURCES; goto exit_cleanly; } memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length); rq = esas2r_alloc_request(a); if (rq == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "could not allocate an internal request"); result = IOCTL_OUT_OF_RESOURCES; esas2r_debug("buffered ioctl - no requests"); goto exit_cleanly; } a->buffered_ioctl_done = 0; rq->comp_cb = complete_buffered_ioctl_req; sgc.cur_offset = esas2r_buffered_ioctl + bi->offset; sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl; sgc.length = esas2r_buffered_ioctl_size; if (!(*bi->callback)(a, rq, &sgc, bi->context)) { /* completed immediately, no need to wait */ a->buffered_ioctl_done = 0; goto free_andexit_cleanly; } /* now wait around for it to complete. */ while (!a->buffered_ioctl_done) wait_event_interruptible(a->buffered_ioctl_waiter, a->buffered_ioctl_done); free_andexit_cleanly: if (result == IOCTL_SUCCESS && bi->done_callback) (*bi->done_callback)(a, rq, bi->done_context); esas2r_free_request(a, rq); exit_cleanly: if (result == IOCTL_SUCCESS) memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length); up(&buffered_ioctl_semaphore); return result; } /* SMP ioctl support */ static int smp_ioctl_callback(struct esas2r_adapter *a, struct esas2r_request *rq, struct esas2r_sg_context *sgc, void *context) { struct atto_ioctl_smp *si = (struct atto_ioctl_smp *)esas2r_buffered_ioctl; esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP); if (!esas2r_build_sg_list(a, rq, sgc)) { si->status = ATTO_STS_OUT_OF_RSRC; return false; } esas2r_start_request(a, rq); return true; } static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si) { struct esas2r_buffered_ioctl bi; memset(&bi, 0, sizeof(bi)); bi.a = a; bi.ioctl = si; bi.length = sizeof(struct atto_ioctl_smp) + le32_to_cpu(si->req_length) + le32_to_cpu(si->rsp_length); bi.offset = 0; bi.callback = smp_ioctl_callback; return handle_buffered_ioctl(&bi); } /* CSMI ioctl support */ static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a, struct esas2r_request *rq) { rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id); rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun); /* Now call the original completion callback. */ (*rq->aux_req_cb)(a, rq); } /* Tunnel a CSMI IOCTL to the back end driver for processing. */ static bool csmi_ioctl_tunnel(struct esas2r_adapter *a, union atto_ioctl_csmi *ci, struct esas2r_request *rq, struct esas2r_sg_context *sgc, u32 ctrl_code, u16 target_id) { struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl; if (test_bit(AF_DEGRADED_MODE, &a->flags)) return false; esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI); ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code); ioctl->csmi.target_id = cpu_to_le16(target_id); ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags); /* * Always usurp the completion callback since the interrupt callback * mechanism may be used. */ rq->aux_req_cx = ci; rq->aux_req_cb = rq->comp_cb; rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb; if (!esas2r_build_sg_list(a, rq, sgc)) return false; esas2r_start_request(a, rq); return true; } static bool check_lun(struct scsi_lun lun) { bool result; result = ((lun.scsi_lun[7] == 0) && (lun.scsi_lun[6] == 0) && (lun.scsi_lun[5] == 0) && (lun.scsi_lun[4] == 0) && (lun.scsi_lun[3] == 0) && (lun.scsi_lun[2] == 0) && /* Byte 1 is intentionally skipped */ (lun.scsi_lun[0] == 0)); return result; } static int csmi_ioctl_callback(struct esas2r_adapter *a, struct esas2r_request *rq, struct esas2r_sg_context *sgc, void *context) { struct atto_csmi *ci = (struct atto_csmi *)context; union atto_ioctl_csmi *ioctl_csmi = (union atto_ioctl_csmi *)esas2r_buffered_ioctl; u8 path = 0; u8 tid = 0; u8 lun = 0; u32 sts = CSMI_STS_SUCCESS; struct esas2r_target *t; unsigned long flags; if (ci->control_code == CSMI_CC_GET_DEV_ADDR) { struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr; path = gda->path_id; tid = gda->target_id; lun = gda->lun; } else if (ci->control_code == CSMI_CC_TASK_MGT) { struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt; path = tm->path_id; tid = tm->target_id; lun = tm->lun; } if (path > 0) { rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32( CSMI_STS_INV_PARAM); return false; } rq->target_id = tid; rq->vrq->scsi.flags |= cpu_to_le32(lun); switch (ci->control_code) { case CSMI_CC_GET_DRVR_INFO: { struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info; strcpy(gdi->description, esas2r_get_model_name(a)); gdi->csmi_major_rev = CSMI_MAJOR_REV; gdi->csmi_minor_rev = CSMI_MINOR_REV; break; } case CSMI_CC_GET_CNTLR_CFG: { struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg; gcc->base_io_addr = 0; pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2, &gcc->base_memaddr_lo); pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3, &gcc->base_memaddr_hi); gcc->board_id = MAKEDWORD(a->pcid->subsystem_device, a->pcid->subsystem_vendor); gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN; gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA; gcc->io_bus_type = CSMI_BUS_TYPE_PCI; gcc->pci_addr.bus_num = a->pcid->bus->number; gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn); gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn); memset(gcc->serial_num, 0, sizeof(gcc->serial_num)); gcc->major_rev = LOBYTE(LOWORD(a->fw_version)); gcc->minor_rev = HIBYTE(LOWORD(a->fw_version)); gcc->build_rev = LOBYTE(HIWORD(a->fw_version)); gcc->release_rev = HIBYTE(HIWORD(a->fw_version)); gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver)); gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver)); gcc->bios_build_rev = LOWORD(a->flash_ver); if (test_bit(AF2_THUNDERLINK, &a->flags2)) gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA | CSMI_CNTLRF_SATA_HBA; else gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID | CSMI_CNTLRF_SATA_RAID; gcc->rrom_major_rev = 0; gcc->rrom_minor_rev = 0; gcc->rrom_build_rev = 0; gcc->rrom_release_rev = 0; gcc->rrom_biosmajor_rev = 0; gcc->rrom_biosminor_rev = 0; gcc->rrom_biosbuild_rev = 0; gcc->rrom_biosrelease_rev = 0; break; } case CSMI_CC_GET_CNTLR_STS: { struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts; if (test_bit(AF_DEGRADED_MODE, &a->flags)) gcs->status = CSMI_CNTLR_STS_FAILED; else gcs->status = CSMI_CNTLR_STS_GOOD; gcs->offline_reason = CSMI_OFFLINE_NO_REASON; break; } case CSMI_CC_FW_DOWNLOAD: case CSMI_CC_GET_RAID_INFO: case CSMI_CC_GET_RAID_CFG: sts = CSMI_STS_BAD_CTRL_CODE; break; case CSMI_CC_SMP_PASSTHRU: case CSMI_CC_SSP_PASSTHRU: case CSMI_CC_STP_PASSTHRU: case CSMI_CC_GET_PHY_INFO: case CSMI_CC_SET_PHY_INFO: case CSMI_CC_GET_LINK_ERRORS: case CSMI_CC_GET_SATA_SIG: case CSMI_CC_GET_CONN_INFO: case CSMI_CC_PHY_CTRL: if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, ci->control_code, ESAS2R_TARG_ID_INV)) { sts = CSMI_STS_FAILED; break; } return true; case CSMI_CC_GET_SCSI_ADDR: { struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; struct scsi_lun lun; memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun)); if (!check_lun(lun)) { sts = CSMI_STS_NO_SCSI_ADDR; break; } /* make sure the device is present */ spin_lock_irqsave(&a->mem_lock, flags); t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr); spin_unlock_irqrestore(&a->mem_lock, flags); if (t == NULL) { sts = CSMI_STS_NO_SCSI_ADDR; break; } gsa->host_index = 0xFF; gsa->lun = gsa->sas_lun[1]; rq->target_id = esas2r_targ_get_id(t, a); break; } case CSMI_CC_GET_DEV_ADDR: { struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr; /* make sure the target is present */ t = a->targetdb + rq->target_id; if (t >= a->targetdb_end || t->target_state != TS_PRESENT || t->sas_addr == 0) { sts = CSMI_STS_NO_DEV_ADDR; break; } /* fill in the result */ *(u64 *)gda->sas_addr = t->sas_addr; memset(gda->sas_lun, 0, sizeof(gda->sas_lun)); gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags); break; } case CSMI_CC_TASK_MGT: /* make sure the target is present */ t = a->targetdb + rq->target_id; if (t >= a->targetdb_end || t->target_state != TS_PRESENT || !(t->flags & TF_PASS_THRU)) { sts = CSMI_STS_NO_DEV_ADDR; break; } if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, ci->control_code, t->phys_targ_id)) { sts = CSMI_STS_FAILED; break; } return true; default: sts = CSMI_STS_BAD_CTRL_CODE; break; } rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts); return false; } static void csmi_ioctl_done_callback(struct esas2r_adapter *a, struct esas2r_request *rq, void *context) { struct atto_csmi *ci = (struct atto_csmi *)context; union atto_ioctl_csmi *ioctl_csmi = (union atto_ioctl_csmi *)esas2r_buffered_ioctl; switch (ci->control_code) { case CSMI_CC_GET_DRVR_INFO: { struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info; strcpy(gdi->name, ESAS2R_VERSION_STR); gdi->major_rev = ESAS2R_MAJOR_REV; gdi->minor_rev = ESAS2R_MINOR_REV; gdi->build_rev = 0; gdi->release_rev = 0; break; } case CSMI_CC_GET_SCSI_ADDR: { struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) == CSMI_STS_SUCCESS) { gsa->target_id = rq->target_id; gsa->path_id = 0; } break; } } ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status); } static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci) { struct esas2r_buffered_ioctl bi; memset(&bi, 0, sizeof(bi)); bi.a = a; bi.ioctl = &ci->data; bi.length = sizeof(union atto_ioctl_csmi); bi.offset = 0; bi.callback = csmi_ioctl_callback; bi.context = ci; bi.done_callback = csmi_ioctl_done_callback; bi.done_context = ci; return handle_buffered_ioctl(&bi); } /* ATTO HBA ioctl support */ /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */ static bool hba_ioctl_tunnel(struct esas2r_adapter *a, struct atto_ioctl *hi, struct esas2r_request *rq, struct esas2r_sg_context *sgc) { esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA); if (!esas2r_build_sg_list(a, rq, sgc)) { hi->status = ATTO_STS_OUT_OF_RSRC; return false; } esas2r_start_request(a, rq); return true; } static void scsi_passthru_comp_cb(struct esas2r_adapter *a, struct esas2r_request *rq) { struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx; struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; u8 sts = ATTO_SPT_RS_FAILED; spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat; spt->sense_length = rq->sense_len; spt->residual_length = le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length); switch (rq->req_stat) { case RS_SUCCESS: case RS_SCSI_ERROR: sts = ATTO_SPT_RS_SUCCESS; break; case RS_UNDERRUN: sts = ATTO_SPT_RS_UNDERRUN; break; case RS_OVERRUN: sts = ATTO_SPT_RS_OVERRUN; break; case RS_SEL: case RS_SEL2: sts = ATTO_SPT_RS_NO_DEVICE; break; case RS_NO_LUN: sts = ATTO_SPT_RS_NO_LUN; break; case RS_TIMEOUT: sts = ATTO_SPT_RS_TIMEOUT; break; case RS_DEGRADED: sts = ATTO_SPT_RS_DEGRADED; break; case RS_BUSY: sts = ATTO_SPT_RS_BUSY; break; case RS_ABORTED: sts = ATTO_SPT_RS_ABORTED; break; case RS_RESET: sts = ATTO_SPT_RS_BUS_RESET; break; } spt->req_status = sts; /* Update the target ID to the next one present. */ spt->target_id = esas2r_targ_db_find_next_present(a, (u16)spt->target_id); /* Done, call the completion callback. */ (*rq->aux_req_cb)(a, rq); } static int hba_ioctl_callback(struct esas2r_adapter *a, struct esas2r_request *rq, struct esas2r_sg_context *sgc, void *context) { struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl; hi->status = ATTO_STS_SUCCESS; switch (hi->function) { case ATTO_FUNC_GET_ADAP_INFO: { u8 *class_code = (u8 *)&a->pcid->class; struct atto_hba_get_adapter_info *gai = &hi->data.get_adap_info; if (hi->flags & HBAF_TUNNEL) { hi->status = ATTO_STS_UNSUPPORTED; break; } if (hi->version > ATTO_VER_GET_ADAP_INFO0) { hi->status = ATTO_STS_INV_VERSION; hi->version = ATTO_VER_GET_ADAP_INFO0; break; } memset(gai, 0, sizeof(*gai)); gai->pci.vendor_id = a->pcid->vendor; gai->pci.device_id = a->pcid->device; gai->pci.ss_vendor_id = a->pcid->subsystem_vendor; gai->pci.ss_device_id = a->pcid->subsystem_device; gai->pci.class_code[0] = class_code[0]; gai->pci.class_code[1] = class_code[1]; gai->pci.class_code[2] = class_code[2]; gai->pci.rev_id = a->pcid->revision; gai->pci.bus_num = a->pcid->bus->number; gai->pci.dev_num = PCI_SLOT(a->pcid->devfn); gai->pci.func_num = PCI_FUNC(a->pcid->devfn); if (pci_is_pcie(a->pcid)) { u16 stat; u32 caps; pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA, &stat); pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP, &caps); gai->pci.link_speed_curr = (u8)(stat & PCI_EXP_LNKSTA_CLS); gai->pci.link_speed_max = (u8)(caps & PCI_EXP_LNKCAP_SLS); gai->pci.link_width_curr = (u8)((stat & PCI_EXP_LNKSTA_NLW) >> PCI_EXP_LNKSTA_NLW_SHIFT); gai->pci.link_width_max = (u8)((caps & PCI_EXP_LNKCAP_MLW) >> 4); } gai->pci.msi_vector_cnt = 1; if (a->pcid->msix_enabled) gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX; else if (a->pcid->msi_enabled) gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI; else gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY; gai->adap_type = ATTO_GAI_AT_ESASRAID2; if (test_bit(AF2_THUNDERLINK, &a->flags2)) gai->adap_type = ATTO_GAI_AT_TLSASHBA; if (test_bit(AF_DEGRADED_MODE, &a->flags)) gai->adap_flags |= ATTO_GAI_AF_DEGRADED; gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP | ATTO_GAI_AF_DEVADDR_SUPP; if (a->pcid->subsystem_device == ATTO_ESAS_R60F || a->pcid->subsystem_device == ATTO_ESAS_R608 || a->pcid->subsystem_device == ATTO_ESAS_R644 || a->pcid->subsystem_device == ATTO_TSSC_3808E) gai->adap_flags |= ATTO_GAI_AF_VIRT_SES; gai->num_ports = ESAS2R_NUM_PHYS; gai->num_phys = ESAS2R_NUM_PHYS; strcpy(gai->firmware_rev, a->fw_rev); strcpy(gai->flash_rev, a->flash_rev); strcpy(gai->model_name_short, esas2r_get_model_name_short(a)); strcpy(gai->model_name, esas2r_get_model_name(a)); gai->num_targets = ESAS2R_MAX_TARGETS; gai->num_busses = 1; gai->num_targsper_bus = gai->num_targets; gai->num_lunsper_targ = 256; if (a->pcid->subsystem_device == ATTO_ESAS_R6F0 || a->pcid->subsystem_device == ATTO_ESAS_R60F) gai->num_connectors = 4; else gai->num_connectors = 2; gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP; gai->num_targets_backend = a->num_targets_backend; gai->tunnel_flags = a->ioctl_tunnel & (ATTO_GAI_TF_MEM_RW | ATTO_GAI_TF_TRACE | ATTO_GAI_TF_SCSI_PASS_THRU | ATTO_GAI_TF_GET_DEV_ADDR | ATTO_GAI_TF_PHY_CTRL | ATTO_GAI_TF_CONN_CTRL | ATTO_GAI_TF_GET_DEV_INFO); break; } case ATTO_FUNC_GET_ADAP_ADDR: { struct atto_hba_get_adapter_address *gaa = &hi->data.get_adap_addr; if (hi->flags & HBAF_TUNNEL) { hi->status = ATTO_STS_UNSUPPORTED; break; } if (hi->version > ATTO_VER_GET_ADAP_ADDR0) { hi->status = ATTO_STS_INV_VERSION; hi->version = ATTO_VER_GET_ADAP_ADDR0; } else if (gaa->addr_type == ATTO_GAA_AT_PORT || gaa->addr_type == ATTO_GAA_AT_NODE) { if (gaa->addr_type == ATTO_GAA_AT_PORT && gaa->port_id >= ESAS2R_NUM_PHYS) { hi->status = ATTO_STS_NOT_APPL; } else { memcpy((u64 *)gaa->address, &a->nvram->sas_addr[0], sizeof(u64)); gaa->addr_len = sizeof(u64); } } else { hi->status = ATTO_STS_INV_PARAM; } break; } case ATTO_FUNC_MEM_RW: { if (hi->flags & HBAF_TUNNEL) { if (hba_ioctl_tunnel(a, hi, rq, sgc)) return true; break; } hi->status = ATTO_STS_UNSUPPORTED; break; } case ATTO_FUNC_TRACE: { struct atto_hba_trace *trc = &hi->data.trace; if (hi->flags & HBAF_TUNNEL) { if (hba_ioctl_tunnel(a, hi, rq, sgc)) return true; break; } if (hi->version > ATTO_VER_TRACE1) { hi->status = ATTO_STS_INV_VERSION; hi->version = ATTO_VER_TRACE1; break; } if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP && hi->version >= ATTO_VER_TRACE1) { if (trc->trace_func == ATTO_TRC_TF_UPLOAD) { u32 len = hi->data_length; u32 offset = trc->current_offset; u32 total_len = ESAS2R_FWCOREDUMP_SZ; /* Size is zero if a core dump isn't present */ if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) total_len = 0; if (len > total_len) len = total_len; if (offset >= total_len || offset + len > total_len || len == 0) { hi->status = ATTO_STS_INV_PARAM; break; } memcpy(trc->contents, a->fw_coredump_buff + offset, len); hi->data_length = len; } else if (trc->trace_func == ATTO_TRC_TF_RESET) { memset(a->fw_coredump_buff, 0, ESAS2R_FWCOREDUMP_SZ); clear_bit(AF2_COREDUMP_SAVED, &a->flags2); } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) { hi->status = ATTO_STS_UNSUPPORTED; break; } /* Always return all the info we can. */ trc->trace_mask = 0; trc->current_offset = 0; trc->total_length = ESAS2R_FWCOREDUMP_SZ; /* Return zero length buffer if core dump not present */ if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) trc->total_length = 0; } else { hi->status = ATTO_STS_UNSUPPORTED; } break; } case ATTO_FUNC_SCSI_PASS_THRU: { struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; struct scsi_lun lun; memcpy(&lun, spt->lun, sizeof(struct scsi_lun)); if (hi->flags & HBAF_TUNNEL) { if (hba_ioctl_tunnel(a, hi, rq, sgc)) return true; break; } if (hi->version > ATTO_VER_SCSI_PASS_THRU0) { hi->status = ATTO_STS_INV_VERSION; hi->version = ATTO_VER_SCSI_PASS_THRU0; break; } if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) { hi->status = ATTO_STS_INV_PARAM; break; } esas2r_sgc_init(sgc, a, rq, NULL); sgc->length = hi->data_length; sgc->cur_offset += offsetof(struct atto_ioctl, data.byte) + sizeof(struct atto_hba_scsi_pass_thru); /* Finish request initialization */ rq->target_id = (u16)spt->target_id; rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]); memcpy(rq->vrq->scsi.cdb, spt->cdb, 16); rq->vrq->scsi.length = cpu_to_le32(hi->data_length); rq->sense_len = spt->sense_length; rq->sense_buf = (u8 *)spt->sense_data; /* NOTE: we ignore spt->timeout */ /* * always usurp the completion callback since the interrupt * callback mechanism may be used. */ rq->aux_req_cx = hi; rq->aux_req_cb = rq->comp_cb; rq->comp_cb = scsi_passthru_comp_cb; if (spt->flags & ATTO_SPTF_DATA_IN) { rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD); } else if (spt->flags & ATTO_SPTF_DATA_OUT) { rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD); } else { if (sgc->length) { hi->status = ATTO_STS_INV_PARAM; break; } } if (spt->flags & ATTO_SPTF_ORDERED_Q) rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_ORDRD_Q); else if (spt->flags & ATTO_SPTF_HEAD_OF_Q) rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q); if (!esas2r_build_sg_list(a, rq, sgc)) { hi->status = ATTO_STS_OUT_OF_RSRC; break; } esas2r_start_request(a, rq); return true; } case ATTO_FUNC_GET_DEV_ADDR: { struct atto_hba_get_device_address *gda = &hi->data.get_dev_addr; struct esas2r_target *t; if (hi->flags & HBAF_TUNNEL) { if (hba_ioctl_tunnel(a, hi, rq, sgc)) return true; break; } if (hi->version > ATTO_VER_GET_DEV_ADDR0) { hi->status = ATTO_STS_INV_VERSION; hi->version = ATTO_VER_GET_DEV_ADDR0; break; } if (gda->target_id >= ESAS2R_MAX_TARGETS) { hi->status = ATTO_STS_INV_PARAM; break; } t = a->targetdb + (u16)gda->target_id; if (t->target_state != TS_PRESENT) { hi->status = ATTO_STS_FAILED; } else if (gda->addr_type == ATTO_GDA_AT_PORT) { if (t->sas_addr == 0) { hi->status = ATTO_STS_UNSUPPORTED; } else { *(u64 *)gda->address = t->sas_addr; gda->addr_len = sizeof(u64); } } else if (gda->addr_type == ATTO_GDA_AT_NODE) { hi->status = ATTO_STS_NOT_APPL; } else { hi->status = ATTO_STS_INV_PARAM; } /* update the target ID to the next one present. */ gda->target_id = esas2r_targ_db_find_next_present(a, (u16)gda->target_id); break; } case ATTO_FUNC_PHY_CTRL: case ATTO_FUNC_CONN_CTRL: { if (hba_ioctl_tunnel(a, hi, rq, sgc)) return true; break; } case ATTO_FUNC_ADAP_CTRL: { struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl; if (hi->flags & HBAF_TUNNEL) { hi->status = ATTO_STS_UNSUPPORTED; break; } if (hi->version > ATTO_VER_ADAP_CTRL0) { hi->status = ATTO_STS_INV_VERSION; hi->version = ATTO_VER_ADAP_CTRL0; break; } if (ac->adap_func == ATTO_AC_AF_HARD_RST) { esas2r_reset_adapter(a); } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) { hi->status = ATTO_STS_UNSUPPORTED; break; } if (test_bit(AF_CHPRST_NEEDED, &a->flags)) ac->adap_state = ATTO_AC_AS_RST_SCHED; else if (test_bit(AF_CHPRST_PENDING, &a->flags)) ac->adap_state = ATTO_AC_AS_RST_IN_PROG; else if (test_bit(AF_DISC_PENDING, &a->flags)) ac->adap_state = ATTO_AC_AS_RST_DISC; else if (test_bit(AF_DISABLED, &a->flags)) ac->adap_state = ATTO_AC_AS_DISABLED; else if (test_bit(AF_DEGRADED_MODE, &a->flags)) ac->adap_state = ATTO_AC_AS_DEGRADED; else ac->adap_state = ATTO_AC_AS_OK; break; } case ATTO_FUNC_GET_DEV_INFO: { struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info; struct esas2r_target *t; if (hi->flags & HBAF_TUNNEL) { if (hba_ioctl_tunnel(a, hi, rq, sgc)) return true; break; } if (hi->version > ATTO_VER_GET_DEV_INFO0) { hi->status = ATTO_STS_INV_VERSION; hi->version = ATTO_VER_GET_DEV_INFO0; break; } if (gdi->target_id >= ESAS2R_MAX_TARGETS) { hi->status = ATTO_STS_INV_PARAM; break; } t = a->targetdb + (u16)gdi->target_id; /* update the target ID to the next one present. */ gdi->target_id = esas2r_targ_db_find_next_present(a, (u16)gdi->target_id); if (t->target_state != TS_PRESENT) { hi->status = ATTO_STS_FAILED; break; } hi->status = ATTO_STS_UNSUPPORTED; break; } default: hi->status = ATTO_STS_INV_FUNC; break; } return false; } static void hba_ioctl_done_callback(struct esas2r_adapter *a, struct esas2r_request *rq, void *context) { struct atto_ioctl *ioctl_hba = (struct atto_ioctl *)esas2r_buffered_ioctl; esas2r_debug("hba_ioctl_done_callback %d", a->index); if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) { struct atto_hba_get_adapter_info *gai = &ioctl_hba->data.get_adap_info; esas2r_debug("ATTO_FUNC_GET_ADAP_INFO"); gai->drvr_rev_major = ESAS2R_MAJOR_REV; gai->drvr_rev_minor = ESAS2R_MINOR_REV; strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR); strcpy(gai->drvr_name, ESAS2R_DRVR_NAME); gai->num_busses = 1; gai->num_targsper_bus = ESAS2R_MAX_ID + 1; gai->num_lunsper_targ = 1; } } u8 handle_hba_ioctl(struct esas2r_adapter *a, struct atto_ioctl *ioctl_hba) { struct esas2r_buffered_ioctl bi; memset(&bi, 0, sizeof(bi)); bi.a = a; bi.ioctl = ioctl_hba; bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length; bi.callback = hba_ioctl_callback; bi.context = NULL; bi.done_callback = hba_ioctl_done_callback; bi.done_context = NULL; bi.offset = 0; return handle_buffered_ioctl(&bi); } int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq, struct esas2r_sas_nvram *data) { int result = 0; a->nvram_command_done = 0; rq->comp_cb = complete_nvr_req; if (esas2r_nvram_write(a, rq, data)) { /* now wait around for it to complete. */ while (!a->nvram_command_done) wait_event_interruptible(a->nvram_waiter, a->nvram_command_done); ; /* done, check the status. */ if (rq->req_stat == RS_SUCCESS) result = 1; } return result; } /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */ int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg) { struct atto_express_ioctl *ioctl = NULL; struct esas2r_adapter *a; struct esas2r_request *rq; u16 code; int err; esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg); if ((arg == NULL) || (cmd < EXPRESS_IOCTL_MIN) || (cmd > EXPRESS_IOCTL_MAX)) return -ENOTSUPP; ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl)); if (IS_ERR(ioctl)) { esas2r_log(ESAS2R_LOG_WARN, "ioctl_handler access_ok failed for cmd %u, address %p", cmd, arg); return PTR_ERR(ioctl); } /* verify the signature */ if (memcmp(ioctl->header.signature, EXPRESS_IOCTL_SIGNATURE, EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) { esas2r_log(ESAS2R_LOG_WARN, "invalid signature"); kfree(ioctl); return -ENOTSUPP; } /* assume success */ ioctl->header.return_code = IOCTL_SUCCESS; err = 0; /* * handle EXPRESS_IOCTL_GET_CHANNELS * without paying attention to channel */ if (cmd == EXPRESS_IOCTL_GET_CHANNELS) { int i = 0, k = 0; ioctl->data.chanlist.num_channels = 0; while (i < MAX_ADAPTERS) { if (esas2r_adapters[i]) { ioctl->data.chanlist.num_channels++; ioctl->data.chanlist.channel[k] = i; k++; } i++; } goto ioctl_done; } /* get the channel */ if (ioctl->header.channel == 0xFF) { a = (struct esas2r_adapter *)hostdata; } else { if (ioctl->header.channel >= MAX_ADAPTERS || esas2r_adapters[ioctl->header.channel] == NULL) { ioctl->header.return_code = IOCTL_BAD_CHANNEL; esas2r_log(ESAS2R_LOG_WARN, "bad channel value"); kfree(ioctl); return -ENOTSUPP; } a = esas2r_adapters[ioctl->header.channel]; } switch (cmd) { case EXPRESS_IOCTL_RW_FIRMWARE: if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) { err = esas2r_write_fw(a, (char *)ioctl->data.fwrw.image, 0, sizeof(struct atto_express_ioctl)); if (err >= 0) { err = esas2r_read_fw(a, (char *)ioctl->data.fwrw. image, 0, sizeof(struct atto_express_ioctl)); } } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) { err = esas2r_write_fs(a, (char *)ioctl->data.fwrw.image, 0, sizeof(struct atto_express_ioctl)); if (err >= 0) { err = esas2r_read_fs(a, (char *)ioctl->data.fwrw. image, 0, sizeof(struct atto_express_ioctl)); } } else { ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE; } break; case EXPRESS_IOCTL_READ_PARAMS: memcpy(ioctl->data.prw.data_buffer, a->nvram, sizeof(struct esas2r_sas_nvram)); ioctl->data.prw.code = 1; break; case EXPRESS_IOCTL_WRITE_PARAMS: rq = esas2r_alloc_request(a); if (rq == NULL) { kfree(ioctl); esas2r_log(ESAS2R_LOG_WARN, "could not allocate an internal request"); return -ENOMEM; } code = esas2r_write_params(a, rq, (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); ioctl->data.prw.code = code; esas2r_free_request(a, rq); break; case EXPRESS_IOCTL_DEFAULT_PARAMS: esas2r_nvram_get_defaults(a, (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); ioctl->data.prw.code = 1; break; case EXPRESS_IOCTL_CHAN_INFO: ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV; ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV; ioctl->data.chaninfo.IRQ = a->pcid->irq; ioctl->data.chaninfo.device_id = a->pcid->device; ioctl->data.chaninfo.vendor_id = a->pcid->vendor; ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device; ioctl->data.chaninfo.revision_id = a->pcid->revision; ioctl->data.chaninfo.pci_bus = a->pcid->bus->number; ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn; ioctl->data.chaninfo.core_rev = 0; ioctl->data.chaninfo.host_no = a->host->host_no; ioctl->data.chaninfo.hbaapi_rev = 0; break; case EXPRESS_IOCTL_SMP: ioctl->header.return_code = handle_smp_ioctl(a, &ioctl->data. ioctl_smp); break; case EXPRESS_CSMI: ioctl->header.return_code = handle_csmi_ioctl(a, &ioctl->data.csmi); break; case EXPRESS_IOCTL_HBA: ioctl->header.return_code = handle_hba_ioctl(a, &ioctl->data. ioctl_hba); break; case EXPRESS_IOCTL_VDA: err = esas2r_write_vda(a, (char *)&ioctl->data.ioctl_vda, 0, sizeof(struct atto_ioctl_vda) + ioctl->data.ioctl_vda.data_length); if (err >= 0) { err = esas2r_read_vda(a, (char *)&ioctl->data.ioctl_vda, 0, sizeof(struct atto_ioctl_vda) + ioctl->data.ioctl_vda.data_length); } break; case EXPRESS_IOCTL_GET_MOD_INFO: ioctl->data.modinfo.adapter = a; ioctl->data.modinfo.pci_dev = a->pcid; ioctl->data.modinfo.scsi_host = a->host; ioctl->data.modinfo.host_no = a->host->host_no; break; default: esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd); ioctl->header.return_code = IOCTL_ERR_INVCMD; } ioctl_done: if (err < 0) { esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err, cmd); switch (err) { case -ENOMEM: case -EBUSY: ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES; break; case -ENOSYS: case -EINVAL: ioctl->header.return_code = IOCTL_INVALID_PARAM; break; default: ioctl->header.return_code = IOCTL_GENERAL_ERROR; break; } } /* Always copy the buffer back, if only to pick up the status */ err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl)); if (err != 0) { esas2r_log(ESAS2R_LOG_WARN, "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)", err, cmd); kfree(ioctl); return -EFAULT; } kfree(ioctl); return 0; } int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg) { return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg); } static void free_fw_buffers(struct esas2r_adapter *a) { if (a->firmware.data) { dma_free_coherent(&a->pcid->dev, (size_t)a->firmware.orig_len, a->firmware.data, (dma_addr_t)a->firmware.phys); a->firmware.data = NULL; } } static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length) { free_fw_buffers(a); a->firmware.orig_len = length; a->firmware.data = dma_alloc_coherent(&a->pcid->dev, (size_t)length, (dma_addr_t *)&a->firmware.phys, GFP_KERNEL); if (!a->firmware.data) { esas2r_debug("buffer alloc failed!"); return 0; } return 1; } /* Handle a call to read firmware. */ int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count) { esas2r_trace_enter(); /* if the cached header is a status, simply copy it over and return. */ if (a->firmware.state == FW_STATUS_ST) { int size = min_t(int, count, sizeof(a->firmware.header)); esas2r_trace_exit(); memcpy(buf, &a->firmware.header, size); esas2r_debug("esas2r_read_fw: STATUS size %d", size); return size; } /* * if the cached header is a command, do it if at * offset 0, otherwise copy the pieces. */ if (a->firmware.state == FW_COMMAND_ST) { u32 length = a->firmware.header.length; esas2r_trace_exit(); esas2r_debug("esas2r_read_fw: COMMAND length %d off %d", length, off); if (off == 0) { if (a->firmware.header.action == FI_ACT_UP) { if (!allocate_fw_buffers(a, length)) return -ENOMEM; /* copy header over */ memcpy(a->firmware.data, &a->firmware.header, sizeof(a->firmware.header)); do_fm_api(a, (struct esas2r_flash_img *)a->firmware.data); } else if (a->firmware.header.action == FI_ACT_UPSZ) { int size = min((int)count, (int)sizeof(a->firmware.header)); do_fm_api(a, &a->firmware.header); memcpy(buf, &a->firmware.header, size); esas2r_debug("FI_ACT_UPSZ size %d", size); return size; } else { esas2r_debug("invalid action %d", a->firmware.header.action); return -ENOSYS; } } if (count + off > length) count = length - off; if (count < 0) return 0; if (!a->firmware.data) { esas2r_debug( "read: nonzero offset but no buffer available!"); return -ENOMEM; } esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off, count, length); memcpy(buf, &a->firmware.data[off], count); /* when done, release the buffer */ if (length <= off + count) { esas2r_debug("esas2r_read_fw: freeing buffer!"); free_fw_buffers(a); } return count; } esas2r_trace_exit(); esas2r_debug("esas2r_read_fw: invalid firmware state %d", a->firmware.state); return -EINVAL; } /* Handle a call to write firmware. */ int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off, int count) { u32 length; if (off == 0) { struct esas2r_flash_img *header = (struct esas2r_flash_img *)buf; /* assume version 0 flash image */ int min_size = sizeof(struct esas2r_flash_img_v0); a->firmware.state = FW_INVALID_ST; /* validate the version field first */ if (count < 4 || header->fi_version > FI_VERSION_1) { esas2r_debug( "esas2r_write_fw: short header or invalid version"); return -EINVAL; } /* See if its a version 1 flash image */ if (header->fi_version == FI_VERSION_1) min_size = sizeof(struct esas2r_flash_img); /* If this is the start, the header must be full and valid. */ if (count < min_size) { esas2r_debug("esas2r_write_fw: short header, aborting"); return -EINVAL; } /* Make sure the size is reasonable. */ length = header->length; if (length > 1024 * 1024) { esas2r_debug( "esas2r_write_fw: hosed, length %d fi_version %d", length, header->fi_version); return -EINVAL; } /* * If this is a write command, allocate memory because * we have to cache everything. otherwise, just cache * the header, because the read op will do the command. */ if (header->action == FI_ACT_DOWN) { if (!allocate_fw_buffers(a, length)) return -ENOMEM; /* * Store the command, so there is context on subsequent * calls. */ memcpy(&a->firmware.header, buf, sizeof(*header)); } else if (header->action == FI_ACT_UP || header->action == FI_ACT_UPSZ) { /* Save the command, result will be picked up on read */ memcpy(&a->firmware.header, buf, sizeof(*header)); a->firmware.state = FW_COMMAND_ST; esas2r_debug( "esas2r_write_fw: COMMAND, count %d, action %d ", count, header->action); /* * Pretend we took the whole buffer, * so we don't get bothered again. */ return count; } else { esas2r_debug("esas2r_write_fw: invalid action %d ", a->firmware.header.action); return -ENOSYS; } } else { length = a->firmware.header.length; } /* * We only get here on a download command, regardless of offset. * the chunks written by the system need to be cached, and when * the final one arrives, issue the fmapi command. */ if (off + count > length) count = length - off; if (count > 0) { esas2r_debug("esas2r_write_fw: off %d count %d length %d", off, count, length); /* * On a full upload, the system tries sending the whole buffer. * there's nothing to do with it, so just drop it here, before * trying to copy over into unallocated memory! */ if (a->firmware.header.action == FI_ACT_UP) return count; if (!a->firmware.data) { esas2r_debug( "write: nonzero offset but no buffer available!"); return -ENOMEM; } memcpy(&a->firmware.data[off], buf, count); if (length == off + count) { do_fm_api(a, (struct esas2r_flash_img *)a->firmware.data); /* * Now copy the header result to be picked up by the * next read */ memcpy(&a->firmware.header, a->firmware.data, sizeof(a->firmware.header)); a->firmware.state = FW_STATUS_ST; esas2r_debug("write completed"); /* * Since the system has the data buffered, the only way * this can leak is if a root user writes a program * that writes a shorter buffer than it claims, and the * copyin fails. */ free_fw_buffers(a); } } return count; } /* Callback for the completion of a VDA request. */ static void vda_complete_req(struct esas2r_adapter *a, struct esas2r_request *rq) { a->vda_command_done = 1; wake_up_interruptible(&a->vda_waiter); } /* Scatter/gather callback for VDA requests */ static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr) { struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer; (*addr) = a->ppvda_buffer + offset; return VDA_MAX_BUFFER_SIZE - offset; } /* Handle a call to read a VDA command. */ int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count) { if (!a->vda_buffer) return -ENOMEM; if (off == 0) { struct esas2r_request *rq; struct atto_ioctl_vda *vi = (struct atto_ioctl_vda *)a->vda_buffer; struct esas2r_sg_context sgc; bool wait_for_completion; /* * Presumeably, someone has already written to the vda_buffer, * and now they are reading the node the response, so now we * will actually issue the request to the chip and reply. */ /* allocate a request */ rq = esas2r_alloc_request(a); if (rq == NULL) { esas2r_debug("esas2r_read_vda: out of requests"); return -EBUSY; } rq->comp_cb = vda_complete_req; sgc.first_req = rq; sgc.adapter = a; sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ; sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda; a->vda_command_done = 0; wait_for_completion = esas2r_process_vda_ioctl(a, vi, rq, &sgc); if (wait_for_completion) { /* now wait around for it to complete. */ while (!a->vda_command_done) wait_event_interruptible(a->vda_waiter, a->vda_command_done); } esas2r_free_request(a, (struct esas2r_request *)rq); } if (off > VDA_MAX_BUFFER_SIZE) return 0; if (count + off > VDA_MAX_BUFFER_SIZE) count = VDA_MAX_BUFFER_SIZE - off; if (count < 0) return 0; memcpy(buf, a->vda_buffer + off, count); return count; } /* Handle a call to write a VDA command. */ int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off, int count) { /* * allocate memory for it, if not already done. once allocated, * we will keep it around until the driver is unloaded. */ if (!a->vda_buffer) { dma_addr_t dma_addr; a->vda_buffer = dma_alloc_coherent(&a->pcid->dev, (size_t) VDA_MAX_BUFFER_SIZE, &dma_addr, GFP_KERNEL); a->ppvda_buffer = dma_addr; } if (!a->vda_buffer) return -ENOMEM; if (off > VDA_MAX_BUFFER_SIZE) return 0; if (count + off > VDA_MAX_BUFFER_SIZE) count = VDA_MAX_BUFFER_SIZE - off; if (count < 1) return 0; memcpy(a->vda_buffer + off, buf, count); return count; } /* Callback for the completion of an FS_API request.*/ static void fs_api_complete_req(struct esas2r_adapter *a, struct esas2r_request *rq) { a->fs_api_command_done = 1; wake_up_interruptible(&a->fs_api_waiter); } /* Scatter/gather callback for VDA requests */ static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr) { struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)a->fs_api_buffer; u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs; (*addr) = a->ppfs_api_buffer + offset; return a->fs_api_buffer_size - offset; } /* Handle a call to read firmware via FS_API. */ int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count) { if (!a->fs_api_buffer) return -ENOMEM; if (off == 0) { struct esas2r_request *rq; struct esas2r_sg_context sgc; struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)a->fs_api_buffer; /* If another flash request is already in progress, return. */ if (mutex_lock_interruptible(&a->fs_api_mutex)) { busy: fs->status = ATTO_STS_OUT_OF_RSRC; return -EBUSY; } /* * Presumeably, someone has already written to the * fs_api_buffer, and now they are reading the node the * response, so now we will actually issue the request to the * chip and reply. Allocate a request */ rq = esas2r_alloc_request(a); if (rq == NULL) { esas2r_debug("esas2r_read_fs: out of requests"); mutex_unlock(&a->fs_api_mutex); goto busy; } rq->comp_cb = fs_api_complete_req; /* Set up the SGCONTEXT for to build the s/g table */ sgc.cur_offset = fs->data; sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api; a->fs_api_command_done = 0; if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) { if (fs->status == ATTO_STS_OUT_OF_RSRC) count = -EBUSY; goto dont_wait; } /* Now wait around for it to complete. */ while (!a->fs_api_command_done) wait_event_interruptible(a->fs_api_waiter, a->fs_api_command_done); ; dont_wait: /* Free the request and keep going */ mutex_unlock(&a->fs_api_mutex); esas2r_free_request(a, (struct esas2r_request *)rq); /* Pick up possible error code from above */ if (count < 0) return count; } if (off > a->fs_api_buffer_size) return 0; if (count + off > a->fs_api_buffer_size) count = a->fs_api_buffer_size - off; if (count < 0) return 0; memcpy(buf, a->fs_api_buffer + off, count); return count; } /* Handle a call to write firmware via FS_API. */ int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off, int count) { if (off == 0) { struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf; u32 length = fs->command.length + offsetof( struct esas2r_ioctl_fs, data); /* * Special case, for BEGIN commands, the length field * is lying to us, so just get enough for the header. */ if (fs->command.command == ESAS2R_FS_CMD_BEGINW) length = offsetof(struct esas2r_ioctl_fs, data); /* * Beginning a command. We assume we'll get at least * enough in the first write so we can look at the * header and see how much we need to alloc. */ if (count < offsetof(struct esas2r_ioctl_fs, data)) return -EINVAL; /* Allocate a buffer or use the existing buffer. */ if (a->fs_api_buffer) { if (a->fs_api_buffer_size < length) { /* Free too-small buffer and get a new one */ dma_free_coherent(&a->pcid->dev, (size_t)a->fs_api_buffer_size, a->fs_api_buffer, (dma_addr_t)a->ppfs_api_buffer); goto re_allocate_buffer; } } else { re_allocate_buffer: a->fs_api_buffer_size = length; a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev, (size_t)a->fs_api_buffer_size, (dma_addr_t *)&a->ppfs_api_buffer, GFP_KERNEL); } } if (!a->fs_api_buffer) return -ENOMEM; if (off > a->fs_api_buffer_size) return 0; if (count + off > a->fs_api_buffer_size) count = a->fs_api_buffer_size - off; if (count < 1) return 0; memcpy(a->fs_api_buffer + off, buf, count); return count; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1