Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
James Smart | 24343 | 88.85% | 254 | 81.94% |
James Bottomley | 2225 | 8.12% | 2 | 0.65% |
Gaurav Srivastava | 236 | 0.86% | 3 | 0.97% |
Hannes Reinecke | 122 | 0.45% | 6 | 1.94% |
Justin Tee | 115 | 0.42% | 4 | 1.29% |
Martin K. Petersen | 67 | 0.24% | 1 | 0.32% |
Bart Van Assche | 51 | 0.19% | 3 | 0.97% |
Dick Kennedy | 40 | 0.15% | 1 | 0.32% |
Lee Jones | 28 | 0.10% | 2 | 0.65% |
Christoph Hellwig | 20 | 0.07% | 3 | 0.97% |
Andrew Vasquez | 16 | 0.06% | 2 | 0.65% |
Manuel Schölling | 14 | 0.05% | 1 | 0.32% |
Johannes Thumshirn | 13 | 0.05% | 1 | 0.32% |
Kees Cook | 12 | 0.04% | 1 | 0.32% |
Jeff Garzik | 11 | 0.04% | 3 | 0.97% |
Muneendra Kumar M | 10 | 0.04% | 1 | 0.32% |
Gustavo A. R. Silva | 8 | 0.03% | 1 | 0.32% |
Linus Torvalds | 7 | 0.03% | 2 | 0.65% |
Colin Ian King | 6 | 0.02% | 1 | 0.32% |
Alexey Kardashevskiy | 6 | 0.02% | 1 | 0.32% |
Michael Christie | 5 | 0.02% | 2 | 0.65% |
Milan P. Gandhi | 5 | 0.02% | 1 | 0.32% |
Jamie Wellnitz | 5 | 0.02% | 1 | 0.32% |
Nishanth Aravamudan | 4 | 0.01% | 1 | 0.32% |
Lucas De Marchi | 4 | 0.01% | 1 | 0.32% |
caihuoqing | 4 | 0.01% | 1 | 0.32% |
Rashika Kheria | 4 | 0.01% | 1 | 0.32% |
FUJITA Tomonori | 3 | 0.01% | 1 | 0.32% |
Paul Gortmaker | 3 | 0.01% | 1 | 0.32% |
Sagi Grimberg | 3 | 0.01% | 1 | 0.32% |
Linus Torvalds (pre-git) | 2 | 0.01% | 1 | 0.32% |
Romain Perier | 2 | 0.01% | 1 | 0.32% |
Dmitriy Monakhov | 2 | 0.01% | 1 | 0.32% |
Mariusz Kozlowski | 1 | 0.00% | 1 | 0.32% |
Adam Buchbinder | 1 | 0.00% | 1 | 0.32% |
Chi Minghao | 1 | 0.00% | 1 | 0.32% |
Total | 27399 | 310 |
/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2004-2016 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * *******************************************************************/ #include <linux/pci.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/export.h> #include <linux/delay.h> #include <asm/unaligned.h> #include <linux/t10-pi.h> #include <linux/crc-t10dif.h> #include <linux/blk-cgroup.h> #include <net/checksum.h> #include <scsi/scsi.h> #include <scsi/scsi_device.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsi_transport_fc.h> #include "lpfc_version.h" #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_scsi.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #define LPFC_RESET_WAIT 2 #define LPFC_ABORT_WAIT 2 static char *dif_op_str[] = { "PROT_NORMAL", "PROT_READ_INSERT", "PROT_WRITE_STRIP", "PROT_READ_STRIP", "PROT_WRITE_INSERT", "PROT_READ_PASS", "PROT_WRITE_PASS", }; struct scsi_dif_tuple { __be16 guard_tag; /* Checksum */ __be16 app_tag; /* Opaque storage */ __be32 ref_tag; /* Target LBA or indirect LBA */ }; static struct lpfc_rport_data * lpfc_rport_data_from_scsi_device(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *)sdev->host->hostdata; if (vport->phba->cfg_fof) return ((struct lpfc_device_data *)sdev->hostdata)->rport_data; else return (struct lpfc_rport_data *)sdev->hostdata; } static void lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_io_buf *psb); static void lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_io_buf *psb); static int lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc); /** * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge. * @phba: Pointer to HBA object. * @lpfc_cmd: lpfc scsi command object pointer. * * This function is called from the lpfc_prep_task_mgmt_cmd function to * set the last bit in the response sge entry. **/ static void lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; if (sgl) { sgl += 1; sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); } } /** * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread * @phba: The Hba for which this call is being executed. * * This routine is called when there is resource error in driver or firmware. * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine * posts at most 1 event each second. This routine wakes up worker thread of * @phba to process WORKER_RAM_DOWN_EVENT event. * * This routine should be called with no lock held. **/ void lpfc_rampdown_queue_depth(struct lpfc_hba *phba) { unsigned long flags; uint32_t evt_posted; unsigned long expires; spin_lock_irqsave(&phba->hbalock, flags); atomic_inc(&phba->num_rsrc_err); phba->last_rsrc_error_time = jiffies; expires = phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL; if (time_after(expires, jiffies)) { spin_unlock_irqrestore(&phba->hbalock, flags); return; } phba->last_ramp_down_time = jiffies; spin_unlock_irqrestore(&phba->hbalock, flags); spin_lock_irqsave(&phba->pport->work_port_lock, flags); evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; if (!evt_posted) phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); if (!evt_posted) lpfc_worker_wake_up(phba); return; } /** * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler * @phba: The Hba for which this call is being executed. * * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker * thread.This routine reduces queue depth for all scsi device on each vport * associated with @phba. **/ void lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; struct scsi_device *sdev; unsigned long new_queue_depth; unsigned long num_rsrc_err, num_cmd_success; int i; num_rsrc_err = atomic_read(&phba->num_rsrc_err); num_cmd_success = atomic_read(&phba->num_cmd_success); /* * The error and success command counters are global per * driver instance. If another handler has already * operated on this error event, just exit. */ if (num_rsrc_err == 0) return; vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); shost_for_each_device(sdev, shost) { new_queue_depth = sdev->queue_depth * num_rsrc_err / (num_rsrc_err + num_cmd_success); if (!new_queue_depth) new_queue_depth = sdev->queue_depth - 1; else new_queue_depth = sdev->queue_depth - new_queue_depth; scsi_change_queue_depth(sdev, new_queue_depth); } } lpfc_destroy_vport_work_array(phba, vports); atomic_set(&phba->num_rsrc_err, 0); atomic_set(&phba->num_cmd_success, 0); } /** * lpfc_scsi_dev_block - set all scsi hosts to block state * @phba: Pointer to HBA context object. * * This function walks vport list and set each SCSI host to block state * by invoking fc_remote_port_delete() routine. This function is invoked * with EEH when device's PCI slot has been permanently disabled. **/ void lpfc_scsi_dev_block(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; struct scsi_device *sdev; struct fc_rport *rport; int i; vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); shost_for_each_device(sdev, shost) { rport = starget_to_rport(scsi_target(sdev)); fc_remote_port_delete(rport); } } lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec * @vport: The virtual port for which this call being executed. * @num_to_alloc: The requested number of buffers to allocate. * * This routine allocates a scsi buffer for device with SLI-3 interface spec, * the scsi buffer contains all the necessary information needed to initiate * a SCSI I/O. The non-DMAable buffer region contains information to build * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP, * and the initial BPL. In addition to allocating memory, the FCP CMND and * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB. * * Return codes: * int - number of scsi buffers that were allocated. * 0 = failure, less than num_to_alloc is a partial failure. **/ static int lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc) { struct lpfc_hba *phba = vport->phba; struct lpfc_io_buf *psb; struct ulp_bde64 *bpl; IOCB_t *iocb; dma_addr_t pdma_phys_fcp_cmd; dma_addr_t pdma_phys_fcp_rsp; dma_addr_t pdma_phys_sgl; uint16_t iotag; int bcnt, bpl_size; bpl_size = phba->cfg_sg_dma_buf_size - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "9067 ALLOC %d scsi_bufs: %d (%d + %d + %d)\n", num_to_alloc, phba->cfg_sg_dma_buf_size, (int)sizeof(struct fcp_cmnd), (int)sizeof(struct fcp_rsp), bpl_size); for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { psb = kzalloc(sizeof(struct lpfc_io_buf), GFP_KERNEL); if (!psb) break; /* * Get memory from the pci pool to map the virt space to pci * bus space for an I/O. The DMA buffer includes space for the * struct fcp_cmnd, struct fcp_rsp and the number of bde's * necessary to support the sg_tablesize. */ psb->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, GFP_KERNEL, &psb->dma_handle); if (!psb->data) { kfree(psb); break; } /* Allocate iotag for psb->cur_iocbq. */ iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); if (iotag == 0) { dma_pool_free(phba->lpfc_sg_dma_buf_pool, psb->data, psb->dma_handle); kfree(psb); break; } psb->cur_iocbq.cmd_flag |= LPFC_IO_FCP; psb->fcp_cmnd = psb->data; psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); psb->dma_sgl = psb->data + sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp); /* Initialize local short-hand pointers. */ bpl = (struct ulp_bde64 *)psb->dma_sgl; pdma_phys_fcp_cmd = psb->dma_handle; pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); pdma_phys_sgl = psb->dma_handle + sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp); /* * The first two bdes are the FCP_CMD and FCP_RSP. The balance * are sg list bdes. Initialize the first two and leave the * rest for queuecommand. */ bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); /* Setup the physical region for the FCP RSP */ bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); /* * Since the IOCB for the FCP I/O is built into this * lpfc_scsi_buf, initialize it with all known data now. */ iocb = &psb->cur_iocbq.iocb; iocb->un.fcpi64.bdl.ulpIoTag32 = 0; if ((phba->sli_rev == 3) && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { /* fill in immediate fcp command BDE */ iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, unsli3.fcp_ext.icd); iocb->un.fcpi64.bdl.addrHigh = 0; iocb->ulpBdeCount = 0; iocb->ulpLe = 0; /* fill in response BDE */ iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = sizeof(struct fcp_rsp); iocb->unsli3.fcp_ext.rbde.addrLow = putPaddrLow(pdma_phys_fcp_rsp); iocb->unsli3.fcp_ext.rbde.addrHigh = putPaddrHigh(pdma_phys_fcp_rsp); } else { iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; iocb->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_sgl); iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_sgl); iocb->ulpBdeCount = 1; iocb->ulpLe = 1; } iocb->ulpClass = CLASS3; psb->status = IOSTAT_SUCCESS; /* Put it back into the SCSI buffer list */ psb->cur_iocbq.io_buf = psb; spin_lock_init(&psb->buf_lock); lpfc_release_scsi_buf_s3(phba, psb); } return bcnt; } /** * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport * @vport: pointer to lpfc vport data structure. * * This routine is invoked by the vport cleanup for deletions and the cleanup * for an ndlp on removal. **/ void lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; struct lpfc_io_buf *psb, *next_psb; struct lpfc_sli4_hdw_queue *qp; unsigned long iflag = 0; int idx; if (!(vport->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) return; spin_lock_irqsave(&phba->hbalock, iflag); for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { qp = &phba->sli4_hba.hdwq[idx]; spin_lock(&qp->abts_io_buf_list_lock); list_for_each_entry_safe(psb, next_psb, &qp->lpfc_abts_io_buf_list, list) { if (psb->cur_iocbq.cmd_flag & LPFC_IO_NVME) continue; if (psb->rdata && psb->rdata->pnode && psb->rdata->pnode->vport == vport) psb->rdata = NULL; } spin_unlock(&qp->abts_io_buf_list_lock); } spin_unlock_irqrestore(&phba->hbalock, iflag); } /** * lpfc_sli4_io_xri_aborted - Fast-path process of fcp xri abort * @phba: pointer to lpfc hba data structure. * @axri: pointer to the fcp xri abort wcqe structure. * @idx: index into hdwq * * This routine is invoked by the worker thread to process a SLI4 fast-path * FCP or NVME aborted xri. **/ void lpfc_sli4_io_xri_aborted(struct lpfc_hba *phba, struct sli4_wcqe_xri_aborted *axri, int idx) { u16 xri = 0; u16 rxid = 0; struct lpfc_io_buf *psb, *next_psb; struct lpfc_sli4_hdw_queue *qp; unsigned long iflag = 0; struct lpfc_iocbq *iocbq; int i; struct lpfc_nodelist *ndlp; int rrq_empty = 0; struct lpfc_sli_ring *pring = phba->sli4_hba.els_wq->pring; struct scsi_cmnd *cmd; int offline = 0; if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) return; offline = pci_channel_offline(phba->pcidev); if (!offline) { xri = bf_get(lpfc_wcqe_xa_xri, axri); rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); } qp = &phba->sli4_hba.hdwq[idx]; spin_lock_irqsave(&phba->hbalock, iflag); spin_lock(&qp->abts_io_buf_list_lock); list_for_each_entry_safe(psb, next_psb, &qp->lpfc_abts_io_buf_list, list) { if (offline) xri = psb->cur_iocbq.sli4_xritag; if (psb->cur_iocbq.sli4_xritag == xri) { list_del_init(&psb->list); psb->flags &= ~LPFC_SBUF_XBUSY; psb->status = IOSTAT_SUCCESS; if (psb->cur_iocbq.cmd_flag & LPFC_IO_NVME) { qp->abts_nvme_io_bufs--; spin_unlock(&qp->abts_io_buf_list_lock); spin_unlock_irqrestore(&phba->hbalock, iflag); if (!offline) { lpfc_sli4_nvme_xri_aborted(phba, axri, psb); return; } lpfc_sli4_nvme_pci_offline_aborted(phba, psb); spin_lock_irqsave(&phba->hbalock, iflag); spin_lock(&qp->abts_io_buf_list_lock); continue; } qp->abts_scsi_io_bufs--; spin_unlock(&qp->abts_io_buf_list_lock); if (psb->rdata && psb->rdata->pnode) ndlp = psb->rdata->pnode; else ndlp = NULL; rrq_empty = list_empty(&phba->active_rrq_list); spin_unlock_irqrestore(&phba->hbalock, iflag); if (ndlp && !offline) { lpfc_set_rrq_active(phba, ndlp, psb->cur_iocbq.sli4_lxritag, rxid, 1); lpfc_sli4_abts_err_handler(phba, ndlp, axri); } if (phba->cfg_fcp_wait_abts_rsp || offline) { spin_lock_irqsave(&psb->buf_lock, iflag); cmd = psb->pCmd; psb->pCmd = NULL; spin_unlock_irqrestore(&psb->buf_lock, iflag); /* The sdev is not guaranteed to be valid post * scsi_done upcall. */ if (cmd) scsi_done(cmd); /* * We expect there is an abort thread waiting * for command completion wake up the thread. */ spin_lock_irqsave(&psb->buf_lock, iflag); psb->cur_iocbq.cmd_flag &= ~LPFC_DRIVER_ABORTED; if (psb->waitq) wake_up(psb->waitq); spin_unlock_irqrestore(&psb->buf_lock, iflag); } lpfc_release_scsi_buf_s4(phba, psb); if (rrq_empty) lpfc_worker_wake_up(phba); if (!offline) return; spin_lock_irqsave(&phba->hbalock, iflag); spin_lock(&qp->abts_io_buf_list_lock); continue; } } spin_unlock(&qp->abts_io_buf_list_lock); if (!offline) { for (i = 1; i <= phba->sli.last_iotag; i++) { iocbq = phba->sli.iocbq_lookup[i]; if (!(iocbq->cmd_flag & LPFC_IO_FCP) || (iocbq->cmd_flag & LPFC_IO_LIBDFC)) continue; if (iocbq->sli4_xritag != xri) continue; psb = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); psb->flags &= ~LPFC_SBUF_XBUSY; spin_unlock_irqrestore(&phba->hbalock, iflag); if (!list_empty(&pring->txq)) lpfc_worker_wake_up(phba); return; } } spin_unlock_irqrestore(&phba->hbalock, iflag); } /** * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA * @phba: The HBA for which this call is being executed. * @ndlp: pointer to a node-list data structure. * @cmnd: Pointer to scsi_cmnd data structure. * * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_scsi_buf - Success **/ static struct lpfc_io_buf * lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, struct scsi_cmnd *cmnd) { struct lpfc_io_buf *lpfc_cmd = NULL; struct list_head *scsi_buf_list_get = &phba->lpfc_scsi_buf_list_get; unsigned long iflag = 0; spin_lock_irqsave(&phba->scsi_buf_list_get_lock, iflag); list_remove_head(scsi_buf_list_get, lpfc_cmd, struct lpfc_io_buf, list); if (!lpfc_cmd) { spin_lock(&phba->scsi_buf_list_put_lock); list_splice(&phba->lpfc_scsi_buf_list_put, &phba->lpfc_scsi_buf_list_get); INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); list_remove_head(scsi_buf_list_get, lpfc_cmd, struct lpfc_io_buf, list); spin_unlock(&phba->scsi_buf_list_put_lock); } spin_unlock_irqrestore(&phba->scsi_buf_list_get_lock, iflag); if (lpfc_ndlp_check_qdepth(phba, ndlp) && lpfc_cmd) { atomic_inc(&ndlp->cmd_pending); lpfc_cmd->flags |= LPFC_SBUF_BUMP_QDEPTH; } return lpfc_cmd; } /** * lpfc_get_scsi_buf_s4 - Get a scsi buffer from io_buf_list of the HBA * @phba: The HBA for which this call is being executed. * @ndlp: pointer to a node-list data structure. * @cmnd: Pointer to scsi_cmnd data structure. * * This routine removes a scsi buffer from head of @hdwq io_buf_list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_scsi_buf - Success **/ static struct lpfc_io_buf * lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, struct scsi_cmnd *cmnd) { struct lpfc_io_buf *lpfc_cmd; struct lpfc_sli4_hdw_queue *qp; struct sli4_sge *sgl; dma_addr_t pdma_phys_fcp_rsp; dma_addr_t pdma_phys_fcp_cmd; uint32_t cpu, idx; int tag; struct fcp_cmd_rsp_buf *tmp = NULL; cpu = raw_smp_processor_id(); if (cmnd && phba->cfg_fcp_io_sched == LPFC_FCP_SCHED_BY_HDWQ) { tag = blk_mq_unique_tag(scsi_cmd_to_rq(cmnd)); idx = blk_mq_unique_tag_to_hwq(tag); } else { idx = phba->sli4_hba.cpu_map[cpu].hdwq; } lpfc_cmd = lpfc_get_io_buf(phba, ndlp, idx, !phba->cfg_xri_rebalancing); if (!lpfc_cmd) { qp = &phba->sli4_hba.hdwq[idx]; qp->empty_io_bufs++; return NULL; } /* Setup key fields in buffer that may have been changed * if other protocols used this buffer. */ lpfc_cmd->cur_iocbq.cmd_flag = LPFC_IO_FCP; lpfc_cmd->prot_seg_cnt = 0; lpfc_cmd->seg_cnt = 0; lpfc_cmd->timeout = 0; lpfc_cmd->flags = 0; lpfc_cmd->start_time = jiffies; lpfc_cmd->waitq = NULL; lpfc_cmd->cpu = cpu; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS lpfc_cmd->prot_data_type = 0; #endif tmp = lpfc_get_cmd_rsp_buf_per_hdwq(phba, lpfc_cmd); if (!tmp) { lpfc_release_io_buf(phba, lpfc_cmd, lpfc_cmd->hdwq); return NULL; } lpfc_cmd->fcp_cmnd = tmp->fcp_cmnd; lpfc_cmd->fcp_rsp = tmp->fcp_rsp; /* * The first two SGEs are the FCP_CMD and FCP_RSP. * The balance are sg list bdes. Initialize the * first two and leave the rest for queuecommand. */ sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; pdma_phys_fcp_cmd = tmp->fcp_cmd_rsp_dma_handle; sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd)); sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd)); sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 0); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd)); sgl++; /* Setup the physical region for the FCP RSP */ pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd); sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp)); sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp)); sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp)); if (lpfc_ndlp_check_qdepth(phba, ndlp)) { atomic_inc(&ndlp->cmd_pending); lpfc_cmd->flags |= LPFC_SBUF_BUMP_QDEPTH; } return lpfc_cmd; } /** * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA * @phba: The HBA for which this call is being executed. * @ndlp: pointer to a node-list data structure. * @cmnd: Pointer to scsi_cmnd data structure. * * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_scsi_buf - Success **/ static struct lpfc_io_buf* lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, struct scsi_cmnd *cmnd) { return phba->lpfc_get_scsi_buf(phba, ndlp, cmnd); } /** * lpfc_release_scsi_buf_s3 - Return a scsi buffer back to hba scsi buf list * @phba: The Hba for which this call is being executed. * @psb: The scsi buffer which is being released. * * This routine releases @psb scsi buffer by adding it to tail of @phba * lpfc_scsi_buf_list list. **/ static void lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_io_buf *psb) { unsigned long iflag = 0; psb->seg_cnt = 0; psb->prot_seg_cnt = 0; spin_lock_irqsave(&phba->scsi_buf_list_put_lock, iflag); psb->pCmd = NULL; psb->cur_iocbq.cmd_flag = LPFC_IO_FCP; list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list_put); spin_unlock_irqrestore(&phba->scsi_buf_list_put_lock, iflag); } /** * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list. * @phba: The Hba for which this call is being executed. * @psb: The scsi buffer which is being released. * * This routine releases @psb scsi buffer by adding it to tail of @hdwq * io_buf_list list. For SLI4 XRI's are tied to the scsi buffer * and cannot be reused for at least RA_TOV amount of time if it was * aborted. **/ static void lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_io_buf *psb) { struct lpfc_sli4_hdw_queue *qp; unsigned long iflag = 0; psb->seg_cnt = 0; psb->prot_seg_cnt = 0; qp = psb->hdwq; if (psb->flags & LPFC_SBUF_XBUSY) { spin_lock_irqsave(&qp->abts_io_buf_list_lock, iflag); if (!phba->cfg_fcp_wait_abts_rsp) psb->pCmd = NULL; list_add_tail(&psb->list, &qp->lpfc_abts_io_buf_list); qp->abts_scsi_io_bufs++; spin_unlock_irqrestore(&qp->abts_io_buf_list_lock, iflag); } else { lpfc_release_io_buf(phba, (struct lpfc_io_buf *)psb, qp); } } /** * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list. * @phba: The Hba for which this call is being executed. * @psb: The scsi buffer which is being released. * * This routine releases @psb scsi buffer by adding it to tail of @phba * lpfc_scsi_buf_list list. **/ static void lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_io_buf *psb) { if ((psb->flags & LPFC_SBUF_BUMP_QDEPTH) && psb->ndlp) atomic_dec(&psb->ndlp->cmd_pending); psb->flags &= ~LPFC_SBUF_BUMP_QDEPTH; phba->lpfc_release_scsi_buf(phba, psb); } /** * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB * @data: A pointer to the immediate command data portion of the IOCB. * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. * * The routine copies the entire FCP command from @fcp_cmnd to @data while * byte swapping the data to big endian format for transmission on the wire. **/ static void lpfc_fcpcmd_to_iocb(u8 *data, struct fcp_cmnd *fcp_cmnd) { int i, j; for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); i += sizeof(uint32_t), j++) { ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); } } /** * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine does the pci dma mapping for scatter-gather list of scsi cmnd * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans * through sg elements and format the bde. This routine also initializes all * IOCB fields which are dependent on scsi command request buffer. * * Return codes: * 1 - Error * 0 - Success **/ static int lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct scatterlist *sgel = NULL; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct ulp_bde64 *bpl = (struct ulp_bde64 *)lpfc_cmd->dma_sgl; struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; dma_addr_t physaddr; uint32_t num_bde = 0; int nseg, datadir = scsi_cmnd->sc_data_direction; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. Start the lpfc command prep by * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first * data bde entry. */ bpl += 2; if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from dma_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), scsi_sg_count(scsi_cmnd), datadir); if (unlikely(!nseg)) return 1; lpfc_cmd->seg_cnt = nseg; if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9064 BLKGRD: %s: Too many sg segments" " from dma_map_sg. Config %d, seg_cnt" " %d\n", __func__, phba->cfg_sg_seg_cnt, lpfc_cmd->seg_cnt); WARN_ON_ONCE(lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt); lpfc_cmd->seg_cnt = 0; scsi_dma_unmap(scsi_cmnd); return 2; } /* * The driver established a maximum scatter-gather segment count * during probe that limits the number of sg elements in any * single scsi command. Just run through the seg_cnt and format * the bde's. * When using SLI-3 the driver will try to fit all the BDEs into * the IOCB. If it can't then the BDEs get added to a BPL as it * does for SLI-2 mode. */ scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { physaddr = sg_dma_address(sgel); if (phba->sli_rev == 3 && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && !(iocbq->cmd_flag & DSS_SECURITY_OP) && nseg <= LPFC_EXT_DATA_BDE_COUNT) { data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; data_bde->tus.f.bdeSize = sg_dma_len(sgel); data_bde->addrLow = putPaddrLow(physaddr); data_bde->addrHigh = putPaddrHigh(physaddr); data_bde++; } else { bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl->tus.f.bdeSize = sg_dma_len(sgel); bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); bpl++; } } } /* * Finish initializing those IOCB fields that are dependent on the * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is * explicitly reinitialized and for SLI-3 the extended bde count is * explicitly reinitialized since all iocb memory resources are reused. */ if (phba->sli_rev == 3 && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && !(iocbq->cmd_flag & DSS_SECURITY_OP)) { if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { /* * The extended IOCB format can only fit 3 BDE or a BPL. * This I/O has more than 3 BDE so the 1st data bde will * be a BPL that is filled in here. */ physaddr = lpfc_cmd->dma_handle; data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; data_bde->tus.f.bdeSize = (num_bde * sizeof(struct ulp_bde64)); physaddr += (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp) + (2 * sizeof(struct ulp_bde64))); data_bde->addrHigh = putPaddrHigh(physaddr); data_bde->addrLow = putPaddrLow(physaddr); /* ebde count includes the response bde and data bpl */ iocb_cmd->unsli3.fcp_ext.ebde_count = 2; } else { /* ebde count includes the response bde and data bdes */ iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); } } else { iocb_cmd->un.fcpi64.bdl.bdeSize = ((num_bde + 2) * sizeof(struct ulp_bde64)); iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); } fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); /* * Due to difference in data length between DIF/non-DIF paths, * we need to set word 4 of IOCB here */ iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); return 0; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS /* Return BG_ERR_INIT if error injection is detected by Initiator */ #define BG_ERR_INIT 0x1 /* Return BG_ERR_TGT if error injection is detected by Target */ #define BG_ERR_TGT 0x2 /* Return BG_ERR_SWAP if swapping CSUM<-->CRC is required for error injection */ #define BG_ERR_SWAP 0x10 /* * Return BG_ERR_CHECK if disabling Guard/Ref/App checking is required for * error injection */ #define BG_ERR_CHECK 0x20 /** * lpfc_bg_err_inject - Determine if we should inject an error * @phba: The Hba for which this call is being executed. * @sc: The SCSI command to examine * @reftag: (out) BlockGuard reference tag for transmitted data * @apptag: (out) BlockGuard application tag for transmitted data * @new_guard: (in) Value to replace CRC with if needed * * Returns BG_ERR_* bit mask or 0 if request ignored **/ static int lpfc_bg_err_inject(struct lpfc_hba *phba, struct scsi_cmnd *sc, uint32_t *reftag, uint16_t *apptag, uint32_t new_guard) { struct scatterlist *sgpe; /* s/g prot entry */ struct lpfc_io_buf *lpfc_cmd = NULL; struct scsi_dif_tuple *src = NULL; struct lpfc_nodelist *ndlp; struct lpfc_rport_data *rdata; uint32_t op = scsi_get_prot_op(sc); uint32_t blksize; uint32_t numblks; u32 lba; int rc = 0; int blockoff = 0; if (op == SCSI_PROT_NORMAL) return 0; sgpe = scsi_prot_sglist(sc); lba = scsi_prot_ref_tag(sc); /* First check if we need to match the LBA */ if (phba->lpfc_injerr_lba != LPFC_INJERR_LBA_OFF) { blksize = scsi_prot_interval(sc); numblks = (scsi_bufflen(sc) + blksize - 1) / blksize; /* Make sure we have the right LBA if one is specified */ if (phba->lpfc_injerr_lba < (u64)lba || (phba->lpfc_injerr_lba >= (u64)(lba + numblks))) return 0; if (sgpe) { blockoff = phba->lpfc_injerr_lba - (u64)lba; numblks = sg_dma_len(sgpe) / sizeof(struct scsi_dif_tuple); if (numblks < blockoff) blockoff = numblks; } } /* Next check if we need to match the remote NPortID or WWPN */ rdata = lpfc_rport_data_from_scsi_device(sc->device); if (rdata && rdata->pnode) { ndlp = rdata->pnode; /* Make sure we have the right NPortID if one is specified */ if (phba->lpfc_injerr_nportid && (phba->lpfc_injerr_nportid != ndlp->nlp_DID)) return 0; /* * Make sure we have the right WWPN if one is specified. * wwn[0] should be a non-zero NAA in a good WWPN. */ if (phba->lpfc_injerr_wwpn.u.wwn[0] && (memcmp(&ndlp->nlp_portname, &phba->lpfc_injerr_wwpn, sizeof(struct lpfc_name)) != 0)) return 0; } /* Setup a ptr to the protection data if the SCSI host provides it */ if (sgpe) { src = (struct scsi_dif_tuple *)sg_virt(sgpe); src += blockoff; lpfc_cmd = (struct lpfc_io_buf *)sc->host_scribble; } /* Should we change the Reference Tag */ if (reftag) { if (phba->lpfc_injerr_wref_cnt) { switch (op) { case SCSI_PROT_WRITE_PASS: if (src) { /* * For WRITE_PASS, force the error * to be sent on the wire. It should * be detected by the Target. * If blockoff != 0 error will be * inserted in middle of the IO. */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9076 BLKGRD: Injecting reftag error: " "write lba x%lx + x%x oldrefTag x%x\n", (unsigned long)lba, blockoff, be32_to_cpu(src->ref_tag)); /* * Save the old ref_tag so we can * restore it on completion. */ if (lpfc_cmd) { lpfc_cmd->prot_data_type = LPFC_INJERR_REFTAG; lpfc_cmd->prot_data_segment = src; lpfc_cmd->prot_data = src->ref_tag; } src->ref_tag = cpu_to_be32(0xDEADBEEF); phba->lpfc_injerr_wref_cnt--; if (phba->lpfc_injerr_wref_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_TGT | BG_ERR_CHECK; break; } fallthrough; case SCSI_PROT_WRITE_INSERT: /* * For WRITE_INSERT, force the error * to be sent on the wire. It should be * detected by the Target. */ /* DEADBEEF will be the reftag on the wire */ *reftag = 0xDEADBEEF; phba->lpfc_injerr_wref_cnt--; if (phba->lpfc_injerr_wref_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_TGT | BG_ERR_CHECK; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9078 BLKGRD: Injecting reftag error: " "write lba x%lx\n", (unsigned long)lba); break; case SCSI_PROT_WRITE_STRIP: /* * For WRITE_STRIP and WRITE_PASS, * force the error on data * being copied from SLI-Host to SLI-Port. */ *reftag = 0xDEADBEEF; phba->lpfc_injerr_wref_cnt--; if (phba->lpfc_injerr_wref_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9077 BLKGRD: Injecting reftag error: " "write lba x%lx\n", (unsigned long)lba); break; } } if (phba->lpfc_injerr_rref_cnt) { switch (op) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_READ_STRIP: case SCSI_PROT_READ_PASS: /* * For READ_STRIP and READ_PASS, force the * error on data being read off the wire. It * should force an IO error to the driver. */ *reftag = 0xDEADBEEF; phba->lpfc_injerr_rref_cnt--; if (phba->lpfc_injerr_rref_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9079 BLKGRD: Injecting reftag error: " "read lba x%lx\n", (unsigned long)lba); break; } } } /* Should we change the Application Tag */ if (apptag) { if (phba->lpfc_injerr_wapp_cnt) { switch (op) { case SCSI_PROT_WRITE_PASS: if (src) { /* * For WRITE_PASS, force the error * to be sent on the wire. It should * be detected by the Target. * If blockoff != 0 error will be * inserted in middle of the IO. */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9080 BLKGRD: Injecting apptag error: " "write lba x%lx + x%x oldappTag x%x\n", (unsigned long)lba, blockoff, be16_to_cpu(src->app_tag)); /* * Save the old app_tag so we can * restore it on completion. */ if (lpfc_cmd) { lpfc_cmd->prot_data_type = LPFC_INJERR_APPTAG; lpfc_cmd->prot_data_segment = src; lpfc_cmd->prot_data = src->app_tag; } src->app_tag = cpu_to_be16(0xDEAD); phba->lpfc_injerr_wapp_cnt--; if (phba->lpfc_injerr_wapp_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_TGT | BG_ERR_CHECK; break; } fallthrough; case SCSI_PROT_WRITE_INSERT: /* * For WRITE_INSERT, force the * error to be sent on the wire. It should be * detected by the Target. */ /* DEAD will be the apptag on the wire */ *apptag = 0xDEAD; phba->lpfc_injerr_wapp_cnt--; if (phba->lpfc_injerr_wapp_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_TGT | BG_ERR_CHECK; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0813 BLKGRD: Injecting apptag error: " "write lba x%lx\n", (unsigned long)lba); break; case SCSI_PROT_WRITE_STRIP: /* * For WRITE_STRIP and WRITE_PASS, * force the error on data * being copied from SLI-Host to SLI-Port. */ *apptag = 0xDEAD; phba->lpfc_injerr_wapp_cnt--; if (phba->lpfc_injerr_wapp_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0812 BLKGRD: Injecting apptag error: " "write lba x%lx\n", (unsigned long)lba); break; } } if (phba->lpfc_injerr_rapp_cnt) { switch (op) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_READ_STRIP: case SCSI_PROT_READ_PASS: /* * For READ_STRIP and READ_PASS, force the * error on data being read off the wire. It * should force an IO error to the driver. */ *apptag = 0xDEAD; phba->lpfc_injerr_rapp_cnt--; if (phba->lpfc_injerr_rapp_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0814 BLKGRD: Injecting apptag error: " "read lba x%lx\n", (unsigned long)lba); break; } } } /* Should we change the Guard Tag */ if (new_guard) { if (phba->lpfc_injerr_wgrd_cnt) { switch (op) { case SCSI_PROT_WRITE_PASS: rc = BG_ERR_CHECK; fallthrough; case SCSI_PROT_WRITE_INSERT: /* * For WRITE_INSERT, force the * error to be sent on the wire. It should be * detected by the Target. */ phba->lpfc_injerr_wgrd_cnt--; if (phba->lpfc_injerr_wgrd_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc |= BG_ERR_TGT | BG_ERR_SWAP; /* Signals the caller to swap CRC->CSUM */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0817 BLKGRD: Injecting guard error: " "write lba x%lx\n", (unsigned long)lba); break; case SCSI_PROT_WRITE_STRIP: /* * For WRITE_STRIP and WRITE_PASS, * force the error on data * being copied from SLI-Host to SLI-Port. */ phba->lpfc_injerr_wgrd_cnt--; if (phba->lpfc_injerr_wgrd_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT | BG_ERR_SWAP; /* Signals the caller to swap CRC->CSUM */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0816 BLKGRD: Injecting guard error: " "write lba x%lx\n", (unsigned long)lba); break; } } if (phba->lpfc_injerr_rgrd_cnt) { switch (op) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_READ_STRIP: case SCSI_PROT_READ_PASS: /* * For READ_STRIP and READ_PASS, force the * error on data being read off the wire. It * should force an IO error to the driver. */ phba->lpfc_injerr_rgrd_cnt--; if (phba->lpfc_injerr_rgrd_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT | BG_ERR_SWAP; /* Signals the caller to swap CRC->CSUM */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0818 BLKGRD: Injecting guard error: " "read lba x%lx\n", (unsigned long)lba); } } } return rc; } #endif /** * lpfc_sc_to_bg_opcodes - Determine the BlockGuard opcodes to be used with * the specified SCSI command. * @phba: The Hba for which this call is being executed. * @sc: The SCSI command to examine * @txop: (out) BlockGuard operation for transmitted data * @rxop: (out) BlockGuard operation for received data * * Returns: zero on success; non-zero if tx and/or rx op cannot be determined * **/ static int lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc, uint8_t *txop, uint8_t *rxop) { uint8_t ret = 0; if (sc->prot_flags & SCSI_PROT_IP_CHECKSUM) { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: *rxop = BG_OP_IN_NODIF_OUT_CSUM; *txop = BG_OP_IN_CSUM_OUT_NODIF; break; case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: *rxop = BG_OP_IN_CRC_OUT_NODIF; *txop = BG_OP_IN_NODIF_OUT_CRC; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: *rxop = BG_OP_IN_CRC_OUT_CSUM; *txop = BG_OP_IN_CSUM_OUT_CRC; break; case SCSI_PROT_NORMAL: default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9063 BLKGRD: Bad op/guard:%d/IP combination\n", scsi_get_prot_op(sc)); ret = 1; break; } } else { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: *rxop = BG_OP_IN_CRC_OUT_NODIF; *txop = BG_OP_IN_NODIF_OUT_CRC; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: *rxop = BG_OP_IN_CRC_OUT_CRC; *txop = BG_OP_IN_CRC_OUT_CRC; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: *rxop = BG_OP_IN_NODIF_OUT_CRC; *txop = BG_OP_IN_CRC_OUT_NODIF; break; case SCSI_PROT_NORMAL: default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9075 BLKGRD: Bad op/guard:%d/CRC combination\n", scsi_get_prot_op(sc)); ret = 1; break; } } return ret; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS /** * lpfc_bg_err_opcodes - reDetermine the BlockGuard opcodes to be used with * the specified SCSI command in order to force a guard tag error. * @phba: The Hba for which this call is being executed. * @sc: The SCSI command to examine * @txop: (out) BlockGuard operation for transmitted data * @rxop: (out) BlockGuard operation for received data * * Returns: zero on success; non-zero if tx and/or rx op cannot be determined * **/ static int lpfc_bg_err_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc, uint8_t *txop, uint8_t *rxop) { if (sc->prot_flags & SCSI_PROT_IP_CHECKSUM) { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: *rxop = BG_OP_IN_NODIF_OUT_CRC; *txop = BG_OP_IN_CRC_OUT_NODIF; break; case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: *rxop = BG_OP_IN_CSUM_OUT_NODIF; *txop = BG_OP_IN_NODIF_OUT_CSUM; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: *rxop = BG_OP_IN_CSUM_OUT_CRC; *txop = BG_OP_IN_CRC_OUT_CSUM; break; case SCSI_PROT_NORMAL: default: break; } } else { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: *rxop = BG_OP_IN_CSUM_OUT_NODIF; *txop = BG_OP_IN_NODIF_OUT_CSUM; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: *rxop = BG_OP_IN_CSUM_OUT_CSUM; *txop = BG_OP_IN_CSUM_OUT_CSUM; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: *rxop = BG_OP_IN_NODIF_OUT_CSUM; *txop = BG_OP_IN_CSUM_OUT_NODIF; break; case SCSI_PROT_NORMAL: default: break; } } return 0; } #endif /** * lpfc_bg_setup_bpl - Setup BlockGuard BPL with no protection data * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * @bpl: pointer to buffer list for protection groups * @datasegcnt: number of segments of data that have been dma mapped * * This function sets up BPL buffer list for protection groups of * type LPFC_PG_TYPE_NO_DIF * * This is usually used when the HBA is instructed to generate * DIFs and insert them into data stream (or strip DIF from * incoming data stream) * * The buffer list consists of just one protection group described * below: * +-------------------------+ * start of prot group --> | PDE_5 | * +-------------------------+ * | PDE_6 | * +-------------------------+ * | Data BDE | * +-------------------------+ * |more Data BDE's ... (opt)| * +-------------------------+ * * * Note: Data s/g buffers have been dma mapped * * Returns the number of BDEs added to the BPL. **/ static int lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct ulp_bde64 *bpl, int datasegcnt) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct lpfc_pde5 *pde5 = NULL; struct lpfc_pde6 *pde6 = NULL; dma_addr_t physaddr; int i = 0, num_bde = 0, status; int datadir = sc->sc_data_direction; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint32_t rc; #endif uint32_t checking = 1; uint32_t reftag; uint8_t txop, rxop; status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); if (status) goto out; /* extract some info from the scsi command for pde*/ reftag = scsi_prot_ref_tag(sc); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1); if (rc) { if (rc & BG_ERR_SWAP) lpfc_bg_err_opcodes(phba, sc, &txop, &rxop); if (rc & BG_ERR_CHECK) checking = 0; } #endif /* setup PDE5 with what we have */ pde5 = (struct lpfc_pde5 *) bpl; memset(pde5, 0, sizeof(struct lpfc_pde5)); bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); /* Endianness conversion if necessary for PDE5 */ pde5->word0 = cpu_to_le32(pde5->word0); pde5->reftag = cpu_to_le32(reftag); /* advance bpl and increment bde count */ num_bde++; bpl++; pde6 = (struct lpfc_pde6 *) bpl; /* setup PDE6 with the rest of the info */ memset(pde6, 0, sizeof(struct lpfc_pde6)); bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); bf_set(pde6_optx, pde6, txop); bf_set(pde6_oprx, pde6, rxop); /* * We only need to check the data on READs, for WRITEs * protection data is automatically generated, not checked. */ if (datadir == DMA_FROM_DEVICE) { if (sc->prot_flags & SCSI_PROT_GUARD_CHECK) bf_set(pde6_ce, pde6, checking); else bf_set(pde6_ce, pde6, 0); if (sc->prot_flags & SCSI_PROT_REF_CHECK) bf_set(pde6_re, pde6, checking); else bf_set(pde6_re, pde6, 0); } bf_set(pde6_ai, pde6, 1); bf_set(pde6_ae, pde6, 0); bf_set(pde6_apptagval, pde6, 0); /* Endianness conversion if necessary for PDE6 */ pde6->word0 = cpu_to_le32(pde6->word0); pde6->word1 = cpu_to_le32(pde6->word1); pde6->word2 = cpu_to_le32(pde6->word2); /* advance bpl and increment bde count */ num_bde++; bpl++; /* assumption: caller has already run dma_map_sg on command data */ scsi_for_each_sg(sc, sgde, datasegcnt, i) { physaddr = sg_dma_address(sgde); bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); bpl->tus.f.bdeSize = sg_dma_len(sgde); if (datadir == DMA_TO_DEVICE) bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; else bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl++; num_bde++; } out: return num_bde; } /** * lpfc_bg_setup_bpl_prot - Setup BlockGuard BPL with protection data * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * @bpl: pointer to buffer list for protection groups * @datacnt: number of segments of data that have been dma mapped * @protcnt: number of segment of protection data that have been dma mapped * * This function sets up BPL buffer list for protection groups of * type LPFC_PG_TYPE_DIF * * This is usually used when DIFs are in their own buffers, * separate from the data. The HBA can then by instructed * to place the DIFs in the outgoing stream. For read operations, * The HBA could extract the DIFs and place it in DIF buffers. * * The buffer list for this type consists of one or more of the * protection groups described below: * +-------------------------+ * start of first prot group --> | PDE_5 | * +-------------------------+ * | PDE_6 | * +-------------------------+ * | PDE_7 (Prot BDE) | * +-------------------------+ * | Data BDE | * +-------------------------+ * |more Data BDE's ... (opt)| * +-------------------------+ * start of new prot group --> | PDE_5 | * +-------------------------+ * | ... | * +-------------------------+ * * Note: It is assumed that both data and protection s/g buffers have been * mapped for DMA * * Returns the number of BDEs added to the BPL. **/ static int lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct ulp_bde64 *bpl, int datacnt, int protcnt) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct scatterlist *sgpe = NULL; /* s/g prot entry */ struct lpfc_pde5 *pde5 = NULL; struct lpfc_pde6 *pde6 = NULL; struct lpfc_pde7 *pde7 = NULL; dma_addr_t dataphysaddr, protphysaddr; unsigned short curr_prot = 0; unsigned int split_offset; unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder; unsigned int protgrp_blks, protgrp_bytes; unsigned int remainder, subtotal; int status; int datadir = sc->sc_data_direction; unsigned char pgdone = 0, alldone = 0; unsigned blksize; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint32_t rc; #endif uint32_t checking = 1; uint32_t reftag; uint8_t txop, rxop; int num_bde = 0; sgpe = scsi_prot_sglist(sc); sgde = scsi_sglist(sc); if (!sgpe || !sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9020 Invalid s/g entry: data=x%px prot=x%px\n", sgpe, sgde); return 0; } status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); if (status) goto out; /* extract some info from the scsi command */ blksize = scsi_prot_interval(sc); reftag = scsi_prot_ref_tag(sc); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1); if (rc) { if (rc & BG_ERR_SWAP) lpfc_bg_err_opcodes(phba, sc, &txop, &rxop); if (rc & BG_ERR_CHECK) checking = 0; } #endif split_offset = 0; do { /* Check to see if we ran out of space */ if (num_bde >= (phba->cfg_total_seg_cnt - 2)) return num_bde + 3; /* setup PDE5 with what we have */ pde5 = (struct lpfc_pde5 *) bpl; memset(pde5, 0, sizeof(struct lpfc_pde5)); bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); /* Endianness conversion if necessary for PDE5 */ pde5->word0 = cpu_to_le32(pde5->word0); pde5->reftag = cpu_to_le32(reftag); /* advance bpl and increment bde count */ num_bde++; bpl++; pde6 = (struct lpfc_pde6 *) bpl; /* setup PDE6 with the rest of the info */ memset(pde6, 0, sizeof(struct lpfc_pde6)); bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); bf_set(pde6_optx, pde6, txop); bf_set(pde6_oprx, pde6, rxop); if (sc->prot_flags & SCSI_PROT_GUARD_CHECK) bf_set(pde6_ce, pde6, checking); else bf_set(pde6_ce, pde6, 0); if (sc->prot_flags & SCSI_PROT_REF_CHECK) bf_set(pde6_re, pde6, checking); else bf_set(pde6_re, pde6, 0); bf_set(pde6_ai, pde6, 1); bf_set(pde6_ae, pde6, 0); bf_set(pde6_apptagval, pde6, 0); /* Endianness conversion if necessary for PDE6 */ pde6->word0 = cpu_to_le32(pde6->word0); pde6->word1 = cpu_to_le32(pde6->word1); pde6->word2 = cpu_to_le32(pde6->word2); /* advance bpl and increment bde count */ num_bde++; bpl++; /* setup the first BDE that points to protection buffer */ protphysaddr = sg_dma_address(sgpe) + protgroup_offset; protgroup_len = sg_dma_len(sgpe) - protgroup_offset; /* must be integer multiple of the DIF block length */ BUG_ON(protgroup_len % 8); pde7 = (struct lpfc_pde7 *) bpl; memset(pde7, 0, sizeof(struct lpfc_pde7)); bf_set(pde7_type, pde7, LPFC_PDE7_DESCRIPTOR); pde7->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr)); pde7->addrLow = le32_to_cpu(putPaddrLow(protphysaddr)); protgrp_blks = protgroup_len / 8; protgrp_bytes = protgrp_blks * blksize; /* check if this pde is crossing the 4K boundary; if so split */ if ((pde7->addrLow & 0xfff) + protgroup_len > 0x1000) { protgroup_remainder = 0x1000 - (pde7->addrLow & 0xfff); protgroup_offset += protgroup_remainder; protgrp_blks = protgroup_remainder / 8; protgrp_bytes = protgrp_blks * blksize; } else { protgroup_offset = 0; curr_prot++; } num_bde++; /* setup BDE's for data blocks associated with DIF data */ pgdone = 0; subtotal = 0; /* total bytes processed for current prot grp */ while (!pgdone) { /* Check to see if we ran out of space */ if (num_bde >= phba->cfg_total_seg_cnt) return num_bde + 1; if (!sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9065 BLKGRD:%s Invalid data segment\n", __func__); return 0; } bpl++; dataphysaddr = sg_dma_address(sgde) + split_offset; bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); remainder = sg_dma_len(sgde) - split_offset; if ((subtotal + remainder) <= protgrp_bytes) { /* we can use this whole buffer */ bpl->tus.f.bdeSize = remainder; split_offset = 0; if ((subtotal + remainder) == protgrp_bytes) pgdone = 1; } else { /* must split this buffer with next prot grp */ bpl->tus.f.bdeSize = protgrp_bytes - subtotal; split_offset += bpl->tus.f.bdeSize; } subtotal += bpl->tus.f.bdeSize; if (datadir == DMA_TO_DEVICE) bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; else bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; bpl->tus.w = le32_to_cpu(bpl->tus.w); num_bde++; if (split_offset) break; /* Move to the next s/g segment if possible */ sgde = sg_next(sgde); } if (protgroup_offset) { /* update the reference tag */ reftag += protgrp_blks; bpl++; continue; } /* are we done ? */ if (curr_prot == protcnt) { alldone = 1; } else if (curr_prot < protcnt) { /* advance to next prot buffer */ sgpe = sg_next(sgpe); bpl++; /* update the reference tag */ reftag += protgrp_blks; } else { /* if we're here, we have a bug */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9054 BLKGRD: bug in %s\n", __func__); } } while (!alldone); out: return num_bde; } /** * lpfc_bg_setup_sgl - Setup BlockGuard SGL with no protection data * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * @sgl: pointer to buffer list for protection groups * @datasegcnt: number of segments of data that have been dma mapped * @lpfc_cmd: lpfc scsi command object pointer. * * This function sets up SGL buffer list for protection groups of * type LPFC_PG_TYPE_NO_DIF * * This is usually used when the HBA is instructed to generate * DIFs and insert them into data stream (or strip DIF from * incoming data stream) * * The buffer list consists of just one protection group described * below: * +-------------------------+ * start of prot group --> | DI_SEED | * +-------------------------+ * | Data SGE | * +-------------------------+ * |more Data SGE's ... (opt)| * +-------------------------+ * * * Note: Data s/g buffers have been dma mapped * * Returns the number of SGEs added to the SGL. **/ static int lpfc_bg_setup_sgl(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct sli4_sge *sgl, int datasegcnt, struct lpfc_io_buf *lpfc_cmd) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct sli4_sge_diseed *diseed = NULL; dma_addr_t physaddr; int i = 0, num_sge = 0, status; uint32_t reftag; uint8_t txop, rxop; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint32_t rc; #endif uint32_t checking = 1; uint32_t dma_len; uint32_t dma_offset = 0; struct sli4_hybrid_sgl *sgl_xtra = NULL; int j; bool lsp_just_set = false; status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); if (status) goto out; /* extract some info from the scsi command for pde*/ reftag = scsi_prot_ref_tag(sc); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1); if (rc) { if (rc & BG_ERR_SWAP) lpfc_bg_err_opcodes(phba, sc, &txop, &rxop); if (rc & BG_ERR_CHECK) checking = 0; } #endif /* setup DISEED with what we have */ diseed = (struct sli4_sge_diseed *) sgl; memset(diseed, 0, sizeof(struct sli4_sge_diseed)); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DISEED); /* Endianness conversion if necessary */ diseed->ref_tag = cpu_to_le32(reftag); diseed->ref_tag_tran = diseed->ref_tag; /* * We only need to check the data on READs, for WRITEs * protection data is automatically generated, not checked. */ if (sc->sc_data_direction == DMA_FROM_DEVICE) { if (sc->prot_flags & SCSI_PROT_GUARD_CHECK) bf_set(lpfc_sli4_sge_dif_ce, diseed, checking); else bf_set(lpfc_sli4_sge_dif_ce, diseed, 0); if (sc->prot_flags & SCSI_PROT_REF_CHECK) bf_set(lpfc_sli4_sge_dif_re, diseed, checking); else bf_set(lpfc_sli4_sge_dif_re, diseed, 0); } /* setup DISEED with the rest of the info */ bf_set(lpfc_sli4_sge_dif_optx, diseed, txop); bf_set(lpfc_sli4_sge_dif_oprx, diseed, rxop); bf_set(lpfc_sli4_sge_dif_ai, diseed, 1); bf_set(lpfc_sli4_sge_dif_me, diseed, 0); /* Endianness conversion if necessary for DISEED */ diseed->word2 = cpu_to_le32(diseed->word2); diseed->word3 = cpu_to_le32(diseed->word3); /* advance bpl and increment sge count */ num_sge++; sgl++; /* assumption: caller has already run dma_map_sg on command data */ sgde = scsi_sglist(sc); j = 3; for (i = 0; i < datasegcnt; i++) { /* clear it */ sgl->word2 = 0; /* do we need to expand the segment */ if (!lsp_just_set && !((j + 1) % phba->border_sge_num) && ((datasegcnt - 1) != i)) { /* set LSP type */ bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_LSP); sgl_xtra = lpfc_get_sgl_per_hdwq(phba, lpfc_cmd); if (unlikely(!sgl_xtra)) { lpfc_cmd->seg_cnt = 0; return 0; } sgl->addr_lo = cpu_to_le32(putPaddrLow( sgl_xtra->dma_phys_sgl)); sgl->addr_hi = cpu_to_le32(putPaddrHigh( sgl_xtra->dma_phys_sgl)); } else { bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); } if (!(bf_get(lpfc_sli4_sge_type, sgl) & LPFC_SGE_TYPE_LSP)) { if ((datasegcnt - 1) == i) bf_set(lpfc_sli4_sge_last, sgl, 1); physaddr = sg_dma_address(sgde); dma_len = sg_dma_len(sgde); sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(dma_len); dma_offset += dma_len; sgde = sg_next(sgde); sgl++; num_sge++; lsp_just_set = false; } else { sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(phba->cfg_sg_dma_buf_size); sgl = (struct sli4_sge *)sgl_xtra->dma_sgl; i = i - 1; lsp_just_set = true; } j++; } out: return num_sge; } /** * lpfc_bg_setup_sgl_prot - Setup BlockGuard SGL with protection data * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * @sgl: pointer to buffer list for protection groups * @datacnt: number of segments of data that have been dma mapped * @protcnt: number of segment of protection data that have been dma mapped * @lpfc_cmd: lpfc scsi command object pointer. * * This function sets up SGL buffer list for protection groups of * type LPFC_PG_TYPE_DIF * * This is usually used when DIFs are in their own buffers, * separate from the data. The HBA can then by instructed * to place the DIFs in the outgoing stream. For read operations, * The HBA could extract the DIFs and place it in DIF buffers. * * The buffer list for this type consists of one or more of the * protection groups described below: * +-------------------------+ * start of first prot group --> | DISEED | * +-------------------------+ * | DIF (Prot SGE) | * +-------------------------+ * | Data SGE | * +-------------------------+ * |more Data SGE's ... (opt)| * +-------------------------+ * start of new prot group --> | DISEED | * +-------------------------+ * | ... | * +-------------------------+ * * Note: It is assumed that both data and protection s/g buffers have been * mapped for DMA * * Returns the number of SGEs added to the SGL. **/ static int lpfc_bg_setup_sgl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct sli4_sge *sgl, int datacnt, int protcnt, struct lpfc_io_buf *lpfc_cmd) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct scatterlist *sgpe = NULL; /* s/g prot entry */ struct sli4_sge_diseed *diseed = NULL; dma_addr_t dataphysaddr, protphysaddr; unsigned short curr_prot = 0; unsigned int split_offset; unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder; unsigned int protgrp_blks, protgrp_bytes; unsigned int remainder, subtotal; int status; unsigned char pgdone = 0, alldone = 0; unsigned blksize; uint32_t reftag; uint8_t txop, rxop; uint32_t dma_len; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint32_t rc; #endif uint32_t checking = 1; uint32_t dma_offset = 0; int num_sge = 0, j = 2; struct sli4_hybrid_sgl *sgl_xtra = NULL; sgpe = scsi_prot_sglist(sc); sgde = scsi_sglist(sc); if (!sgpe || !sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9082 Invalid s/g entry: data=x%px prot=x%px\n", sgpe, sgde); return 0; } status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); if (status) goto out; /* extract some info from the scsi command */ blksize = scsi_prot_interval(sc); reftag = scsi_prot_ref_tag(sc); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1); if (rc) { if (rc & BG_ERR_SWAP) lpfc_bg_err_opcodes(phba, sc, &txop, &rxop); if (rc & BG_ERR_CHECK) checking = 0; } #endif split_offset = 0; do { /* Check to see if we ran out of space */ if ((num_sge >= (phba->cfg_total_seg_cnt - 2)) && !(phba->cfg_xpsgl)) return num_sge + 3; /* DISEED and DIF have to be together */ if (!((j + 1) % phba->border_sge_num) || !((j + 2) % phba->border_sge_num) || !((j + 3) % phba->border_sge_num)) { sgl->word2 = 0; /* set LSP type */ bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_LSP); sgl_xtra = lpfc_get_sgl_per_hdwq(phba, lpfc_cmd); if (unlikely(!sgl_xtra)) { goto out; } else { sgl->addr_lo = cpu_to_le32(putPaddrLow( sgl_xtra->dma_phys_sgl)); sgl->addr_hi = cpu_to_le32(putPaddrHigh( sgl_xtra->dma_phys_sgl)); } sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(phba->cfg_sg_dma_buf_size); sgl = (struct sli4_sge *)sgl_xtra->dma_sgl; j = 0; } /* setup DISEED with what we have */ diseed = (struct sli4_sge_diseed *) sgl; memset(diseed, 0, sizeof(struct sli4_sge_diseed)); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DISEED); /* Endianness conversion if necessary */ diseed->ref_tag = cpu_to_le32(reftag); diseed->ref_tag_tran = diseed->ref_tag; if (sc->prot_flags & SCSI_PROT_GUARD_CHECK) { bf_set(lpfc_sli4_sge_dif_ce, diseed, checking); } else { bf_set(lpfc_sli4_sge_dif_ce, diseed, 0); /* * When in this mode, the hardware will replace * the guard tag from the host with a * newly generated good CRC for the wire. * Switch to raw mode here to avoid this * behavior. What the host sends gets put on the wire. */ if (txop == BG_OP_IN_CRC_OUT_CRC) { txop = BG_OP_RAW_MODE; rxop = BG_OP_RAW_MODE; } } if (sc->prot_flags & SCSI_PROT_REF_CHECK) bf_set(lpfc_sli4_sge_dif_re, diseed, checking); else bf_set(lpfc_sli4_sge_dif_re, diseed, 0); /* setup DISEED with the rest of the info */ bf_set(lpfc_sli4_sge_dif_optx, diseed, txop); bf_set(lpfc_sli4_sge_dif_oprx, diseed, rxop); bf_set(lpfc_sli4_sge_dif_ai, diseed, 1); bf_set(lpfc_sli4_sge_dif_me, diseed, 0); /* Endianness conversion if necessary for DISEED */ diseed->word2 = cpu_to_le32(diseed->word2); diseed->word3 = cpu_to_le32(diseed->word3); /* advance sgl and increment bde count */ num_sge++; sgl++; j++; /* setup the first BDE that points to protection buffer */ protphysaddr = sg_dma_address(sgpe) + protgroup_offset; protgroup_len = sg_dma_len(sgpe) - protgroup_offset; /* must be integer multiple of the DIF block length */ BUG_ON(protgroup_len % 8); /* Now setup DIF SGE */ sgl->word2 = 0; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DIF); sgl->addr_hi = le32_to_cpu(putPaddrHigh(protphysaddr)); sgl->addr_lo = le32_to_cpu(putPaddrLow(protphysaddr)); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = 0; protgrp_blks = protgroup_len / 8; protgrp_bytes = protgrp_blks * blksize; /* check if DIF SGE is crossing the 4K boundary; if so split */ if ((sgl->addr_lo & 0xfff) + protgroup_len > 0x1000) { protgroup_remainder = 0x1000 - (sgl->addr_lo & 0xfff); protgroup_offset += protgroup_remainder; protgrp_blks = protgroup_remainder / 8; protgrp_bytes = protgrp_blks * blksize; } else { protgroup_offset = 0; curr_prot++; } num_sge++; /* setup SGE's for data blocks associated with DIF data */ pgdone = 0; subtotal = 0; /* total bytes processed for current prot grp */ sgl++; j++; while (!pgdone) { /* Check to see if we ran out of space */ if ((num_sge >= phba->cfg_total_seg_cnt) && !phba->cfg_xpsgl) return num_sge + 1; if (!sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9086 BLKGRD:%s Invalid data segment\n", __func__); return 0; } if (!((j + 1) % phba->border_sge_num)) { sgl->word2 = 0; /* set LSP type */ bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_LSP); sgl_xtra = lpfc_get_sgl_per_hdwq(phba, lpfc_cmd); if (unlikely(!sgl_xtra)) { goto out; } else { sgl->addr_lo = cpu_to_le32( putPaddrLow(sgl_xtra->dma_phys_sgl)); sgl->addr_hi = cpu_to_le32( putPaddrHigh(sgl_xtra->dma_phys_sgl)); } sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32( phba->cfg_sg_dma_buf_size); sgl = (struct sli4_sge *)sgl_xtra->dma_sgl; } else { dataphysaddr = sg_dma_address(sgde) + split_offset; remainder = sg_dma_len(sgde) - split_offset; if ((subtotal + remainder) <= protgrp_bytes) { /* we can use this whole buffer */ dma_len = remainder; split_offset = 0; if ((subtotal + remainder) == protgrp_bytes) pgdone = 1; } else { /* must split this buffer with next * prot grp */ dma_len = protgrp_bytes - subtotal; split_offset += dma_len; } subtotal += dma_len; sgl->word2 = 0; sgl->addr_lo = cpu_to_le32(putPaddrLow( dataphysaddr)); sgl->addr_hi = cpu_to_le32(putPaddrHigh( dataphysaddr)); bf_set(lpfc_sli4_sge_last, sgl, 0); bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); sgl->sge_len = cpu_to_le32(dma_len); dma_offset += dma_len; num_sge++; if (split_offset) { sgl++; j++; break; } /* Move to the next s/g segment if possible */ sgde = sg_next(sgde); sgl++; } j++; } if (protgroup_offset) { /* update the reference tag */ reftag += protgrp_blks; continue; } /* are we done ? */ if (curr_prot == protcnt) { /* mark the last SGL */ sgl--; bf_set(lpfc_sli4_sge_last, sgl, 1); alldone = 1; } else if (curr_prot < protcnt) { /* advance to next prot buffer */ sgpe = sg_next(sgpe); /* update the reference tag */ reftag += protgrp_blks; } else { /* if we're here, we have a bug */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9085 BLKGRD: bug in %s\n", __func__); } } while (!alldone); out: return num_sge; } /** * lpfc_prot_group_type - Get prtotection group type of SCSI command * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * * Given a SCSI command that supports DIF, determine composition of protection * groups involved in setting up buffer lists * * Returns: Protection group type (with or without DIF) * **/ static int lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) { int ret = LPFC_PG_TYPE_INVALID; unsigned char op = scsi_get_prot_op(sc); switch (op) { case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: ret = LPFC_PG_TYPE_NO_DIF; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: ret = LPFC_PG_TYPE_DIF_BUF; break; default: if (phba) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9021 Unsupported protection op:%d\n", op); break; } return ret; } /** * lpfc_bg_scsi_adjust_dl - Adjust SCSI data length for BlockGuard * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be adjusted. * * Adjust the data length to account for how much data * is actually on the wire. * * returns the adjusted data length **/ static int lpfc_bg_scsi_adjust_dl(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { struct scsi_cmnd *sc = lpfc_cmd->pCmd; int fcpdl; fcpdl = scsi_bufflen(sc); /* Check if there is protection data on the wire */ if (sc->sc_data_direction == DMA_FROM_DEVICE) { /* Read check for protection data */ if (scsi_get_prot_op(sc) == SCSI_PROT_READ_INSERT) return fcpdl; } else { /* Write check for protection data */ if (scsi_get_prot_op(sc) == SCSI_PROT_WRITE_STRIP) return fcpdl; } /* * If we are in DIF Type 1 mode every data block has a 8 byte * DIF (trailer) attached to it. Must ajust FCP data length * to account for the protection data. */ fcpdl += (fcpdl / scsi_prot_interval(sc)) * 8; return fcpdl; } /** * lpfc_bg_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be prep'ed. * * This is the protection/DIF aware version of * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the * two functions eventually, but for now, it's here. * RETURNS 0 - SUCCESS, * 1 - Failed DMA map, retry. * 2 - Invalid scsi cmd or prot-type. Do not rety. **/ static int lpfc_bg_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct ulp_bde64 *bpl = (struct ulp_bde64 *)lpfc_cmd->dma_sgl; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; uint32_t num_bde = 0; int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; int prot_group_type = 0; int fcpdl; int ret = 1; struct lpfc_vport *vport = phba->pport; /* * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd * fcp_rsp regions to the first data bde entry */ bpl += 2; if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from dma_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ datasegcnt = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), scsi_sg_count(scsi_cmnd), datadir); if (unlikely(!datasegcnt)) return 1; lpfc_cmd->seg_cnt = datasegcnt; /* First check if data segment count from SCSI Layer is good */ if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { WARN_ON_ONCE(lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt); ret = 2; goto err; } prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); switch (prot_group_type) { case LPFC_PG_TYPE_NO_DIF: /* Here we need to add a PDE5 and PDE6 to the count */ if ((lpfc_cmd->seg_cnt + 2) > phba->cfg_total_seg_cnt) { ret = 2; goto err; } num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, datasegcnt); /* we should have 2 or more entries in buffer list */ if (num_bde < 2) { ret = 2; goto err; } break; case LPFC_PG_TYPE_DIF_BUF: /* * This type indicates that protection buffers are * passed to the driver, so that needs to be prepared * for DMA */ protsegcnt = dma_map_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), datadir); if (unlikely(!protsegcnt)) { scsi_dma_unmap(scsi_cmnd); return 1; } lpfc_cmd->prot_seg_cnt = protsegcnt; /* * There is a minimun of 4 BPLs used for every * protection data segment. */ if ((lpfc_cmd->prot_seg_cnt * 4) > (phba->cfg_total_seg_cnt - 2)) { ret = 2; goto err; } num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, datasegcnt, protsegcnt); /* we should have 3 or more entries in buffer list */ if ((num_bde < 3) || (num_bde > phba->cfg_total_seg_cnt)) { ret = 2; goto err; } break; case LPFC_PG_TYPE_INVALID: default: scsi_dma_unmap(scsi_cmnd); lpfc_cmd->seg_cnt = 0; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9022 Unexpected protection group %i\n", prot_group_type); return 2; } } /* * Finish initializing those IOCB fields that are dependent on the * scsi_cmnd request_buffer. Note that the bdeSize is explicitly * reinitialized since all iocb memory resources are used many times * for transmit, receive, and continuation bpl's. */ iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); iocb_cmd->ulpBdeCount = 1; iocb_cmd->ulpLe = 1; fcpdl = lpfc_bg_scsi_adjust_dl(phba, lpfc_cmd); fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); /* * Due to difference in data length between DIF/non-DIF paths, * we need to set word 4 of IOCB here */ iocb_cmd->un.fcpi.fcpi_parm = fcpdl; /* * For First burst, we may need to adjust the initial transfer * length for DIF */ if (iocb_cmd->un.fcpi.fcpi_XRdy && (fcpdl < vport->cfg_first_burst_size)) iocb_cmd->un.fcpi.fcpi_XRdy = fcpdl; return 0; err: if (lpfc_cmd->seg_cnt) scsi_dma_unmap(scsi_cmnd); if (lpfc_cmd->prot_seg_cnt) dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), scsi_cmnd->sc_data_direction); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9023 Cannot setup S/G List for HBA" "IO segs %d/%d BPL %d SCSI %d: %d %d\n", lpfc_cmd->seg_cnt, lpfc_cmd->prot_seg_cnt, phba->cfg_total_seg_cnt, phba->cfg_sg_seg_cnt, prot_group_type, num_bde); lpfc_cmd->seg_cnt = 0; lpfc_cmd->prot_seg_cnt = 0; return ret; } /* * This function calcuates the T10 DIF guard tag * on the specified data using a CRC algorithmn * using crc_t10dif. */ static uint16_t lpfc_bg_crc(uint8_t *data, int count) { uint16_t crc = 0; uint16_t x; crc = crc_t10dif(data, count); x = cpu_to_be16(crc); return x; } /* * This function calcuates the T10 DIF guard tag * on the specified data using a CSUM algorithmn * using ip_compute_csum. */ static uint16_t lpfc_bg_csum(uint8_t *data, int count) { uint16_t ret; ret = ip_compute_csum(data, count); return ret; } /* * This function examines the protection data to try to determine * what type of T10-DIF error occurred. */ static void lpfc_calc_bg_err(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { struct scatterlist *sgpe; /* s/g prot entry */ struct scatterlist *sgde; /* s/g data entry */ struct scsi_cmnd *cmd = lpfc_cmd->pCmd; struct scsi_dif_tuple *src = NULL; uint8_t *data_src = NULL; uint16_t guard_tag; uint16_t start_app_tag, app_tag; uint32_t start_ref_tag, ref_tag; int prot, protsegcnt; int err_type, len, data_len; int chk_ref, chk_app, chk_guard; uint16_t sum; unsigned blksize; err_type = BGS_GUARD_ERR_MASK; sum = 0; guard_tag = 0; /* First check to see if there is protection data to examine */ prot = scsi_get_prot_op(cmd); if ((prot == SCSI_PROT_READ_STRIP) || (prot == SCSI_PROT_WRITE_INSERT) || (prot == SCSI_PROT_NORMAL)) goto out; /* Currently the driver just supports ref_tag and guard_tag checking */ chk_ref = 1; chk_app = 0; chk_guard = 0; /* Setup a ptr to the protection data provided by the SCSI host */ sgpe = scsi_prot_sglist(cmd); protsegcnt = lpfc_cmd->prot_seg_cnt; if (sgpe && protsegcnt) { /* * We will only try to verify guard tag if the segment * data length is a multiple of the blksize. */ sgde = scsi_sglist(cmd); blksize = scsi_prot_interval(cmd); data_src = (uint8_t *)sg_virt(sgde); data_len = sgde->length; if ((data_len & (blksize - 1)) == 0) chk_guard = 1; src = (struct scsi_dif_tuple *)sg_virt(sgpe); start_ref_tag = scsi_prot_ref_tag(cmd); start_app_tag = src->app_tag; len = sgpe->length; while (src && protsegcnt) { while (len) { /* * First check to see if a protection data * check is valid */ if ((src->ref_tag == T10_PI_REF_ESCAPE) || (src->app_tag == T10_PI_APP_ESCAPE)) { start_ref_tag++; goto skipit; } /* First Guard Tag checking */ if (chk_guard) { guard_tag = src->guard_tag; if (cmd->prot_flags & SCSI_PROT_IP_CHECKSUM) sum = lpfc_bg_csum(data_src, blksize); else sum = lpfc_bg_crc(data_src, blksize); if ((guard_tag != sum)) { err_type = BGS_GUARD_ERR_MASK; goto out; } } /* Reference Tag checking */ ref_tag = be32_to_cpu(src->ref_tag); if (chk_ref && (ref_tag != start_ref_tag)) { err_type = BGS_REFTAG_ERR_MASK; goto out; } start_ref_tag++; /* App Tag checking */ app_tag = src->app_tag; if (chk_app && (app_tag != start_app_tag)) { err_type = BGS_APPTAG_ERR_MASK; goto out; } skipit: len -= sizeof(struct scsi_dif_tuple); if (len < 0) len = 0; src++; data_src += blksize; data_len -= blksize; /* * Are we at the end of the Data segment? * The data segment is only used for Guard * tag checking. */ if (chk_guard && (data_len == 0)) { chk_guard = 0; sgde = sg_next(sgde); if (!sgde) goto out; data_src = (uint8_t *)sg_virt(sgde); data_len = sgde->length; if ((data_len & (blksize - 1)) == 0) chk_guard = 1; } } /* Goto the next Protection data segment */ sgpe = sg_next(sgpe); if (sgpe) { src = (struct scsi_dif_tuple *)sg_virt(sgpe); len = sgpe->length; } else { src = NULL; } protsegcnt--; } } out: if (err_type == BGS_GUARD_ERR_MASK) { scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x1); set_host_byte(cmd, DID_ABORT); phba->bg_guard_err_cnt++; lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9069 BLKGRD: reftag %x grd_tag err %x != %x\n", scsi_prot_ref_tag(cmd), sum, guard_tag); } else if (err_type == BGS_REFTAG_ERR_MASK) { scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x3); set_host_byte(cmd, DID_ABORT); phba->bg_reftag_err_cnt++; lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9066 BLKGRD: reftag %x ref_tag err %x != %x\n", scsi_prot_ref_tag(cmd), ref_tag, start_ref_tag); } else if (err_type == BGS_APPTAG_ERR_MASK) { scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x2); set_host_byte(cmd, DID_ABORT); phba->bg_apptag_err_cnt++; lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9041 BLKGRD: reftag %x app_tag err %x != %x\n", scsi_prot_ref_tag(cmd), app_tag, start_app_tag); } } /* * This function checks for BlockGuard errors detected by * the HBA. In case of errors, the ASC/ASCQ fields in the * sense buffer will be set accordingly, paired with * ILLEGAL_REQUEST to signal to the kernel that the HBA * detected corruption. * * Returns: * 0 - No error found * 1 - BlockGuard error found * -1 - Internal error (bad profile, ...etc) */ static int lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd, struct lpfc_iocbq *pIocbOut) { struct scsi_cmnd *cmd = lpfc_cmd->pCmd; struct sli3_bg_fields *bgf; int ret = 0; struct lpfc_wcqe_complete *wcqe; u32 status; u32 bghm = 0; u32 bgstat = 0; u64 failing_sector = 0; if (phba->sli_rev == LPFC_SLI_REV4) { wcqe = &pIocbOut->wcqe_cmpl; status = bf_get(lpfc_wcqe_c_status, wcqe); if (status == CQE_STATUS_DI_ERROR) { /* Guard Check failed */ if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) bgstat |= BGS_GUARD_ERR_MASK; /* AppTag Check failed */ if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) bgstat |= BGS_APPTAG_ERR_MASK; /* RefTag Check failed */ if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) bgstat |= BGS_REFTAG_ERR_MASK; /* Check to see if there was any good data before the * error */ if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { bgstat |= BGS_HI_WATER_MARK_PRESENT_MASK; bghm = wcqe->total_data_placed; } /* * Set ALL the error bits to indicate we don't know what * type of error it is. */ if (!bgstat) bgstat |= (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | BGS_GUARD_ERR_MASK); } } else { bgf = &pIocbOut->iocb.unsli3.sli3_bg; bghm = bgf->bghm; bgstat = bgf->bgstat; } if (lpfc_bgs_get_invalid_prof(bgstat)) { cmd->result = DID_ERROR << 16; lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9072 BLKGRD: Invalid BG Profile in cmd " "0x%x reftag 0x%x blk cnt 0x%x " "bgstat=x%x bghm=x%x\n", cmd->cmnd[0], scsi_prot_ref_tag(cmd), scsi_logical_block_count(cmd), bgstat, bghm); ret = (-1); goto out; } if (lpfc_bgs_get_uninit_dif_block(bgstat)) { cmd->result = DID_ERROR << 16; lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9073 BLKGRD: Invalid BG PDIF Block in cmd " "0x%x reftag 0x%x blk cnt 0x%x " "bgstat=x%x bghm=x%x\n", cmd->cmnd[0], scsi_prot_ref_tag(cmd), scsi_logical_block_count(cmd), bgstat, bghm); ret = (-1); goto out; } if (lpfc_bgs_get_guard_err(bgstat)) { ret = 1; scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x1); set_host_byte(cmd, DID_ABORT); phba->bg_guard_err_cnt++; lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9055 BLKGRD: Guard Tag error in cmd " "0x%x reftag 0x%x blk cnt 0x%x " "bgstat=x%x bghm=x%x\n", cmd->cmnd[0], scsi_prot_ref_tag(cmd), scsi_logical_block_count(cmd), bgstat, bghm); } if (lpfc_bgs_get_reftag_err(bgstat)) { ret = 1; scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x3); set_host_byte(cmd, DID_ABORT); phba->bg_reftag_err_cnt++; lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9056 BLKGRD: Ref Tag error in cmd " "0x%x reftag 0x%x blk cnt 0x%x " "bgstat=x%x bghm=x%x\n", cmd->cmnd[0], scsi_prot_ref_tag(cmd), scsi_logical_block_count(cmd), bgstat, bghm); } if (lpfc_bgs_get_apptag_err(bgstat)) { ret = 1; scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x2); set_host_byte(cmd, DID_ABORT); phba->bg_apptag_err_cnt++; lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9061 BLKGRD: App Tag error in cmd " "0x%x reftag 0x%x blk cnt 0x%x " "bgstat=x%x bghm=x%x\n", cmd->cmnd[0], scsi_prot_ref_tag(cmd), scsi_logical_block_count(cmd), bgstat, bghm); } if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { /* * setup sense data descriptor 0 per SPC-4 as an information * field, and put the failing LBA in it. * This code assumes there was also a guard/app/ref tag error * indication. */ cmd->sense_buffer[7] = 0xc; /* Additional sense length */ cmd->sense_buffer[8] = 0; /* Information descriptor type */ cmd->sense_buffer[9] = 0xa; /* Additional descriptor length */ cmd->sense_buffer[10] = 0x80; /* Validity bit */ /* bghm is a "on the wire" FC frame based count */ switch (scsi_get_prot_op(cmd)) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: bghm /= cmd->device->sector_size; break; case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: bghm /= (cmd->device->sector_size + sizeof(struct scsi_dif_tuple)); break; } failing_sector = scsi_get_lba(cmd); failing_sector += bghm; /* Descriptor Information */ put_unaligned_be64(failing_sector, &cmd->sense_buffer[12]); } if (!ret) { /* No error was reported - problem in FW? */ lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG, "9057 BLKGRD: Unknown error in cmd " "0x%x reftag 0x%x blk cnt 0x%x " "bgstat=x%x bghm=x%x\n", cmd->cmnd[0], scsi_prot_ref_tag(cmd), scsi_logical_block_count(cmd), bgstat, bghm); /* Calculate what type of error it was */ lpfc_calc_bg_err(phba, lpfc_cmd); } out: return ret; } /** * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine does the pci dma mapping for scatter-gather list of scsi cmnd * field of @lpfc_cmd for device with SLI-4 interface spec. * * Return codes: * 2 - Error - Do not retry * 1 - Error - Retry * 0 - Success **/ static int lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct scatterlist *sgel = NULL; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; struct sli4_sge *first_data_sgl; struct lpfc_iocbq *pwqeq = &lpfc_cmd->cur_iocbq; struct lpfc_vport *vport = phba->pport; union lpfc_wqe128 *wqe = &pwqeq->wqe; dma_addr_t physaddr; uint32_t dma_len; uint32_t dma_offset = 0; int nseg, i, j; struct ulp_bde64 *bde; bool lsp_just_set = false; struct sli4_hybrid_sgl *sgl_xtra = NULL; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. Start the lpfc command prep by * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first * data bde entry. */ if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from dma_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ nseg = scsi_dma_map(scsi_cmnd); if (unlikely(nseg <= 0)) return 1; sgl += 1; /* clear the last flag in the fcp_rsp map entry */ sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 0); sgl->word2 = cpu_to_le32(sgl->word2); sgl += 1; first_data_sgl = sgl; lpfc_cmd->seg_cnt = nseg; if (!phba->cfg_xpsgl && lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9074 BLKGRD:" " %s: Too many sg segments from " "dma_map_sg. Config %d, seg_cnt %d\n", __func__, phba->cfg_sg_seg_cnt, lpfc_cmd->seg_cnt); WARN_ON_ONCE(lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt); lpfc_cmd->seg_cnt = 0; scsi_dma_unmap(scsi_cmnd); return 2; } /* * The driver established a maximum scatter-gather segment count * during probe that limits the number of sg elements in any * single scsi command. Just run through the seg_cnt and format * the sge's. * When using SLI-3 the driver will try to fit all the BDEs into * the IOCB. If it can't then the BDEs get added to a BPL as it * does for SLI-2 mode. */ /* for tracking segment boundaries */ sgel = scsi_sglist(scsi_cmnd); j = 2; for (i = 0; i < nseg; i++) { sgl->word2 = 0; if (nseg == 1) { bf_set(lpfc_sli4_sge_last, sgl, 1); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); } else { bf_set(lpfc_sli4_sge_last, sgl, 0); /* do we need to expand the segment */ if (!lsp_just_set && !((j + 1) % phba->border_sge_num) && ((nseg - 1) != i)) { /* set LSP type */ bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_LSP); sgl_xtra = lpfc_get_sgl_per_hdwq( phba, lpfc_cmd); if (unlikely(!sgl_xtra)) { lpfc_cmd->seg_cnt = 0; scsi_dma_unmap(scsi_cmnd); return 1; } sgl->addr_lo = cpu_to_le32(putPaddrLow( sgl_xtra->dma_phys_sgl)); sgl->addr_hi = cpu_to_le32(putPaddrHigh( sgl_xtra->dma_phys_sgl)); } else { bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); } } if (!(bf_get(lpfc_sli4_sge_type, sgl) & LPFC_SGE_TYPE_LSP)) { if ((nseg - 1) == i) bf_set(lpfc_sli4_sge_last, sgl, 1); physaddr = sg_dma_address(sgel); dma_len = sg_dma_len(sgel); sgl->addr_lo = cpu_to_le32(putPaddrLow( physaddr)); sgl->addr_hi = cpu_to_le32(putPaddrHigh( physaddr)); bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(dma_len); dma_offset += dma_len; sgel = sg_next(sgel); sgl++; lsp_just_set = false; } else { sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32( phba->cfg_sg_dma_buf_size); sgl = (struct sli4_sge *)sgl_xtra->dma_sgl; i = i - 1; lsp_just_set = true; } j++; } /* PBDE support for first data SGE only. * For FCoE, we key off Performance Hints. * For FC, we key off lpfc_enable_pbde. */ if (nseg == 1 && ((phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) || phba->cfg_enable_pbde)) { /* Words 13-15 */ bde = (struct ulp_bde64 *) &wqe->words[13]; bde->addrLow = first_data_sgl->addr_lo; bde->addrHigh = first_data_sgl->addr_hi; bde->tus.f.bdeSize = le32_to_cpu(first_data_sgl->sge_len); bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; bde->tus.w = cpu_to_le32(bde->tus.w); /* Word 11 - set PBDE bit */ bf_set(wqe_pbde, &wqe->generic.wqe_com, 1); } else { memset(&wqe->words[13], 0, (sizeof(uint32_t) * 3)); /* Word 11 - PBDE bit disabled by default template */ } } else { sgl += 1; /* set the last flag in the fcp_rsp map entry */ sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); if ((phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) || phba->cfg_enable_pbde) { bde = (struct ulp_bde64 *) &wqe->words[13]; memset(bde, 0, (sizeof(uint32_t) * 3)); } } /* * Finish initializing those IOCB fields that are dependent on the * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is * explicitly reinitialized. * all iocb memory resources are reused. */ fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); /* Set first-burst provided it was successfully negotiated */ if (!(phba->hba_flag & HBA_FCOE_MODE) && vport->cfg_first_burst_size && scsi_cmnd->sc_data_direction == DMA_TO_DEVICE) { u32 init_len, total_len; total_len = be32_to_cpu(fcp_cmnd->fcpDl); init_len = min(total_len, vport->cfg_first_burst_size); /* Word 4 & 5 */ wqe->fcp_iwrite.initial_xfer_len = init_len; wqe->fcp_iwrite.total_xfer_len = total_len; } else { /* Word 4 */ wqe->fcp_iwrite.total_xfer_len = be32_to_cpu(fcp_cmnd->fcpDl); } /* * If the OAS driver feature is enabled and the lun is enabled for * OAS, set the oas iocb related flags. */ if ((phba->cfg_fof) && ((struct lpfc_device_data *) scsi_cmnd->device->hostdata)->oas_enabled) { lpfc_cmd->cur_iocbq.cmd_flag |= (LPFC_IO_OAS | LPFC_IO_FOF); lpfc_cmd->cur_iocbq.priority = ((struct lpfc_device_data *) scsi_cmnd->device->hostdata)->priority; /* Word 10 */ bf_set(wqe_oas, &wqe->generic.wqe_com, 1); bf_set(wqe_ccpe, &wqe->generic.wqe_com, 1); if (lpfc_cmd->cur_iocbq.priority) bf_set(wqe_ccp, &wqe->generic.wqe_com, (lpfc_cmd->cur_iocbq.priority << 1)); else bf_set(wqe_ccp, &wqe->generic.wqe_com, (phba->cfg_XLanePriority << 1)); } return 0; } /** * lpfc_bg_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This is the protection/DIF aware version of * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the * two functions eventually, but for now, it's here * Return codes: * 2 - Error - Do not retry * 1 - Error - Retry * 0 - Success **/ static int lpfc_bg_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct sli4_sge *sgl = (struct sli4_sge *)(lpfc_cmd->dma_sgl); struct lpfc_iocbq *pwqeq = &lpfc_cmd->cur_iocbq; union lpfc_wqe128 *wqe = &pwqeq->wqe; uint32_t num_sge = 0; int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; int prot_group_type = 0; int fcpdl; int ret = 1; struct lpfc_vport *vport = phba->pport; /* * Start the lpfc command prep by bumping the sgl beyond fcp_cmnd * fcp_rsp regions to the first data sge entry */ if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from dma_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ datasegcnt = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), scsi_sg_count(scsi_cmnd), datadir); if (unlikely(!datasegcnt)) return 1; sgl += 1; /* clear the last flag in the fcp_rsp map entry */ sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 0); sgl->word2 = cpu_to_le32(sgl->word2); sgl += 1; lpfc_cmd->seg_cnt = datasegcnt; /* First check if data segment count from SCSI Layer is good */ if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt && !phba->cfg_xpsgl) { WARN_ON_ONCE(lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt); ret = 2; goto err; } prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); switch (prot_group_type) { case LPFC_PG_TYPE_NO_DIF: /* Here we need to add a DISEED to the count */ if (((lpfc_cmd->seg_cnt + 1) > phba->cfg_total_seg_cnt) && !phba->cfg_xpsgl) { ret = 2; goto err; } num_sge = lpfc_bg_setup_sgl(phba, scsi_cmnd, sgl, datasegcnt, lpfc_cmd); /* we should have 2 or more entries in buffer list */ if (num_sge < 2) { ret = 2; goto err; } break; case LPFC_PG_TYPE_DIF_BUF: /* * This type indicates that protection buffers are * passed to the driver, so that needs to be prepared * for DMA */ protsegcnt = dma_map_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), datadir); if (unlikely(!protsegcnt)) { scsi_dma_unmap(scsi_cmnd); return 1; } lpfc_cmd->prot_seg_cnt = protsegcnt; /* * There is a minimun of 3 SGEs used for every * protection data segment. */ if (((lpfc_cmd->prot_seg_cnt * 3) > (phba->cfg_total_seg_cnt - 2)) && !phba->cfg_xpsgl) { ret = 2; goto err; } num_sge = lpfc_bg_setup_sgl_prot(phba, scsi_cmnd, sgl, datasegcnt, protsegcnt, lpfc_cmd); /* we should have 3 or more entries in buffer list */ if (num_sge < 3 || (num_sge > phba->cfg_total_seg_cnt && !phba->cfg_xpsgl)) { ret = 2; goto err; } break; case LPFC_PG_TYPE_INVALID: default: scsi_dma_unmap(scsi_cmnd); lpfc_cmd->seg_cnt = 0; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9083 Unexpected protection group %i\n", prot_group_type); return 2; } } switch (scsi_get_prot_op(scsi_cmnd)) { case SCSI_PROT_WRITE_STRIP: case SCSI_PROT_READ_STRIP: lpfc_cmd->cur_iocbq.cmd_flag |= LPFC_IO_DIF_STRIP; break; case SCSI_PROT_WRITE_INSERT: case SCSI_PROT_READ_INSERT: lpfc_cmd->cur_iocbq.cmd_flag |= LPFC_IO_DIF_INSERT; break; case SCSI_PROT_WRITE_PASS: case SCSI_PROT_READ_PASS: lpfc_cmd->cur_iocbq.cmd_flag |= LPFC_IO_DIF_PASS; break; } fcpdl = lpfc_bg_scsi_adjust_dl(phba, lpfc_cmd); fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); /* Set first-burst provided it was successfully negotiated */ if (!(phba->hba_flag & HBA_FCOE_MODE) && vport->cfg_first_burst_size && scsi_cmnd->sc_data_direction == DMA_TO_DEVICE) { u32 init_len, total_len; total_len = be32_to_cpu(fcp_cmnd->fcpDl); init_len = min(total_len, vport->cfg_first_burst_size); /* Word 4 & 5 */ wqe->fcp_iwrite.initial_xfer_len = init_len; wqe->fcp_iwrite.total_xfer_len = total_len; } else { /* Word 4 */ wqe->fcp_iwrite.total_xfer_len = be32_to_cpu(fcp_cmnd->fcpDl); } /* * If the OAS driver feature is enabled and the lun is enabled for * OAS, set the oas iocb related flags. */ if ((phba->cfg_fof) && ((struct lpfc_device_data *) scsi_cmnd->device->hostdata)->oas_enabled) { lpfc_cmd->cur_iocbq.cmd_flag |= (LPFC_IO_OAS | LPFC_IO_FOF); /* Word 10 */ bf_set(wqe_oas, &wqe->generic.wqe_com, 1); bf_set(wqe_ccpe, &wqe->generic.wqe_com, 1); bf_set(wqe_ccp, &wqe->generic.wqe_com, (phba->cfg_XLanePriority << 1)); } /* Word 7. DIF Flags */ if (lpfc_cmd->cur_iocbq.cmd_flag & LPFC_IO_DIF_PASS) bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); else if (lpfc_cmd->cur_iocbq.cmd_flag & LPFC_IO_DIF_STRIP) bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); else if (lpfc_cmd->cur_iocbq.cmd_flag & LPFC_IO_DIF_INSERT) bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); lpfc_cmd->cur_iocbq.cmd_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | LPFC_IO_DIF_INSERT); return 0; err: if (lpfc_cmd->seg_cnt) scsi_dma_unmap(scsi_cmnd); if (lpfc_cmd->prot_seg_cnt) dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), scsi_cmnd->sc_data_direction); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9084 Cannot setup S/G List for HBA " "IO segs %d/%d SGL %d SCSI %d: %d %d %d\n", lpfc_cmd->seg_cnt, lpfc_cmd->prot_seg_cnt, phba->cfg_total_seg_cnt, phba->cfg_sg_seg_cnt, prot_group_type, num_sge, ret); lpfc_cmd->seg_cnt = 0; lpfc_cmd->prot_seg_cnt = 0; return ret; } /** * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine wraps the actual DMA mapping function pointer from the * lpfc_hba struct. * * Return codes: * 1 - Error * 0 - Success **/ static inline int lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); } /** * lpfc_bg_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer * using BlockGuard. * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine wraps the actual DMA mapping function pointer from the * lpfc_hba struct. * * Return codes: * 1 - Error * 0 - Success **/ static inline int lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) { return phba->lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); } /** * lpfc_scsi_prep_cmnd_buf - Wrapper function for IOCB/WQE mapping of scsi * buffer * @vport: Pointer to vport object. * @lpfc_cmd: The scsi buffer which is going to be mapped. * @tmo: Timeout value for IO * * This routine initializes IOCB/WQE data structure from scsi command * * Return codes: * 1 - Error * 0 - Success **/ static inline int lpfc_scsi_prep_cmnd_buf(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd, uint8_t tmo) { return vport->phba->lpfc_scsi_prep_cmnd_buf(vport, lpfc_cmd, tmo); } /** * lpfc_send_scsi_error_event - Posts an event when there is SCSI error * @phba: Pointer to hba context object. * @vport: Pointer to vport object. * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. * @fcpi_parm: FCP Initiator parameter. * * This function posts an event when there is a SCSI command reporting * error from the scsi device. **/ static void lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd, uint32_t fcpi_parm) { struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; uint32_t resp_info = fcprsp->rspStatus2; uint32_t scsi_status = fcprsp->rspStatus3; struct lpfc_fast_path_event *fast_path_evt = NULL; struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; unsigned long flags; if (!pnode) return; /* If there is queuefull or busy condition send a scsi event */ if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || (cmnd->result == SAM_STAT_BUSY)) { fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.scsi_evt.event_type = FC_REG_SCSI_EVENT; fast_path_evt->un.scsi_evt.subcategory = (cmnd->result == SAM_STAT_TASK_SET_FULL) ? LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; memcpy(&fast_path_evt->un.scsi_evt.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.scsi_evt.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.check_cond_evt.scsi_event.event_type = FC_REG_SCSI_EVENT; fast_path_evt->un.check_cond_evt.scsi_event.subcategory = LPFC_EVENT_CHECK_COND; fast_path_evt->un.check_cond_evt.scsi_event.lun = cmnd->device->lun; memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fast_path_evt->un.check_cond_evt.sense_key = cmnd->sense_buffer[2] & 0xf; fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && fcpi_parm && ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || ((scsi_status == SAM_STAT_GOOD) && !(resp_info & (RESID_UNDER | RESID_OVER))))) { /* * If status is good or resid does not match with fcp_param and * there is valid fcpi_parm, then there is a read_check error */ fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.read_check_error.header.event_type = FC_REG_FABRIC_EVENT; fast_path_evt->un.read_check_error.header.subcategory = LPFC_EVENT_FCPRDCHKERR; memcpy(&fast_path_evt->un.read_check_error.header.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.read_check_error.header.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fast_path_evt->un.read_check_error.lun = cmnd->device->lun; fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; fast_path_evt->un.read_check_error.fcpiparam = fcpi_parm; } else return; fast_path_evt->vport = vport; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); return; } /** * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev * @phba: The HBA for which this call is being executed. * @psb: The scsi buffer which is going to be un-mapped. * * This routine does DMA un-mapping of scatter gather list of scsi command * field of @lpfc_cmd for device with SLI-3 interface spec. **/ static void lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_io_buf *psb) { /* * There are only two special cases to consider. (1) the scsi command * requested scatter-gather usage or (2) the scsi command allocated * a request buffer, but did not request use_sg. There is a third * case, but it does not require resource deallocation. */ if (psb->seg_cnt > 0) scsi_dma_unmap(psb->pCmd); if (psb->prot_seg_cnt > 0) dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), scsi_prot_sg_count(psb->pCmd), psb->pCmd->sc_data_direction); } /** * lpfc_unblock_requests - allow further commands to be queued. * @phba: pointer to phba object * * For single vport, just call scsi_unblock_requests on physical port. * For multiple vports, send scsi_unblock_requests for all the vports. */ void lpfc_unblock_requests(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; int i; if (phba->sli_rev == LPFC_SLI_REV4 && !phba->sli4_hba.max_cfg_param.vpi_used) { shost = lpfc_shost_from_vport(phba->pport); scsi_unblock_requests(shost); return; } vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); scsi_unblock_requests(shost); } lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_block_requests - prevent further commands from being queued. * @phba: pointer to phba object * * For single vport, just call scsi_block_requests on physical port. * For multiple vports, send scsi_block_requests for all the vports. */ void lpfc_block_requests(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; int i; if (atomic_read(&phba->cmf_stop_io)) return; if (phba->sli_rev == LPFC_SLI_REV4 && !phba->sli4_hba.max_cfg_param.vpi_used) { shost = lpfc_shost_from_vport(phba->pport); scsi_block_requests(shost); return; } vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); scsi_block_requests(shost); } lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_update_cmf_cmpl - Adjust CMF counters for IO completion * @phba: The HBA for which this call is being executed. * @time: The latency of the IO that completed (in ns) * @size: The size of the IO that completed * @shost: SCSI host the IO completed on (NULL for a NVME IO) * * The routine adjusts the various Burst and Bandwidth counters used in * Congestion management and E2E. If time is set to LPFC_CGN_NOT_SENT, * that means the IO was never issued to the HBA, so this routine is * just being called to cleanup the counter from a previous * lpfc_update_cmf_cmd call. */ int lpfc_update_cmf_cmpl(struct lpfc_hba *phba, uint64_t time, uint32_t size, struct Scsi_Host *shost) { struct lpfc_cgn_stat *cgs; if (time != LPFC_CGN_NOT_SENT) { /* lat is ns coming in, save latency in us */ if (time < 1000) time = 1; else time = div_u64(time + 500, 1000); /* round it */ cgs = per_cpu_ptr(phba->cmf_stat, raw_smp_processor_id()); atomic64_add(size, &cgs->rcv_bytes); atomic64_add(time, &cgs->rx_latency); atomic_inc(&cgs->rx_io_cnt); } return 0; } /** * lpfc_update_cmf_cmd - Adjust CMF counters for IO submission * @phba: The HBA for which this call is being executed. * @size: The size of the IO that will be issued * * The routine adjusts the various Burst and Bandwidth counters used in * Congestion management and E2E. */ int lpfc_update_cmf_cmd(struct lpfc_hba *phba, uint32_t size) { uint64_t total; struct lpfc_cgn_stat *cgs; int cpu; /* At this point we are either LPFC_CFG_MANAGED or LPFC_CFG_MONITOR */ if (phba->cmf_active_mode == LPFC_CFG_MANAGED && phba->cmf_max_bytes_per_interval) { total = 0; for_each_present_cpu(cpu) { cgs = per_cpu_ptr(phba->cmf_stat, cpu); total += atomic64_read(&cgs->total_bytes); } if (total >= phba->cmf_max_bytes_per_interval) { if (!atomic_xchg(&phba->cmf_bw_wait, 1)) { lpfc_block_requests(phba); phba->cmf_last_ts = lpfc_calc_cmf_latency(phba); } atomic_inc(&phba->cmf_busy); return -EBUSY; } if (size > atomic_read(&phba->rx_max_read_cnt)) atomic_set(&phba->rx_max_read_cnt, size); } cgs = per_cpu_ptr(phba->cmf_stat, raw_smp_processor_id()); atomic64_add(size, &cgs->total_bytes); return 0; } /** * lpfc_handle_fcp_err - FCP response handler * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: Pointer to lpfc_io_buf data structure. * @fcpi_parm: FCP Initiator parameter. * * This routine is called to process response IOCB with status field * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command * based upon SCSI and FCP error. **/ static void lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd, uint32_t fcpi_parm) { struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; uint32_t resp_info = fcprsp->rspStatus2; uint32_t scsi_status = fcprsp->rspStatus3; uint32_t *lp; uint32_t host_status = DID_OK; uint32_t rsplen = 0; uint32_t fcpDl; uint32_t logit = LOG_FCP | LOG_FCP_ERROR; /* * If this is a task management command, there is no * scsi packet associated with this lpfc_cmd. The driver * consumes it. */ if (fcpcmd->fcpCntl2) { scsi_status = 0; goto out; } if (resp_info & RSP_LEN_VALID) { rsplen = be32_to_cpu(fcprsp->rspRspLen); if (rsplen != 0 && rsplen != 4 && rsplen != 8) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2719 Invalid response length: " "tgt x%x lun x%llx cmnd x%x rsplen " "x%x\n", cmnd->device->id, cmnd->device->lun, cmnd->cmnd[0], rsplen); host_status = DID_ERROR; goto out; } if (fcprsp->rspInfo3 != RSP_NO_FAILURE) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2757 Protocol failure detected during " "processing of FCP I/O op: " "tgt x%x lun x%llx cmnd x%x rspInfo3 x%x\n", cmnd->device->id, cmnd->device->lun, cmnd->cmnd[0], fcprsp->rspInfo3); host_status = DID_ERROR; goto out; } } if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); if (snslen > SCSI_SENSE_BUFFERSIZE) snslen = SCSI_SENSE_BUFFERSIZE; if (resp_info & RSP_LEN_VALID) rsplen = be32_to_cpu(fcprsp->rspRspLen); memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); } lp = (uint32_t *)cmnd->sense_buffer; /* special handling for under run conditions */ if (!scsi_status && (resp_info & RESID_UNDER)) { /* don't log under runs if fcp set... */ if (vport->cfg_log_verbose & LOG_FCP) logit = LOG_FCP_ERROR; /* unless operator says so */ if (vport->cfg_log_verbose & LOG_FCP_UNDER) logit = LOG_FCP_UNDER; } lpfc_printf_vlog(vport, KERN_WARNING, logit, "9024 FCP command x%x failed: x%x SNS x%x x%x " "Data: x%x x%x x%x x%x x%x\n", cmnd->cmnd[0], scsi_status, be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, be32_to_cpu(fcprsp->rspResId), be32_to_cpu(fcprsp->rspSnsLen), be32_to_cpu(fcprsp->rspRspLen), fcprsp->rspInfo3); scsi_set_resid(cmnd, 0); fcpDl = be32_to_cpu(fcpcmd->fcpDl); if (resp_info & RESID_UNDER) { scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP_UNDER, "9025 FCP Underrun, expected %d, " "residual %d Data: x%x x%x x%x\n", fcpDl, scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], cmnd->underflow); /* * If there is an under run, check if under run reported by * storage array is same as the under run reported by HBA. * If this is not same, there is a dropped frame. */ if (fcpi_parm && (scsi_get_resid(cmnd) != fcpi_parm)) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, "9026 FCP Read Check Error " "and Underrun Data: x%x x%x x%x x%x\n", fcpDl, scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0]); scsi_set_resid(cmnd, scsi_bufflen(cmnd)); host_status = DID_ERROR; } /* * The cmnd->underflow is the minimum number of bytes that must * be transferred for this command. Provided a sense condition * is not present, make sure the actual amount transferred is at * least the underflow value or fail. */ if (!(resp_info & SNS_LEN_VALID) && (scsi_status == SAM_STAT_GOOD) && (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) < cmnd->underflow)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "9027 FCP command x%x residual " "underrun converted to error " "Data: x%x x%x x%x\n", cmnd->cmnd[0], scsi_bufflen(cmnd), scsi_get_resid(cmnd), cmnd->underflow); host_status = DID_ERROR; } } else if (resp_info & RESID_OVER) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "9028 FCP command x%x residual overrun error. " "Data: x%x x%x\n", cmnd->cmnd[0], scsi_bufflen(cmnd), scsi_get_resid(cmnd)); host_status = DID_ERROR; /* * Check SLI validation that all the transfer was actually done * (fcpi_parm should be zero). Apply check only to reads. */ } else if (fcpi_parm) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, "9029 FCP %s Check Error Data: " "x%x x%x x%x x%x x%x\n", ((cmnd->sc_data_direction == DMA_FROM_DEVICE) ? "Read" : "Write"), fcpDl, be32_to_cpu(fcprsp->rspResId), fcpi_parm, cmnd->cmnd[0], scsi_status); /* There is some issue with the LPe12000 that causes it * to miscalculate the fcpi_parm and falsely trip this * recovery logic. Detect this case and don't error when true. */ if (fcpi_parm > fcpDl) goto out; switch (scsi_status) { case SAM_STAT_GOOD: case SAM_STAT_CHECK_CONDITION: /* Fabric dropped a data frame. Fail any successful * command in which we detected dropped frames. * A status of good or some check conditions could * be considered a successful command. */ host_status = DID_ERROR; break; } scsi_set_resid(cmnd, scsi_bufflen(cmnd)); } out: cmnd->result = host_status << 16 | scsi_status; lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, fcpi_parm); } /** * lpfc_fcp_io_cmd_wqe_cmpl - Complete a FCP IO * @phba: The hba for which this call is being executed. * @pwqeIn: The command WQE for the scsi cmnd. * @pwqeOut: Pointer to driver response WQE object. * * This routine assigns scsi command result by looking into response WQE * status field appropriately. This routine handles QUEUE FULL condition as * well by ramping down device queue depth. **/ static void lpfc_fcp_io_cmd_wqe_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeIn, struct lpfc_iocbq *pwqeOut) { struct lpfc_io_buf *lpfc_cmd = pwqeIn->io_buf; struct lpfc_wcqe_complete *wcqe = &pwqeOut->wcqe_cmpl; struct lpfc_vport *vport = pwqeIn->vport; struct lpfc_rport_data *rdata; struct lpfc_nodelist *ndlp; struct scsi_cmnd *cmd; unsigned long flags; struct lpfc_fast_path_event *fast_path_evt; struct Scsi_Host *shost; u32 logit = LOG_FCP; u32 idx; u32 lat; u8 wait_xb_clr = 0; /* Sanity check on return of outstanding command */ if (!lpfc_cmd) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "9032 Null lpfc_cmd pointer. No " "release, skip completion\n"); return; } rdata = lpfc_cmd->rdata; ndlp = rdata->pnode; /* Sanity check on return of outstanding command */ cmd = lpfc_cmd->pCmd; if (!cmd) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "9042 I/O completion: Not an active IO\n"); lpfc_release_scsi_buf(phba, lpfc_cmd); return; } /* Guard against abort handler being called at same time */ spin_lock(&lpfc_cmd->buf_lock); idx = lpfc_cmd->cur_iocbq.hba_wqidx; if (phba->sli4_hba.hdwq) phba->sli4_hba.hdwq[idx].scsi_cstat.io_cmpls++; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (unlikely(phba->hdwqstat_on & LPFC_CHECK_SCSI_IO)) this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); #endif shost = cmd->device->host; lpfc_cmd->status = bf_get(lpfc_wcqe_c_status, wcqe); lpfc_cmd->result = (wcqe->parameter & IOERR_PARAM_MASK); lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; if (bf_get(lpfc_wcqe_c_xb, wcqe)) { lpfc_cmd->flags |= LPFC_SBUF_XBUSY; if (phba->cfg_fcp_wait_abts_rsp) wait_xb_clr = 1; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_cmd->prot_data_type) { struct scsi_dif_tuple *src = NULL; src = (struct scsi_dif_tuple *)lpfc_cmd->prot_data_segment; /* * Used to restore any changes to protection * data for error injection. */ switch (lpfc_cmd->prot_data_type) { case LPFC_INJERR_REFTAG: src->ref_tag = lpfc_cmd->prot_data; break; case LPFC_INJERR_APPTAG: src->app_tag = (uint16_t)lpfc_cmd->prot_data; break; case LPFC_INJERR_GUARD: src->guard_tag = (uint16_t)lpfc_cmd->prot_data; break; default: break; } lpfc_cmd->prot_data = 0; lpfc_cmd->prot_data_type = 0; lpfc_cmd->prot_data_segment = NULL; } #endif if (unlikely(lpfc_cmd->status)) { if (lpfc_cmd->status == IOSTAT_FCP_RSP_ERROR && !lpfc_cmd->fcp_rsp->rspStatus3 && (lpfc_cmd->fcp_rsp->rspStatus2 & RESID_UNDER) && !(vport->cfg_log_verbose & LOG_FCP_UNDER)) logit = 0; else logit = LOG_FCP | LOG_FCP_UNDER; lpfc_printf_vlog(vport, KERN_WARNING, logit, "9034 FCP cmd x%x failed <%d/%lld> " "status: x%x result: x%x " "sid: x%x did: x%x oxid: x%x " "Data: x%x x%x x%x\n", cmd->cmnd[0], cmd->device ? cmd->device->id : 0xffff, cmd->device ? cmd->device->lun : 0xffff, lpfc_cmd->status, lpfc_cmd->result, vport->fc_myDID, (ndlp) ? ndlp->nlp_DID : 0, lpfc_cmd->cur_iocbq.sli4_xritag, wcqe->parameter, wcqe->total_data_placed, lpfc_cmd->cur_iocbq.iotag); } switch (lpfc_cmd->status) { case CQE_STATUS_SUCCESS: cmd->result = DID_OK << 16; break; case CQE_STATUS_FCP_RSP_FAILURE: lpfc_handle_fcp_err(vport, lpfc_cmd, pwqeIn->wqe.fcp_iread.total_xfer_len - wcqe->total_data_placed); break; case CQE_STATUS_NPORT_BSY: case CQE_STATUS_FABRIC_BSY: cmd->result = DID_TRANSPORT_DISRUPTED << 16; fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) break; fast_path_evt->un.fabric_evt.event_type = FC_REG_FABRIC_EVENT; fast_path_evt->un.fabric_evt.subcategory = (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; if (ndlp) { memcpy(&fast_path_evt->un.fabric_evt.wwpn, &ndlp->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.fabric_evt.wwnn, &ndlp->nlp_nodename, sizeof(struct lpfc_name)); } fast_path_evt->vport = vport; fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); lpfc_printf_vlog(vport, KERN_WARNING, logit, "9035 Fabric/Node busy FCP cmd x%x failed" " <%d/%lld> " "status: x%x result: x%x " "sid: x%x did: x%x oxid: x%x " "Data: x%x x%x x%x\n", cmd->cmnd[0], cmd->device ? cmd->device->id : 0xffff, cmd->device ? cmd->device->lun : 0xffff, lpfc_cmd->status, lpfc_cmd->result, vport->fc_myDID, (ndlp) ? ndlp->nlp_DID : 0, lpfc_cmd->cur_iocbq.sli4_xritag, wcqe->parameter, wcqe->total_data_placed, lpfc_cmd->cur_iocbq.iocb.ulpIoTag); break; case CQE_STATUS_DI_ERROR: if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) lpfc_cmd->result = IOERR_RX_DMA_FAILED; else lpfc_cmd->result = IOERR_TX_DMA_FAILED; lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_BG, "9048 DI Error xri x%x status x%x DI ext " "status x%x data placed x%x\n", lpfc_cmd->cur_iocbq.sli4_xritag, lpfc_cmd->status, wcqe->parameter, wcqe->total_data_placed); if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { /* BG enabled cmd. Parse BG error */ lpfc_parse_bg_err(phba, lpfc_cmd, pwqeOut); break; } cmd->result = DID_ERROR << 16; lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9040 DI Error on unprotected cmd\n"); break; case CQE_STATUS_REMOTE_STOP: if (ndlp) { /* This I/O was aborted by the target, we don't * know the rxid and because we did not send the * ABTS we cannot generate and RRQ. */ lpfc_set_rrq_active(phba, ndlp, lpfc_cmd->cur_iocbq.sli4_lxritag, 0, 0); } fallthrough; case CQE_STATUS_LOCAL_REJECT: if (lpfc_cmd->result & IOERR_DRVR_MASK) lpfc_cmd->status = IOSTAT_DRIVER_REJECT; if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR || lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR || lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR || lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) { cmd->result = DID_NO_CONNECT << 16; break; } if (lpfc_cmd->result == IOERR_INVALID_RPI || lpfc_cmd->result == IOERR_LINK_DOWN || lpfc_cmd->result == IOERR_NO_RESOURCES || lpfc_cmd->result == IOERR_ABORT_REQUESTED || lpfc_cmd->result == IOERR_RPI_SUSPENDED || lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) { cmd->result = DID_TRANSPORT_DISRUPTED << 16; break; } lpfc_printf_vlog(vport, KERN_WARNING, logit, "9036 Local Reject FCP cmd x%x failed" " <%d/%lld> " "status: x%x result: x%x " "sid: x%x did: x%x oxid: x%x " "Data: x%x x%x x%x\n", cmd->cmnd[0], cmd->device ? cmd->device->id : 0xffff, cmd->device ? cmd->device->lun : 0xffff, lpfc_cmd->status, lpfc_cmd->result, vport->fc_myDID, (ndlp) ? ndlp->nlp_DID : 0, lpfc_cmd->cur_iocbq.sli4_xritag, wcqe->parameter, wcqe->total_data_placed, lpfc_cmd->cur_iocbq.iocb.ulpIoTag); fallthrough; default: cmd->result = DID_ERROR << 16; lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "9037 FCP Completion Error: xri %x " "status x%x result x%x [x%x] " "placed x%x\n", lpfc_cmd->cur_iocbq.sli4_xritag, lpfc_cmd->status, lpfc_cmd->result, wcqe->parameter, wcqe->total_data_placed); } if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { u32 *lp = (u32 *)cmd->sense_buffer; lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "9039 Iodone <%d/%llu> cmd x%px, error " "x%x SNS x%x x%x LBA x%llx Data: x%x x%x\n", cmd->device->id, cmd->device->lun, cmd, cmd->result, *lp, *(lp + 3), (cmd->device->sector_size) ? (u64)scsi_get_lba(cmd) : 0, cmd->retries, scsi_get_resid(cmd)); } if (vport->cfg_max_scsicmpl_time && time_after(jiffies, lpfc_cmd->start_time + msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { spin_lock_irqsave(shost->host_lock, flags); if (ndlp) { if (ndlp->cmd_qdepth > atomic_read(&ndlp->cmd_pending) && (atomic_read(&ndlp->cmd_pending) > LPFC_MIN_TGT_QDEPTH) && (cmd->cmnd[0] == READ_10 || cmd->cmnd[0] == WRITE_10)) ndlp->cmd_qdepth = atomic_read(&ndlp->cmd_pending); ndlp->last_change_time = jiffies; } spin_unlock_irqrestore(shost->host_lock, flags); } lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_cmd->ts_cmd_start) { lpfc_cmd->ts_isr_cmpl = lpfc_cmd->cur_iocbq.isr_timestamp; lpfc_cmd->ts_data_io = ktime_get_ns(); phba->ktime_last_cmd = lpfc_cmd->ts_data_io; lpfc_io_ktime(phba, lpfc_cmd); } #endif if (likely(!wait_xb_clr)) lpfc_cmd->pCmd = NULL; spin_unlock(&lpfc_cmd->buf_lock); /* Check if IO qualified for CMF */ if (phba->cmf_active_mode != LPFC_CFG_OFF && cmd->sc_data_direction == DMA_FROM_DEVICE && (scsi_sg_count(cmd))) { /* Used when calculating average latency */ lat = ktime_get_ns() - lpfc_cmd->rx_cmd_start; lpfc_update_cmf_cmpl(phba, lat, scsi_bufflen(cmd), shost); } if (wait_xb_clr) goto out; /* The sdev is not guaranteed to be valid post scsi_done upcall. */ scsi_done(cmd); /* * If there is an abort thread waiting for command completion * wake up the thread. */ spin_lock(&lpfc_cmd->buf_lock); lpfc_cmd->cur_iocbq.cmd_flag &= ~LPFC_DRIVER_ABORTED; if (lpfc_cmd->waitq) wake_up(lpfc_cmd->waitq); spin_unlock(&lpfc_cmd->buf_lock); out: lpfc_release_scsi_buf(phba, lpfc_cmd); } /** * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine * @phba: The Hba for which this call is being executed. * @pIocbIn: The command IOCBQ for the scsi cmnd. * @pIocbOut: The response IOCBQ for the scsi cmnd. * * This routine assigns scsi command result by looking into response IOCB * status field appropriately. This routine handles QUEUE FULL condition as * well by ramping down device queue depth. **/ static void lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, struct lpfc_iocbq *pIocbOut) { struct lpfc_io_buf *lpfc_cmd = (struct lpfc_io_buf *) pIocbIn->io_buf; struct lpfc_vport *vport = pIocbIn->vport; struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *pnode = rdata->pnode; struct scsi_cmnd *cmd; unsigned long flags; struct lpfc_fast_path_event *fast_path_evt; struct Scsi_Host *shost; int idx; uint32_t logit = LOG_FCP; /* Guard against abort handler being called at same time */ spin_lock(&lpfc_cmd->buf_lock); /* Sanity check on return of outstanding command */ cmd = lpfc_cmd->pCmd; if (!cmd || !phba) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2621 IO completion: Not an active IO\n"); spin_unlock(&lpfc_cmd->buf_lock); return; } idx = lpfc_cmd->cur_iocbq.hba_wqidx; if (phba->sli4_hba.hdwq) phba->sli4_hba.hdwq[idx].scsi_cstat.io_cmpls++; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (unlikely(phba->hdwqstat_on & LPFC_CHECK_SCSI_IO)) this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); #endif shost = cmd->device->host; lpfc_cmd->result = (pIocbOut->iocb.un.ulpWord[4] & IOERR_PARAM_MASK); lpfc_cmd->status = pIocbOut->iocb.ulpStatus; /* pick up SLI4 exchange busy status from HBA */ lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; if (pIocbOut->cmd_flag & LPFC_EXCHANGE_BUSY) lpfc_cmd->flags |= LPFC_SBUF_XBUSY; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_cmd->prot_data_type) { struct scsi_dif_tuple *src = NULL; src = (struct scsi_dif_tuple *)lpfc_cmd->prot_data_segment; /* * Used to restore any changes to protection * data for error injection. */ switch (lpfc_cmd->prot_data_type) { case LPFC_INJERR_REFTAG: src->ref_tag = lpfc_cmd->prot_data; break; case LPFC_INJERR_APPTAG: src->app_tag = (uint16_t)lpfc_cmd->prot_data; break; case LPFC_INJERR_GUARD: src->guard_tag = (uint16_t)lpfc_cmd->prot_data; break; default: break; } lpfc_cmd->prot_data = 0; lpfc_cmd->prot_data_type = 0; lpfc_cmd->prot_data_segment = NULL; } #endif if (unlikely(lpfc_cmd->status)) { if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && (lpfc_cmd->result & IOERR_DRVR_MASK)) lpfc_cmd->status = IOSTAT_DRIVER_REJECT; else if (lpfc_cmd->status >= IOSTAT_CNT) lpfc_cmd->status = IOSTAT_DEFAULT; if (lpfc_cmd->status == IOSTAT_FCP_RSP_ERROR && !lpfc_cmd->fcp_rsp->rspStatus3 && (lpfc_cmd->fcp_rsp->rspStatus2 & RESID_UNDER) && !(vport->cfg_log_verbose & LOG_FCP_UNDER)) logit = 0; else logit = LOG_FCP | LOG_FCP_UNDER; lpfc_printf_vlog(vport, KERN_WARNING, logit, "9030 FCP cmd x%x failed <%d/%lld> " "status: x%x result: x%x " "sid: x%x did: x%x oxid: x%x " "Data: x%x x%x\n", cmd->cmnd[0], cmd->device ? cmd->device->id : 0xffff, cmd->device ? cmd->device->lun : 0xffff, lpfc_cmd->status, lpfc_cmd->result, vport->fc_myDID, (pnode) ? pnode->nlp_DID : 0, phba->sli_rev == LPFC_SLI_REV4 ? lpfc_cmd->cur_iocbq.sli4_xritag : 0xffff, pIocbOut->iocb.ulpContext, lpfc_cmd->cur_iocbq.iocb.ulpIoTag); switch (lpfc_cmd->status) { case IOSTAT_FCP_RSP_ERROR: /* Call FCP RSP handler to determine result */ lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut->iocb.un.fcpi.fcpi_parm); break; case IOSTAT_NPORT_BSY: case IOSTAT_FABRIC_BSY: cmd->result = DID_TRANSPORT_DISRUPTED << 16; fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) break; fast_path_evt->un.fabric_evt.event_type = FC_REG_FABRIC_EVENT; fast_path_evt->un.fabric_evt.subcategory = (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; if (pnode) { memcpy(&fast_path_evt->un.fabric_evt.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.fabric_evt.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); } fast_path_evt->vport = vport; fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); break; case IOSTAT_LOCAL_REJECT: case IOSTAT_REMOTE_STOP: if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR || lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR || lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR || lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) { cmd->result = DID_NO_CONNECT << 16; break; } if (lpfc_cmd->result == IOERR_INVALID_RPI || lpfc_cmd->result == IOERR_NO_RESOURCES || lpfc_cmd->result == IOERR_ABORT_REQUESTED || lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) { cmd->result = DID_TRANSPORT_DISRUPTED << 16; break; } if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || lpfc_cmd->result == IOERR_TX_DMA_FAILED) && pIocbOut->iocb.unsli3.sli3_bg.bgstat) { if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { /* * This is a response for a BG enabled * cmd. Parse BG error */ lpfc_parse_bg_err(phba, lpfc_cmd, pIocbOut); break; } else { lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9031 non-zero BGSTAT " "on unprotected cmd\n"); } } if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP) && (phba->sli_rev == LPFC_SLI_REV4) && pnode) { /* This IO was aborted by the target, we don't * know the rxid and because we did not send the * ABTS we cannot generate and RRQ. */ lpfc_set_rrq_active(phba, pnode, lpfc_cmd->cur_iocbq.sli4_lxritag, 0, 0); } fallthrough; default: cmd->result = DID_ERROR << 16; break; } if (!pnode || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) cmd->result = DID_TRANSPORT_DISRUPTED << 16 | SAM_STAT_BUSY; } else cmd->result = DID_OK << 16; if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { uint32_t *lp = (uint32_t *)cmd->sense_buffer; lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0710 Iodone <%d/%llu> cmd x%px, error " "x%x SNS x%x x%x Data: x%x x%x\n", cmd->device->id, cmd->device->lun, cmd, cmd->result, *lp, *(lp + 3), cmd->retries, scsi_get_resid(cmd)); } if (vport->cfg_max_scsicmpl_time && time_after(jiffies, lpfc_cmd->start_time + msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { spin_lock_irqsave(shost->host_lock, flags); if (pnode) { if (pnode->cmd_qdepth > atomic_read(&pnode->cmd_pending) && (atomic_read(&pnode->cmd_pending) > LPFC_MIN_TGT_QDEPTH) && ((cmd->cmnd[0] == READ_10) || (cmd->cmnd[0] == WRITE_10))) pnode->cmd_qdepth = atomic_read(&pnode->cmd_pending); pnode->last_change_time = jiffies; } spin_unlock_irqrestore(shost->host_lock, flags); } lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); lpfc_cmd->pCmd = NULL; spin_unlock(&lpfc_cmd->buf_lock); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_cmd->ts_cmd_start) { lpfc_cmd->ts_isr_cmpl = pIocbIn->isr_timestamp; lpfc_cmd->ts_data_io = ktime_get_ns(); phba->ktime_last_cmd = lpfc_cmd->ts_data_io; lpfc_io_ktime(phba, lpfc_cmd); } #endif /* The sdev is not guaranteed to be valid post scsi_done upcall. */ scsi_done(cmd); /* * If there is an abort thread waiting for command completion * wake up the thread. */ spin_lock(&lpfc_cmd->buf_lock); lpfc_cmd->cur_iocbq.cmd_flag &= ~LPFC_DRIVER_ABORTED; if (lpfc_cmd->waitq) wake_up(lpfc_cmd->waitq); spin_unlock(&lpfc_cmd->buf_lock); lpfc_release_scsi_buf(phba, lpfc_cmd); } /** * lpfc_scsi_prep_cmnd_buf_s3 - SLI-3 IOCB init for the IO * @vport: Pointer to vport object. * @lpfc_cmd: The scsi buffer which is going to be prep'ed. * @tmo: timeout value for the IO * * Based on the data-direction of the command, initialize IOCB * in the I/O buffer. Fill in the IOCB fields which are independent * of the scsi buffer * * RETURNS 0 - SUCCESS, **/ static int lpfc_scsi_prep_cmnd_buf_s3(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd, uint8_t tmo) { IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; struct lpfc_iocbq *piocbq = &lpfc_cmd->cur_iocbq; struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct lpfc_nodelist *pnode = lpfc_cmd->ndlp; int datadir = scsi_cmnd->sc_data_direction; u32 fcpdl; piocbq->iocb.un.fcpi.fcpi_XRdy = 0; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. Start the lpfc command prep by * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first * data bde entry. */ if (scsi_sg_count(scsi_cmnd)) { if (datadir == DMA_TO_DEVICE) { iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; iocb_cmd->ulpPU = PARM_READ_CHECK; if (vport->cfg_first_burst_size && (pnode->nlp_flag & NLP_FIRSTBURST)) { u32 xrdy_len; fcpdl = scsi_bufflen(scsi_cmnd); xrdy_len = min(fcpdl, vport->cfg_first_burst_size); piocbq->iocb.un.fcpi.fcpi_XRdy = xrdy_len; } fcp_cmnd->fcpCntl3 = WRITE_DATA; } else { iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; iocb_cmd->ulpPU = PARM_READ_CHECK; fcp_cmnd->fcpCntl3 = READ_DATA; } } else { iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; iocb_cmd->un.fcpi.fcpi_parm = 0; iocb_cmd->ulpPU = 0; fcp_cmnd->fcpCntl3 = 0; } /* * Finish initializing those IOCB fields that are independent * of the scsi_cmnd request_buffer */ piocbq->iocb.ulpContext = pnode->nlp_rpi; if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) piocbq->iocb.ulpFCP2Rcvy = 1; else piocbq->iocb.ulpFCP2Rcvy = 0; piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); piocbq->io_buf = lpfc_cmd; if (!piocbq->cmd_cmpl) piocbq->cmd_cmpl = lpfc_scsi_cmd_iocb_cmpl; piocbq->iocb.ulpTimeout = tmo; piocbq->vport = vport; return 0; } /** * lpfc_scsi_prep_cmnd_buf_s4 - SLI-4 WQE init for the IO * @vport: Pointer to vport object. * @lpfc_cmd: The scsi buffer which is going to be prep'ed. * @tmo: timeout value for the IO * * Based on the data-direction of the command copy WQE template * to I/O buffer WQE. Fill in the WQE fields which are independent * of the scsi buffer * * RETURNS 0 - SUCCESS, **/ static int lpfc_scsi_prep_cmnd_buf_s4(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd, uint8_t tmo) { struct lpfc_hba *phba = vport->phba; struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct lpfc_sli4_hdw_queue *hdwq = NULL; struct lpfc_iocbq *pwqeq = &lpfc_cmd->cur_iocbq; struct lpfc_nodelist *pnode = lpfc_cmd->ndlp; union lpfc_wqe128 *wqe = &pwqeq->wqe; u16 idx = lpfc_cmd->hdwq_no; int datadir = scsi_cmnd->sc_data_direction; hdwq = &phba->sli4_hba.hdwq[idx]; /* Initialize 64 bytes only */ memset(wqe, 0, sizeof(union lpfc_wqe128)); /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. */ if (scsi_sg_count(scsi_cmnd)) { if (datadir == DMA_TO_DEVICE) { /* From the iwrite template, initialize words 7 - 11 */ memcpy(&wqe->words[7], &lpfc_iwrite_cmd_template.words[7], sizeof(uint32_t) * 5); fcp_cmnd->fcpCntl3 = WRITE_DATA; if (hdwq) hdwq->scsi_cstat.output_requests++; } else { /* From the iread template, initialize words 7 - 11 */ memcpy(&wqe->words[7], &lpfc_iread_cmd_template.words[7], sizeof(uint32_t) * 5); /* Word 7 */ bf_set(wqe_tmo, &wqe->fcp_iread.wqe_com, tmo); fcp_cmnd->fcpCntl3 = READ_DATA; if (hdwq) hdwq->scsi_cstat.input_requests++; /* For a CMF Managed port, iod must be zero'ed */ if (phba->cmf_active_mode == LPFC_CFG_MANAGED) bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_NONE); } } else { /* From the icmnd template, initialize words 4 - 11 */ memcpy(&wqe->words[4], &lpfc_icmnd_cmd_template.words[4], sizeof(uint32_t) * 8); /* Word 7 */ bf_set(wqe_tmo, &wqe->fcp_icmd.wqe_com, tmo); fcp_cmnd->fcpCntl3 = 0; if (hdwq) hdwq->scsi_cstat.control_requests++; } /* * Finish initializing those WQE fields that are independent * of the request_buffer */ /* Word 3 */ bf_set(payload_offset_len, &wqe->fcp_icmd, sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->generic.wqe_com, phba->sli4_hba.rpi_ids[pnode->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->generic.wqe_com, pwqeq->sli4_xritag); /* Word 7*/ if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) bf_set(wqe_erp, &wqe->generic.wqe_com, 1); bf_set(wqe_class, &wqe->generic.wqe_com, (pnode->nlp_fcp_info & 0x0f)); /* Word 8 */ wqe->generic.wqe_com.abort_tag = pwqeq->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->generic.wqe_com, pwqeq->iotag); pwqeq->vport = vport; pwqeq->io_buf = lpfc_cmd; pwqeq->hba_wqidx = lpfc_cmd->hdwq_no; pwqeq->cmd_cmpl = lpfc_fcp_io_cmd_wqe_cmpl; return 0; } /** * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: The scsi command which needs to send. * @pnode: Pointer to lpfc_nodelist. * * This routine initializes fcp_cmnd and iocb data structure from scsi command * to transfer for device with SLI3 interface spec. **/ static int lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd, struct lpfc_nodelist *pnode) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; u8 *ptr; if (!pnode) return 0; lpfc_cmd->fcp_rsp->rspSnsLen = 0; /* clear task management bits */ lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; int_to_scsilun(lpfc_cmd->pCmd->device->lun, &lpfc_cmd->fcp_cmnd->fcp_lun); ptr = &fcp_cmnd->fcpCdb[0]; memcpy(ptr, scsi_cmnd->cmnd, scsi_cmnd->cmd_len); if (scsi_cmnd->cmd_len < LPFC_FCP_CDB_LEN) { ptr += scsi_cmnd->cmd_len; memset(ptr, 0, (LPFC_FCP_CDB_LEN - scsi_cmnd->cmd_len)); } fcp_cmnd->fcpCntl1 = SIMPLE_Q; lpfc_scsi_prep_cmnd_buf(vport, lpfc_cmd, lpfc_cmd->timeout); return 0; } /** * lpfc_scsi_prep_task_mgmt_cmd_s3 - Convert SLI3 scsi TM cmd to FCP info unit * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: Pointer to lpfc_io_buf data structure. * @lun: Logical unit number. * @task_mgmt_cmd: SCSI task management command. * * This routine creates FCP information unit corresponding to @task_mgmt_cmd * for device with SLI-3 interface spec. * * Return codes: * 0 - Error * 1 - Success **/ static int lpfc_scsi_prep_task_mgmt_cmd_s3(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd, u64 lun, u8 task_mgmt_cmd) { struct lpfc_iocbq *piocbq; IOCB_t *piocb; struct fcp_cmnd *fcp_cmnd; struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *ndlp = rdata->pnode; if (!ndlp || ndlp->nlp_state != NLP_STE_MAPPED_NODE) return 0; piocbq = &(lpfc_cmd->cur_iocbq); piocbq->vport = vport; piocb = &piocbq->iocb; fcp_cmnd = lpfc_cmd->fcp_cmnd; /* Clear out any old data in the FCP command area */ memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); int_to_scsilun(lun, &fcp_cmnd->fcp_lun); fcp_cmnd->fcpCntl2 = task_mgmt_cmd; if (!(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); piocb->ulpCommand = CMD_FCP_ICMND64_CR; piocb->ulpContext = ndlp->nlp_rpi; piocb->ulpFCP2Rcvy = (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) ? 1 : 0; piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); piocb->ulpPU = 0; piocb->un.fcpi.fcpi_parm = 0; /* ulpTimeout is only one byte */ if (lpfc_cmd->timeout > 0xff) { /* * Do not timeout the command at the firmware level. * The driver will provide the timeout mechanism. */ piocb->ulpTimeout = 0; } else piocb->ulpTimeout = lpfc_cmd->timeout; return 1; } /** * lpfc_scsi_prep_task_mgmt_cmd_s4 - Convert SLI4 scsi TM cmd to FCP info unit * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: Pointer to lpfc_io_buf data structure. * @lun: Logical unit number. * @task_mgmt_cmd: SCSI task management command. * * This routine creates FCP information unit corresponding to @task_mgmt_cmd * for device with SLI-4 interface spec. * * Return codes: * 0 - Error * 1 - Success **/ static int lpfc_scsi_prep_task_mgmt_cmd_s4(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd, u64 lun, u8 task_mgmt_cmd) { struct lpfc_iocbq *pwqeq = &lpfc_cmd->cur_iocbq; union lpfc_wqe128 *wqe = &pwqeq->wqe; struct fcp_cmnd *fcp_cmnd; struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *ndlp = rdata->pnode; if (!ndlp || ndlp->nlp_state != NLP_STE_MAPPED_NODE) return 0; pwqeq->vport = vport; /* Initialize 64 bytes only */ memset(wqe, 0, sizeof(union lpfc_wqe128)); /* From the icmnd template, initialize words 4 - 11 */ memcpy(&wqe->words[4], &lpfc_icmnd_cmd_template.words[4], sizeof(uint32_t) * 8); fcp_cmnd = lpfc_cmd->fcp_cmnd; /* Clear out any old data in the FCP command area */ memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); int_to_scsilun(lun, &fcp_cmnd->fcp_lun); fcp_cmnd->fcpCntl3 = 0; fcp_cmnd->fcpCntl2 = task_mgmt_cmd; bf_set(payload_offset_len, &wqe->fcp_icmd, sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); bf_set(cmd_buff_len, &wqe->fcp_icmd, 0); bf_set(wqe_ctxt_tag, &wqe->generic.wqe_com, /* ulpContext */ vport->phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, ((ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) ? 1 : 0)); bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, (ndlp->nlp_fcp_info & 0x0f)); /* ulpTimeout is only one byte */ if (lpfc_cmd->timeout > 0xff) { /* * Do not timeout the command at the firmware level. * The driver will provide the timeout mechanism. */ bf_set(wqe_tmo, &wqe->fcp_icmd.wqe_com, 0); } else { bf_set(wqe_tmo, &wqe->fcp_icmd.wqe_com, lpfc_cmd->timeout); } lpfc_prep_embed_io(vport->phba, lpfc_cmd); bf_set(wqe_xri_tag, &wqe->generic.wqe_com, pwqeq->sli4_xritag); wqe->generic.wqe_com.abort_tag = pwqeq->iotag; bf_set(wqe_reqtag, &wqe->generic.wqe_com, pwqeq->iotag); lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd); return 1; } /** * lpfc_scsi_api_table_setup - Set up scsi api function jump table * @phba: The hba struct for which this call is being executed. * @dev_grp: The HBA PCI-Device group number. * * This routine sets up the SCSI interface API function jump table in @phba * struct. * Returns: 0 - success, -ENODEV - failure. **/ int lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) { phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf; switch (dev_grp) { case LPFC_PCI_DEV_LP: phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3; phba->lpfc_bg_scsi_prep_dma_buf = lpfc_bg_scsi_prep_dma_buf_s3; phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3; phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3; phba->lpfc_scsi_prep_cmnd_buf = lpfc_scsi_prep_cmnd_buf_s3; phba->lpfc_scsi_prep_task_mgmt_cmd = lpfc_scsi_prep_task_mgmt_cmd_s3; break; case LPFC_PCI_DEV_OC: phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4; phba->lpfc_bg_scsi_prep_dma_buf = lpfc_bg_scsi_prep_dma_buf_s4; phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4; phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4; phba->lpfc_scsi_prep_cmnd_buf = lpfc_scsi_prep_cmnd_buf_s4; phba->lpfc_scsi_prep_task_mgmt_cmd = lpfc_scsi_prep_task_mgmt_cmd_s4; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1418 Invalid HBA PCI-device group: 0x%x\n", dev_grp); return -ENODEV; } phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth; return 0; } /** * lpfc_tskmgmt_def_cmpl - IOCB completion routine for task management command * @phba: The Hba for which this call is being executed. * @cmdiocbq: Pointer to lpfc_iocbq data structure. * @rspiocbq: Pointer to lpfc_iocbq data structure. * * This routine is IOCB completion routine for device reset and target reset * routine. This routine release scsi buffer associated with lpfc_cmd. **/ static void lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, struct lpfc_iocbq *rspiocbq) { struct lpfc_io_buf *lpfc_cmd = cmdiocbq->io_buf; if (lpfc_cmd) lpfc_release_scsi_buf(phba, lpfc_cmd); return; } /** * lpfc_check_pci_resettable - Walks list of devices on pci_dev's bus to check * if issuing a pci_bus_reset is possibly unsafe * @phba: lpfc_hba pointer. * * Description: * Walks the bus_list to ensure only PCI devices with Emulex * vendor id, device ids that support hot reset, and only one occurrence * of function 0. * * Returns: * -EBADSLT, detected invalid device * 0, successful */ int lpfc_check_pci_resettable(struct lpfc_hba *phba) { const struct pci_dev *pdev = phba->pcidev; struct pci_dev *ptr = NULL; u8 counter = 0; /* Walk the list of devices on the pci_dev's bus */ list_for_each_entry(ptr, &pdev->bus->devices, bus_list) { /* Check for Emulex Vendor ID */ if (ptr->vendor != PCI_VENDOR_ID_EMULEX) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "8346 Non-Emulex vendor found: " "0x%04x\n", ptr->vendor); return -EBADSLT; } /* Check for valid Emulex Device ID */ if (phba->sli_rev != LPFC_SLI_REV4 || phba->hba_flag & HBA_FCOE_MODE) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "8347 Incapable PCI reset device: " "0x%04x\n", ptr->device); return -EBADSLT; } /* Check for only one function 0 ID to ensure only one HBA on * secondary bus */ if (ptr->devfn == 0) { if (++counter > 1) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "8348 More than one device on " "secondary bus found\n"); return -EBADSLT; } } } return 0; } /** * lpfc_info - Info entry point of scsi_host_template data structure * @host: The scsi host for which this call is being executed. * * This routine provides module information about hba. * * Reutrn code: * Pointer to char - Success. **/ const char * lpfc_info(struct Scsi_Host *host) { struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; struct lpfc_hba *phba = vport->phba; int link_speed = 0; static char lpfcinfobuf[384]; char tmp[384] = {0}; memset(lpfcinfobuf, 0, sizeof(lpfcinfobuf)); if (phba && phba->pcidev){ /* Model Description */ scnprintf(tmp, sizeof(tmp), phba->ModelDesc); if (strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)) >= sizeof(lpfcinfobuf)) goto buffer_done; /* PCI Info */ scnprintf(tmp, sizeof(tmp), " on PCI bus %02x device %02x irq %d", phba->pcidev->bus->number, phba->pcidev->devfn, phba->pcidev->irq); if (strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)) >= sizeof(lpfcinfobuf)) goto buffer_done; /* Port Number */ if (phba->Port[0]) { scnprintf(tmp, sizeof(tmp), " port %s", phba->Port); if (strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)) >= sizeof(lpfcinfobuf)) goto buffer_done; } /* Link Speed */ link_speed = lpfc_sli_port_speed_get(phba); if (link_speed != 0) { scnprintf(tmp, sizeof(tmp), " Logical Link Speed: %d Mbps", link_speed); if (strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)) >= sizeof(lpfcinfobuf)) goto buffer_done; } /* PCI resettable */ if (!lpfc_check_pci_resettable(phba)) { scnprintf(tmp, sizeof(tmp), " PCI resettable"); strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)); } } buffer_done: return lpfcinfobuf; } /** * lpfc_poll_rearm_timer - Routine to modify fcp_poll timer of hba * @phba: The Hba for which this call is being executed. * * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. * The default value of cfg_poll_tmo is 10 milliseconds. **/ static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) { unsigned long poll_tmo_expires = (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); if (!list_empty(&phba->sli.sli3_ring[LPFC_FCP_RING].txcmplq)) mod_timer(&phba->fcp_poll_timer, poll_tmo_expires); } /** * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA * @phba: The Hba for which this call is being executed. * * This routine starts the fcp_poll_timer of @phba. **/ void lpfc_poll_start_timer(struct lpfc_hba * phba) { lpfc_poll_rearm_timer(phba); } /** * lpfc_poll_timeout - Restart polling timer * @t: Timer construct where lpfc_hba data structure pointer is obtained. * * This routine restarts fcp_poll timer, when FCP ring polling is enable * and FCP Ring interrupt is disable. **/ void lpfc_poll_timeout(struct timer_list *t) { struct lpfc_hba *phba = from_timer(phba, t, fcp_poll_timer); if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { lpfc_sli_handle_fast_ring_event(phba, &phba->sli.sli3_ring[LPFC_FCP_RING], HA_R0RE_REQ); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } } /* * lpfc_is_command_vm_io - get the UUID from blk cgroup * @cmd: Pointer to scsi_cmnd data structure * Returns UUID if present, otherwise NULL */ static char *lpfc_is_command_vm_io(struct scsi_cmnd *cmd) { struct bio *bio = scsi_cmd_to_rq(cmd)->bio; if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !bio) return NULL; return blkcg_get_fc_appid(bio); } /** * lpfc_queuecommand - scsi_host_template queuecommand entry point * @shost: kernel scsi host pointer. * @cmnd: Pointer to scsi_cmnd data structure. * * Driver registers this routine to scsi midlayer to submit a @cmd to process. * This routine prepares an IOCB from scsi command and provides to firmware. * The @done callback is invoked after driver finished processing the command. * * Return value : * 0 - Success * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. **/ static int lpfc_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *cmnd) { struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_iocbq *cur_iocbq = NULL; struct lpfc_rport_data *rdata; struct lpfc_nodelist *ndlp; struct lpfc_io_buf *lpfc_cmd; struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); int err, idx; u8 *uuid = NULL; uint64_t start; start = ktime_get_ns(); rdata = lpfc_rport_data_from_scsi_device(cmnd->device); /* sanity check on references */ if (unlikely(!rdata) || unlikely(!rport)) goto out_fail_command; err = fc_remote_port_chkready(rport); if (err) { cmnd->result = err; goto out_fail_command; } ndlp = rdata->pnode; if ((scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) && (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED))) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "9058 BLKGRD: ERROR: rcvd protected cmd:%02x" " op:%02x str=%s without registering for" " BlockGuard - Rejecting command\n", cmnd->cmnd[0], scsi_get_prot_op(cmnd), dif_op_str[scsi_get_prot_op(cmnd)]); goto out_fail_command; } /* * Catch race where our node has transitioned, but the * transport is still transitioning. */ if (!ndlp) goto out_tgt_busy1; /* Check if IO qualifies for CMF */ if (phba->cmf_active_mode != LPFC_CFG_OFF && cmnd->sc_data_direction == DMA_FROM_DEVICE && (scsi_sg_count(cmnd))) { /* Latency start time saved in rx_cmd_start later in routine */ err = lpfc_update_cmf_cmd(phba, scsi_bufflen(cmnd)); if (err) goto out_tgt_busy1; } if (lpfc_ndlp_check_qdepth(phba, ndlp)) { if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) { lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP_ERROR, "3377 Target Queue Full, scsi Id:%d " "Qdepth:%d Pending command:%d" " WWNN:%02x:%02x:%02x:%02x:" "%02x:%02x:%02x:%02x, " " WWPN:%02x:%02x:%02x:%02x:" "%02x:%02x:%02x:%02x", ndlp->nlp_sid, ndlp->cmd_qdepth, atomic_read(&ndlp->cmd_pending), ndlp->nlp_nodename.u.wwn[0], ndlp->nlp_nodename.u.wwn[1], ndlp->nlp_nodename.u.wwn[2], ndlp->nlp_nodename.u.wwn[3], ndlp->nlp_nodename.u.wwn[4], ndlp->nlp_nodename.u.wwn[5], ndlp->nlp_nodename.u.wwn[6], ndlp->nlp_nodename.u.wwn[7], ndlp->nlp_portname.u.wwn[0], ndlp->nlp_portname.u.wwn[1], ndlp->nlp_portname.u.wwn[2], ndlp->nlp_portname.u.wwn[3], ndlp->nlp_portname.u.wwn[4], ndlp->nlp_portname.u.wwn[5], ndlp->nlp_portname.u.wwn[6], ndlp->nlp_portname.u.wwn[7]); goto out_tgt_busy2; } } lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp, cmnd); if (lpfc_cmd == NULL) { lpfc_rampdown_queue_depth(phba); lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP_ERROR, "0707 driver's buffer pool is empty, " "IO busied\n"); goto out_host_busy; } lpfc_cmd->rx_cmd_start = start; cur_iocbq = &lpfc_cmd->cur_iocbq; /* * Store the midlayer's command structure for the completion phase * and complete the command initialization. */ lpfc_cmd->pCmd = cmnd; lpfc_cmd->rdata = rdata; lpfc_cmd->ndlp = ndlp; cur_iocbq->cmd_cmpl = NULL; cmnd->host_scribble = (unsigned char *)lpfc_cmd; err = lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); if (err) goto out_host_busy_release_buf; if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { if (vport->phba->cfg_enable_bg) { lpfc_printf_vlog(vport, KERN_INFO, LOG_SCSI_CMD, "9033 BLKGRD: rcvd %s cmd:x%x " "reftag x%x cnt %u pt %x\n", dif_op_str[scsi_get_prot_op(cmnd)], cmnd->cmnd[0], scsi_prot_ref_tag(cmnd), scsi_logical_block_count(cmnd), (cmnd->cmnd[1]>>5)); } err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); } else { if (vport->phba->cfg_enable_bg) { lpfc_printf_vlog(vport, KERN_INFO, LOG_SCSI_CMD, "9038 BLKGRD: rcvd PROT_NORMAL cmd: " "x%x reftag x%x cnt %u pt %x\n", cmnd->cmnd[0], scsi_prot_ref_tag(cmnd), scsi_logical_block_count(cmnd), (cmnd->cmnd[1]>>5)); } err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); } if (unlikely(err)) { if (err == 2) { cmnd->result = DID_ERROR << 16; goto out_fail_command_release_buf; } goto out_host_busy_free_buf; } /* check the necessary and sufficient condition to support VMID */ if (lpfc_is_vmid_enabled(phba) && (ndlp->vmid_support || phba->pport->vmid_priority_tagging == LPFC_VMID_PRIO_TAG_ALL_TARGETS)) { /* is the I/O generated by a VM, get the associated virtual */ /* entity id */ uuid = lpfc_is_command_vm_io(cmnd); if (uuid) { err = lpfc_vmid_get_appid(vport, uuid, cmnd->sc_data_direction, (union lpfc_vmid_io_tag *) &cur_iocbq->vmid_tag); if (!err) cur_iocbq->cmd_flag |= LPFC_IO_VMID; } } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (unlikely(phba->hdwqstat_on & LPFC_CHECK_SCSI_IO)) this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); #endif /* Issue I/O to adapter */ err = lpfc_sli_issue_fcp_io(phba, LPFC_FCP_RING, cur_iocbq, SLI_IOCB_RET_IOCB); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (start) { lpfc_cmd->ts_cmd_start = start; lpfc_cmd->ts_last_cmd = phba->ktime_last_cmd; lpfc_cmd->ts_cmd_wqput = ktime_get_ns(); } else { lpfc_cmd->ts_cmd_start = 0; } #endif if (err) { lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "3376 FCP could not issue iocb err %x " "FCP cmd x%x <%d/%llu> " "sid: x%x did: x%x oxid: x%x " "Data: x%x x%x x%x x%x\n", err, cmnd->cmnd[0], cmnd->device ? cmnd->device->id : 0xffff, cmnd->device ? cmnd->device->lun : (u64)-1, vport->fc_myDID, ndlp->nlp_DID, phba->sli_rev == LPFC_SLI_REV4 ? cur_iocbq->sli4_xritag : 0xffff, phba->sli_rev == LPFC_SLI_REV4 ? phba->sli4_hba.rpi_ids[ndlp->nlp_rpi] : cur_iocbq->iocb.ulpContext, cur_iocbq->iotag, phba->sli_rev == LPFC_SLI_REV4 ? bf_get(wqe_tmo, &cur_iocbq->wqe.generic.wqe_com) : cur_iocbq->iocb.ulpTimeout, (uint32_t)(scsi_cmd_to_rq(cmnd)->timeout / 1000)); goto out_host_busy_free_buf; } if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { lpfc_sli_handle_fast_ring_event(phba, &phba->sli.sli3_ring[LPFC_FCP_RING], HA_R0RE_REQ); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } if (phba->cfg_xri_rebalancing) lpfc_keep_pvt_pool_above_lowwm(phba, lpfc_cmd->hdwq_no); return 0; out_host_busy_free_buf: idx = lpfc_cmd->hdwq_no; lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); if (phba->sli4_hba.hdwq) { switch (lpfc_cmd->fcp_cmnd->fcpCntl3) { case WRITE_DATA: phba->sli4_hba.hdwq[idx].scsi_cstat.output_requests--; break; case READ_DATA: phba->sli4_hba.hdwq[idx].scsi_cstat.input_requests--; break; default: phba->sli4_hba.hdwq[idx].scsi_cstat.control_requests--; } } out_host_busy_release_buf: lpfc_release_scsi_buf(phba, lpfc_cmd); out_host_busy: lpfc_update_cmf_cmpl(phba, LPFC_CGN_NOT_SENT, scsi_bufflen(cmnd), shost); return SCSI_MLQUEUE_HOST_BUSY; out_tgt_busy2: lpfc_update_cmf_cmpl(phba, LPFC_CGN_NOT_SENT, scsi_bufflen(cmnd), shost); out_tgt_busy1: return SCSI_MLQUEUE_TARGET_BUSY; out_fail_command_release_buf: lpfc_release_scsi_buf(phba, lpfc_cmd); lpfc_update_cmf_cmpl(phba, LPFC_CGN_NOT_SENT, scsi_bufflen(cmnd), shost); out_fail_command: scsi_done(cmnd); return 0; } /* * lpfc_vmid_vport_cleanup - cleans up the resources associated with a vport * @vport: The virtual port for which this call is being executed. */ void lpfc_vmid_vport_cleanup(struct lpfc_vport *vport) { u32 bucket; struct lpfc_vmid *cur; if (vport->port_type == LPFC_PHYSICAL_PORT) del_timer_sync(&vport->phba->inactive_vmid_poll); kfree(vport->qfpa_res); kfree(vport->vmid_priority.vmid_range); kfree(vport->vmid); if (!hash_empty(vport->hash_table)) hash_for_each(vport->hash_table, bucket, cur, hnode) hash_del(&cur->hnode); vport->qfpa_res = NULL; vport->vmid_priority.vmid_range = NULL; vport->vmid = NULL; vport->cur_vmid_cnt = 0; } /** * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine aborts @cmnd pending in base driver. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_abort_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_iocbq *iocb; struct lpfc_io_buf *lpfc_cmd; int ret = SUCCESS, status = 0; struct lpfc_sli_ring *pring_s4 = NULL; struct lpfc_sli_ring *pring = NULL; int ret_val; unsigned long flags; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); status = fc_block_rport(rport); if (status != 0 && status != SUCCESS) return status; lpfc_cmd = (struct lpfc_io_buf *)cmnd->host_scribble; if (!lpfc_cmd) return ret; /* Guard against IO completion being called at same time */ spin_lock_irqsave(&lpfc_cmd->buf_lock, flags); spin_lock(&phba->hbalock); /* driver queued commands are in process of being flushed */ if (phba->hba_flag & HBA_IOQ_FLUSH) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "3168 SCSI Layer abort requested I/O has been " "flushed by LLD.\n"); ret = FAILED; goto out_unlock_hba; } if (!lpfc_cmd->pCmd) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "2873 SCSI Layer I/O Abort Request IO CMPL Status " "x%x ID %d LUN %llu\n", SUCCESS, cmnd->device->id, cmnd->device->lun); goto out_unlock_hba; } iocb = &lpfc_cmd->cur_iocbq; if (phba->sli_rev == LPFC_SLI_REV4) { pring_s4 = phba->sli4_hba.hdwq[iocb->hba_wqidx].io_wq->pring; if (!pring_s4) { ret = FAILED; goto out_unlock_hba; } spin_lock(&pring_s4->ring_lock); } /* the command is in process of being cancelled */ if (!(iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "3169 SCSI Layer abort requested I/O has been " "cancelled by LLD.\n"); ret = FAILED; goto out_unlock_ring; } /* * If pCmd field of the corresponding lpfc_io_buf structure * points to a different SCSI command, then the driver has * already completed this command, but the midlayer did not * see the completion before the eh fired. Just return SUCCESS. */ if (lpfc_cmd->pCmd != cmnd) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "3170 SCSI Layer abort requested I/O has been " "completed by LLD.\n"); goto out_unlock_ring; } WARN_ON(iocb->io_buf != lpfc_cmd); /* abort issued in recovery is still in progress */ if (iocb->cmd_flag & LPFC_DRIVER_ABORTED) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "3389 SCSI Layer I/O Abort Request is pending\n"); if (phba->sli_rev == LPFC_SLI_REV4) spin_unlock(&pring_s4->ring_lock); spin_unlock(&phba->hbalock); spin_unlock_irqrestore(&lpfc_cmd->buf_lock, flags); goto wait_for_cmpl; } lpfc_cmd->waitq = &waitq; if (phba->sli_rev == LPFC_SLI_REV4) { spin_unlock(&pring_s4->ring_lock); ret_val = lpfc_sli4_issue_abort_iotag(phba, iocb, lpfc_sli_abort_fcp_cmpl); } else { pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocb, lpfc_sli_abort_fcp_cmpl); } /* Make sure HBA is alive */ lpfc_issue_hb_tmo(phba); if (ret_val != IOCB_SUCCESS) { /* Indicate the IO is not being aborted by the driver. */ lpfc_cmd->waitq = NULL; ret = FAILED; goto out_unlock_hba; } /* no longer need the lock after this point */ spin_unlock(&phba->hbalock); spin_unlock_irqrestore(&lpfc_cmd->buf_lock, flags); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_sli_handle_fast_ring_event(phba, &phba->sli.sli3_ring[LPFC_FCP_RING], HA_R0RE_REQ); wait_for_cmpl: /* * cmd_flag is set to LPFC_DRIVER_ABORTED before we wait * for abort to complete. */ wait_event_timeout(waitq, (lpfc_cmd->pCmd != cmnd), msecs_to_jiffies(2*vport->cfg_devloss_tmo*1000)); spin_lock(&lpfc_cmd->buf_lock); if (lpfc_cmd->pCmd == cmnd) { ret = FAILED; lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0748 abort handler timed out waiting " "for aborting I/O (xri:x%x) to complete: " "ret %#x, ID %d, LUN %llu\n", iocb->sli4_xritag, ret, cmnd->device->id, cmnd->device->lun); } lpfc_cmd->waitq = NULL; spin_unlock(&lpfc_cmd->buf_lock); goto out; out_unlock_ring: if (phba->sli_rev == LPFC_SLI_REV4) spin_unlock(&pring_s4->ring_lock); out_unlock_hba: spin_unlock(&phba->hbalock); spin_unlock_irqrestore(&lpfc_cmd->buf_lock, flags); out: lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0749 SCSI Layer I/O Abort Request Status x%x ID %d " "LUN %llu\n", ret, cmnd->device->id, cmnd->device->lun); return ret; } static char * lpfc_taskmgmt_name(uint8_t task_mgmt_cmd) { switch (task_mgmt_cmd) { case FCP_ABORT_TASK_SET: return "ABORT_TASK_SET"; case FCP_CLEAR_TASK_SET: return "FCP_CLEAR_TASK_SET"; case FCP_BUS_RESET: return "FCP_BUS_RESET"; case FCP_LUN_RESET: return "FCP_LUN_RESET"; case FCP_TARGET_RESET: return "FCP_TARGET_RESET"; case FCP_CLEAR_ACA: return "FCP_CLEAR_ACA"; case FCP_TERMINATE_TASK: return "FCP_TERMINATE_TASK"; default: return "unknown"; } } /** * lpfc_check_fcp_rsp - check the returned fcp_rsp to see if task failed * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: Pointer to lpfc_io_buf data structure. * * This routine checks the FCP RSP INFO to see if the tsk mgmt command succeded * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_check_fcp_rsp(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd) { struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; uint32_t rsp_info; uint32_t rsp_len; uint8_t rsp_info_code; int ret = FAILED; if (fcprsp == NULL) lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0703 fcp_rsp is missing\n"); else { rsp_info = fcprsp->rspStatus2; rsp_len = be32_to_cpu(fcprsp->rspRspLen); rsp_info_code = fcprsp->rspInfo3; lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0706 fcp_rsp valid 0x%x," " rsp len=%d code 0x%x\n", rsp_info, rsp_len, rsp_info_code); /* If FCP_RSP_LEN_VALID bit is one, then the FCP_RSP_LEN * field specifies the number of valid bytes of FCP_RSP_INFO. * The FCP_RSP_LEN field shall be set to 0x04 or 0x08 */ if ((fcprsp->rspStatus2 & RSP_LEN_VALID) && ((rsp_len == 8) || (rsp_len == 4))) { switch (rsp_info_code) { case RSP_NO_FAILURE: lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0715 Task Mgmt No Failure\n"); ret = SUCCESS; break; case RSP_TM_NOT_SUPPORTED: /* TM rejected */ lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0716 Task Mgmt Target " "reject\n"); break; case RSP_TM_NOT_COMPLETED: /* TM failed */ lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0717 Task Mgmt Target " "failed TM\n"); break; case RSP_TM_INVALID_LU: /* TM to invalid LU! */ lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0718 Task Mgmt to invalid " "LUN\n"); break; } } } return ret; } /** * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler * @vport: The virtual port for which this call is being executed. * @rport: Pointer to remote port * @tgt_id: Target ID of remote device. * @lun_id: Lun number for the TMF * @task_mgmt_cmd: type of TMF to send * * This routine builds and sends a TMF (SCSI Task Mgmt Function) to * a remote port. * * Return Code: * 0x2003 - Error * 0x2002 - Success. **/ static int lpfc_send_taskmgmt(struct lpfc_vport *vport, struct fc_rport *rport, unsigned int tgt_id, uint64_t lun_id, uint8_t task_mgmt_cmd) { struct lpfc_hba *phba = vport->phba; struct lpfc_io_buf *lpfc_cmd; struct lpfc_iocbq *iocbq; struct lpfc_iocbq *iocbqrsp; struct lpfc_rport_data *rdata; struct lpfc_nodelist *pnode; int ret; int status; rdata = rport->dd_data; if (!rdata || !rdata->pnode) return FAILED; pnode = rdata->pnode; lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode, NULL); if (lpfc_cmd == NULL) return FAILED; lpfc_cmd->timeout = phba->cfg_task_mgmt_tmo; lpfc_cmd->rdata = rdata; lpfc_cmd->pCmd = NULL; lpfc_cmd->ndlp = pnode; status = phba->lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id, task_mgmt_cmd); if (!status) { lpfc_release_scsi_buf(phba, lpfc_cmd); return FAILED; } iocbq = &lpfc_cmd->cur_iocbq; iocbqrsp = lpfc_sli_get_iocbq(phba); if (iocbqrsp == NULL) { lpfc_release_scsi_buf(phba, lpfc_cmd); return FAILED; } iocbq->cmd_cmpl = lpfc_tskmgmt_def_cmpl; iocbq->vport = vport; lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0702 Issue %s to TGT %d LUN %llu " "rpi x%x nlp_flag x%x Data: x%x x%x\n", lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, pnode->nlp_rpi, pnode->nlp_flag, iocbq->sli4_xritag, iocbq->cmd_flag); status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING, iocbq, iocbqrsp, lpfc_cmd->timeout); if ((status != IOCB_SUCCESS) || (get_job_ulpstatus(phba, iocbqrsp) != IOSTAT_SUCCESS)) { if (status != IOCB_SUCCESS || get_job_ulpstatus(phba, iocbqrsp) != IOSTAT_FCP_RSP_ERROR) lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0727 TMF %s to TGT %d LUN %llu " "failed (%d, %d) cmd_flag x%x\n", lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, get_job_ulpstatus(phba, iocbqrsp), get_job_word4(phba, iocbqrsp), iocbq->cmd_flag); /* if ulpStatus != IOCB_SUCCESS, then status == IOCB_SUCCESS */ if (status == IOCB_SUCCESS) { if (get_job_ulpstatus(phba, iocbqrsp) == IOSTAT_FCP_RSP_ERROR) /* Something in the FCP_RSP was invalid. * Check conditions */ ret = lpfc_check_fcp_rsp(vport, lpfc_cmd); else ret = FAILED; } else if ((status == IOCB_TIMEDOUT) || (status == IOCB_ABORTED)) { ret = TIMEOUT_ERROR; } else { ret = FAILED; } } else ret = SUCCESS; lpfc_sli_release_iocbq(phba, iocbqrsp); if (status != IOCB_TIMEDOUT) lpfc_release_scsi_buf(phba, lpfc_cmd); return ret; } /** * lpfc_chk_tgt_mapped - * @vport: The virtual port to check on * @rport: Pointer to fc_rport data structure. * * This routine delays until the scsi target (aka rport) for the * command exists (is present and logged in) or we declare it non-existent. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct fc_rport *rport) { struct lpfc_rport_data *rdata; struct lpfc_nodelist *pnode = NULL; unsigned long later; rdata = rport->dd_data; if (!rdata) { lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0797 Tgt Map rport failure: rdata x%px\n", rdata); return FAILED; } pnode = rdata->pnode; /* * If target is not in a MAPPED state, delay until * target is rediscovered or devloss timeout expires. */ later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; while (time_after(later, jiffies)) { if (!pnode) return FAILED; if (pnode->nlp_state == NLP_STE_MAPPED_NODE) return SUCCESS; schedule_timeout_uninterruptible(msecs_to_jiffies(500)); rdata = rport->dd_data; if (!rdata) return FAILED; pnode = rdata->pnode; } if (!pnode || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) return FAILED; return SUCCESS; } /** * lpfc_reset_flush_io_context - * @vport: The virtual port (scsi_host) for the flush context * @tgt_id: If aborting by Target contect - specifies the target id * @lun_id: If aborting by Lun context - specifies the lun id * @context: specifies the context level to flush at. * * After a reset condition via TMF, we need to flush orphaned i/o * contexts from the adapter. This routine aborts any contexts * outstanding, then waits for their completions. The wait is * bounded by devloss_tmo though. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd context) { struct lpfc_hba *phba = vport->phba; unsigned long later; int cnt; cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); if (cnt) lpfc_sli_abort_taskmgmt(vport, &phba->sli.sli3_ring[LPFC_FCP_RING], tgt_id, lun_id, context); later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; while (time_after(later, jiffies) && cnt) { schedule_timeout_uninterruptible(msecs_to_jiffies(20)); cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); } if (cnt) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0724 I/O flush failure for context %s : cnt x%x\n", ((context == LPFC_CTX_LUN) ? "LUN" : ((context == LPFC_CTX_TGT) ? "TGT" : ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))), cnt); return FAILED; } return SUCCESS; } /** * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine does a device reset by sending a LUN_RESET task management * command. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_device_reset_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_rport_data *rdata; struct lpfc_nodelist *pnode; unsigned tgt_id = cmnd->device->id; uint64_t lun_id = cmnd->device->lun; struct lpfc_scsi_event_header scsi_event; int status; u32 logit = LOG_FCP; if (!rport) return FAILED; rdata = rport->dd_data; if (!rdata || !rdata->pnode) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0798 Device Reset rdata failure: rdata x%px\n", rdata); return FAILED; } pnode = rdata->pnode; status = fc_block_rport(rport); if (status != 0 && status != SUCCESS) return status; status = lpfc_chk_tgt_mapped(vport, rport); if (status == FAILED) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0721 Device Reset rport failure: rdata x%px\n", rdata); return FAILED; } scsi_event.event_type = FC_REG_SCSI_EVENT; scsi_event.subcategory = LPFC_EVENT_LUNRESET; scsi_event.lun = lun_id; memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); status = lpfc_send_taskmgmt(vport, rport, tgt_id, lun_id, FCP_LUN_RESET); if (status != SUCCESS) logit = LOG_TRACE_EVENT; lpfc_printf_vlog(vport, KERN_ERR, logit, "0713 SCSI layer issued Device Reset (%d, %llu) " "return x%x\n", tgt_id, lun_id, status); /* * We have to clean up i/o as : they may be orphaned by the TMF; * or if the TMF failed, they may be in an indeterminate state. * So, continue on. * We will report success if all the i/o aborts successfully. */ if (status == SUCCESS) status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, LPFC_CTX_LUN); return status; } /** * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine does a target reset by sending a TARGET_RESET task management * command. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_target_reset_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_rport_data *rdata; struct lpfc_nodelist *pnode; unsigned tgt_id = cmnd->device->id; uint64_t lun_id = cmnd->device->lun; struct lpfc_scsi_event_header scsi_event; int status; u32 logit = LOG_FCP; u32 dev_loss_tmo = vport->cfg_devloss_tmo; unsigned long flags; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); if (!rport) return FAILED; rdata = rport->dd_data; if (!rdata || !rdata->pnode) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0799 Target Reset rdata failure: rdata x%px\n", rdata); return FAILED; } pnode = rdata->pnode; status = fc_block_rport(rport); if (status != 0 && status != SUCCESS) return status; status = lpfc_chk_tgt_mapped(vport, rport); if (status == FAILED) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0722 Target Reset rport failure: rdata x%px\n", rdata); if (pnode) { spin_lock_irqsave(&pnode->lock, flags); pnode->nlp_flag &= ~NLP_NPR_ADISC; pnode->nlp_fcp_info &= ~NLP_FCP_2_DEVICE; spin_unlock_irqrestore(&pnode->lock, flags); } lpfc_reset_flush_io_context(vport, tgt_id, lun_id, LPFC_CTX_TGT); return FAST_IO_FAIL; } scsi_event.event_type = FC_REG_SCSI_EVENT; scsi_event.subcategory = LPFC_EVENT_TGTRESET; scsi_event.lun = 0; memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); status = lpfc_send_taskmgmt(vport, rport, tgt_id, lun_id, FCP_TARGET_RESET); if (status != SUCCESS) { logit = LOG_TRACE_EVENT; /* Issue LOGO, if no LOGO is outstanding */ spin_lock_irqsave(&pnode->lock, flags); if (!(pnode->save_flags & NLP_WAIT_FOR_LOGO) && !pnode->logo_waitq) { pnode->logo_waitq = &waitq; pnode->nlp_fcp_info &= ~NLP_FCP_2_DEVICE; pnode->nlp_flag |= NLP_ISSUE_LOGO; pnode->save_flags |= NLP_WAIT_FOR_LOGO; spin_unlock_irqrestore(&pnode->lock, flags); lpfc_unreg_rpi(vport, pnode); wait_event_timeout(waitq, (!(pnode->save_flags & NLP_WAIT_FOR_LOGO)), msecs_to_jiffies(dev_loss_tmo * 1000)); if (pnode->save_flags & NLP_WAIT_FOR_LOGO) { lpfc_printf_vlog(vport, KERN_ERR, logit, "0725 SCSI layer TGTRST " "failed & LOGO TMO (%d, %llu) " "return x%x\n", tgt_id, lun_id, status); spin_lock_irqsave(&pnode->lock, flags); pnode->save_flags &= ~NLP_WAIT_FOR_LOGO; } else { spin_lock_irqsave(&pnode->lock, flags); } pnode->logo_waitq = NULL; spin_unlock_irqrestore(&pnode->lock, flags); status = SUCCESS; } else { spin_unlock_irqrestore(&pnode->lock, flags); status = FAILED; } } lpfc_printf_vlog(vport, KERN_ERR, logit, "0723 SCSI layer issued Target Reset (%d, %llu) " "return x%x\n", tgt_id, lun_id, status); /* * We have to clean up i/o as : they may be orphaned by the TMF; * or if the TMF failed, they may be in an indeterminate state. * So, continue on. * We will report success if all the i/o aborts successfully. */ if (status == SUCCESS) status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, LPFC_CTX_TGT); return status; } /** * lpfc_host_reset_handler - scsi_host_template eh_host_reset_handler entry pt * @cmnd: Pointer to scsi_cmnd data structure. * * This routine does host reset to the adaptor port. It brings the HBA * offline, performs a board restart, and then brings the board back online. * The lpfc_offline calls lpfc_sli_hba_down which will abort and local * reject all outstanding SCSI commands to the host and error returned * back to SCSI mid-level. As this will be SCSI mid-level's last resort * of error handling, it will only return error if resetting of the adapter * is not successful; in all other cases, will return success. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_host_reset_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; int rc, ret = SUCCESS; lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "3172 SCSI layer issued Host Reset Data:\n"); lpfc_offline_prep(phba, LPFC_MBX_WAIT); lpfc_offline(phba); rc = lpfc_sli_brdrestart(phba); if (rc) goto error; /* Wait for successful restart of adapter */ if (phba->sli_rev < LPFC_SLI_REV4) { rc = lpfc_sli_chipset_init(phba); if (rc) goto error; } rc = lpfc_online(phba); if (rc) goto error; lpfc_unblock_mgmt_io(phba); return ret; error: lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "3323 Failed host reset\n"); lpfc_unblock_mgmt_io(phba); return FAILED; } /** * lpfc_slave_alloc - scsi_host_template slave_alloc entry point * @sdev: Pointer to scsi_device. * * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's * globally available list of scsi buffers. This routine also makes sure scsi * buffer is not allocated more than HBA limit conveyed to midlayer. This list * of scsi buffer exists for the lifetime of the driver. * * Return codes: * non-0 - Error * 0 - Success **/ static int lpfc_slave_alloc(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); uint32_t total = 0; uint32_t num_to_alloc = 0; int num_allocated = 0; uint32_t sdev_cnt; struct lpfc_device_data *device_data; unsigned long flags; struct lpfc_name target_wwpn; if (!rport || fc_remote_port_chkready(rport)) return -ENXIO; if (phba->cfg_fof) { /* * Check to see if the device data structure for the lun * exists. If not, create one. */ u64_to_wwn(rport->port_name, target_wwpn.u.wwn); spin_lock_irqsave(&phba->devicelock, flags); device_data = __lpfc_get_device_data(phba, &phba->luns, &vport->fc_portname, &target_wwpn, sdev->lun); if (!device_data) { spin_unlock_irqrestore(&phba->devicelock, flags); device_data = lpfc_create_device_data(phba, &vport->fc_portname, &target_wwpn, sdev->lun, phba->cfg_XLanePriority, true); if (!device_data) return -ENOMEM; spin_lock_irqsave(&phba->devicelock, flags); list_add_tail(&device_data->listentry, &phba->luns); } device_data->rport_data = rport->dd_data; device_data->available = true; spin_unlock_irqrestore(&phba->devicelock, flags); sdev->hostdata = device_data; } else { sdev->hostdata = rport->dd_data; } sdev_cnt = atomic_inc_return(&phba->sdev_cnt); /* For SLI4, all IO buffers are pre-allocated */ if (phba->sli_rev == LPFC_SLI_REV4) return 0; /* This code path is now ONLY for SLI3 adapters */ /* * Populate the cmds_per_lun count scsi_bufs into this host's globally * available list of scsi buffers. Don't allocate more than the * HBA limit conveyed to the midlayer via the host structure. The * formula accounts for the lun_queue_depth + error handlers + 1 * extra. This list of scsi bufs exists for the lifetime of the driver. */ total = phba->total_scsi_bufs; num_to_alloc = vport->cfg_lun_queue_depth + 2; /* If allocated buffers are enough do nothing */ if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total) return 0; /* Allow some exchanges to be available always to complete discovery */ if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0704 At limitation of %d preallocated " "command buffers\n", total); return 0; /* Allow some exchanges to be available always to complete discovery */ } else if (total + num_to_alloc > phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0705 Allocation request of %d " "command buffers will exceed max of %d. " "Reducing allocation request to %d.\n", num_to_alloc, phba->cfg_hba_queue_depth, (phba->cfg_hba_queue_depth - total)); num_to_alloc = phba->cfg_hba_queue_depth - total; } num_allocated = lpfc_new_scsi_buf_s3(vport, num_to_alloc); if (num_to_alloc != num_allocated) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0708 Allocation request of %d " "command buffers did not succeed. " "Allocated %d buffers.\n", num_to_alloc, num_allocated); } if (num_allocated > 0) phba->total_scsi_bufs += num_allocated; return 0; } /** * lpfc_slave_configure - scsi_host_template slave_configure entry point * @sdev: Pointer to scsi_device. * * This routine configures following items * - Tag command queuing support for @sdev if supported. * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. * * Return codes: * 0 - Success **/ static int lpfc_slave_configure(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; scsi_change_queue_depth(sdev, vport->cfg_lun_queue_depth); if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { lpfc_sli_handle_fast_ring_event(phba, &phba->sli.sli3_ring[LPFC_FCP_RING], HA_R0RE_REQ); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } return 0; } /** * lpfc_slave_destroy - slave_destroy entry point of SHT data structure * @sdev: Pointer to scsi_device. * * This routine sets @sdev hostatdata filed to null. **/ static void lpfc_slave_destroy(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; unsigned long flags; struct lpfc_device_data *device_data = sdev->hostdata; atomic_dec(&phba->sdev_cnt); if ((phba->cfg_fof) && (device_data)) { spin_lock_irqsave(&phba->devicelock, flags); device_data->available = false; if (!device_data->oas_enabled) lpfc_delete_device_data(phba, device_data); spin_unlock_irqrestore(&phba->devicelock, flags); } sdev->hostdata = NULL; return; } /** * lpfc_create_device_data - creates and initializes device data structure for OAS * @phba: Pointer to host bus adapter structure. * @vport_wwpn: Pointer to vport's wwpn information * @target_wwpn: Pointer to target's wwpn information * @lun: Lun on target * @pri: Priority * @atomic_create: Flag to indicate if memory should be allocated using the * GFP_ATOMIC flag or not. * * This routine creates a device data structure which will contain identifying * information for the device (host wwpn, target wwpn, lun), state of OAS, * whether or not the corresponding lun is available by the system, * and pointer to the rport data. * * Return codes: * NULL - Error * Pointer to lpfc_device_data - Success **/ struct lpfc_device_data* lpfc_create_device_data(struct lpfc_hba *phba, struct lpfc_name *vport_wwpn, struct lpfc_name *target_wwpn, uint64_t lun, uint32_t pri, bool atomic_create) { struct lpfc_device_data *lun_info; int memory_flags; if (unlikely(!phba) || !vport_wwpn || !target_wwpn || !(phba->cfg_fof)) return NULL; /* Attempt to create the device data to contain lun info */ if (atomic_create) memory_flags = GFP_ATOMIC; else memory_flags = GFP_KERNEL; lun_info = mempool_alloc(phba->device_data_mem_pool, memory_flags); if (!lun_info) return NULL; INIT_LIST_HEAD(&lun_info->listentry); lun_info->rport_data = NULL; memcpy(&lun_info->device_id.vport_wwpn, vport_wwpn, sizeof(struct lpfc_name)); memcpy(&lun_info->device_id.target_wwpn, target_wwpn, sizeof(struct lpfc_name)); lun_info->device_id.lun = lun; lun_info->oas_enabled = false; lun_info->priority = pri; lun_info->available = false; return lun_info; } /** * lpfc_delete_device_data - frees a device data structure for OAS * @phba: Pointer to host bus adapter structure. * @lun_info: Pointer to device data structure to free. * * This routine frees the previously allocated device data structure passed. * **/ void lpfc_delete_device_data(struct lpfc_hba *phba, struct lpfc_device_data *lun_info) { if (unlikely(!phba) || !lun_info || !(phba->cfg_fof)) return; if (!list_empty(&lun_info->listentry)) list_del(&lun_info->listentry); mempool_free(lun_info, phba->device_data_mem_pool); return; } /** * __lpfc_get_device_data - returns the device data for the specified lun * @phba: Pointer to host bus adapter structure. * @list: Point to list to search. * @vport_wwpn: Pointer to vport's wwpn information * @target_wwpn: Pointer to target's wwpn information * @lun: Lun on target * * This routine searches the list passed for the specified lun's device data. * This function does not hold locks, it is the responsibility of the caller * to ensure the proper lock is held before calling the function. * * Return codes: * NULL - Error * Pointer to lpfc_device_data - Success **/ struct lpfc_device_data* __lpfc_get_device_data(struct lpfc_hba *phba, struct list_head *list, struct lpfc_name *vport_wwpn, struct lpfc_name *target_wwpn, uint64_t lun) { struct lpfc_device_data *lun_info; if (unlikely(!phba) || !list || !vport_wwpn || !target_wwpn || !phba->cfg_fof) return NULL; /* Check to see if the lun is already enabled for OAS. */ list_for_each_entry(lun_info, list, listentry) { if ((memcmp(&lun_info->device_id.vport_wwpn, vport_wwpn, sizeof(struct lpfc_name)) == 0) && (memcmp(&lun_info->device_id.target_wwpn, target_wwpn, sizeof(struct lpfc_name)) == 0) && (lun_info->device_id.lun == lun)) return lun_info; } return NULL; } /** * lpfc_find_next_oas_lun - searches for the next oas lun * @phba: Pointer to host bus adapter structure. * @vport_wwpn: Pointer to vport's wwpn information * @target_wwpn: Pointer to target's wwpn information * @starting_lun: Pointer to the lun to start searching for * @found_vport_wwpn: Pointer to the found lun's vport wwpn information * @found_target_wwpn: Pointer to the found lun's target wwpn information * @found_lun: Pointer to the found lun. * @found_lun_status: Pointer to status of the found lun. * @found_lun_pri: Pointer to priority of the found lun. * * This routine searches the luns list for the specified lun * or the first lun for the vport/target. If the vport wwpn contains * a zero value then a specific vport is not specified. In this case * any vport which contains the lun will be considered a match. If the * target wwpn contains a zero value then a specific target is not specified. * In this case any target which contains the lun will be considered a * match. If the lun is found, the lun, vport wwpn, target wwpn and lun status * are returned. The function will also return the next lun if available. * If the next lun is not found, starting_lun parameter will be set to * NO_MORE_OAS_LUN. * * Return codes: * non-0 - Error * 0 - Success **/ bool lpfc_find_next_oas_lun(struct lpfc_hba *phba, struct lpfc_name *vport_wwpn, struct lpfc_name *target_wwpn, uint64_t *starting_lun, struct lpfc_name *found_vport_wwpn, struct lpfc_name *found_target_wwpn, uint64_t *found_lun, uint32_t *found_lun_status, uint32_t *found_lun_pri) { unsigned long flags; struct lpfc_device_data *lun_info; struct lpfc_device_id *device_id; uint64_t lun; bool found = false; if (unlikely(!phba) || !vport_wwpn || !target_wwpn || !starting_lun || !found_vport_wwpn || !found_target_wwpn || !found_lun || !found_lun_status || (*starting_lun == NO_MORE_OAS_LUN) || !phba->cfg_fof) return false; lun = *starting_lun; *found_lun = NO_MORE_OAS_LUN; *starting_lun = NO_MORE_OAS_LUN; /* Search for lun or the lun closet in value */ spin_lock_irqsave(&phba->devicelock, flags); list_for_each_entry(lun_info, &phba->luns, listentry) { if (((wwn_to_u64(vport_wwpn->u.wwn) == 0) || (memcmp(&lun_info->device_id.vport_wwpn, vport_wwpn, sizeof(struct lpfc_name)) == 0)) && ((wwn_to_u64(target_wwpn->u.wwn) == 0) || (memcmp(&lun_info->device_id.target_wwpn, target_wwpn, sizeof(struct lpfc_name)) == 0)) && (lun_info->oas_enabled)) { device_id = &lun_info->device_id; if ((!found) && ((lun == FIND_FIRST_OAS_LUN) || (device_id->lun == lun))) { *found_lun = device_id->lun; memcpy(found_vport_wwpn, &device_id->vport_wwpn, sizeof(struct lpfc_name)); memcpy(found_target_wwpn, &device_id->target_wwpn, sizeof(struct lpfc_name)); if (lun_info->available) *found_lun_status = OAS_LUN_STATUS_EXISTS; else *found_lun_status = 0; *found_lun_pri = lun_info->priority; if (phba->cfg_oas_flags & OAS_FIND_ANY_VPORT) memset(vport_wwpn, 0x0, sizeof(struct lpfc_name)); if (phba->cfg_oas_flags & OAS_FIND_ANY_TARGET) memset(target_wwpn, 0x0, sizeof(struct lpfc_name)); found = true; } else if (found) { *starting_lun = device_id->lun; memcpy(vport_wwpn, &device_id->vport_wwpn, sizeof(struct lpfc_name)); memcpy(target_wwpn, &device_id->target_wwpn, sizeof(struct lpfc_name)); break; } } } spin_unlock_irqrestore(&phba->devicelock, flags); return found; } /** * lpfc_enable_oas_lun - enables a lun for OAS operations * @phba: Pointer to host bus adapter structure. * @vport_wwpn: Pointer to vport's wwpn information * @target_wwpn: Pointer to target's wwpn information * @lun: Lun * @pri: Priority * * This routine enables a lun for oas operations. The routines does so by * doing the following : * * 1) Checks to see if the device data for the lun has been created. * 2) If found, sets the OAS enabled flag if not set and returns. * 3) Otherwise, creates a device data structure. * 4) If successfully created, indicates the device data is for an OAS lun, * indicates the lun is not available and add to the list of luns. * * Return codes: * false - Error * true - Success **/ bool lpfc_enable_oas_lun(struct lpfc_hba *phba, struct lpfc_name *vport_wwpn, struct lpfc_name *target_wwpn, uint64_t lun, uint8_t pri) { struct lpfc_device_data *lun_info; unsigned long flags; if (unlikely(!phba) || !vport_wwpn || !target_wwpn || !phba->cfg_fof) return false; spin_lock_irqsave(&phba->devicelock, flags); /* Check to see if the device data for the lun has been created */ lun_info = __lpfc_get_device_data(phba, &phba->luns, vport_wwpn, target_wwpn, lun); if (lun_info) { if (!lun_info->oas_enabled) lun_info->oas_enabled = true; lun_info->priority = pri; spin_unlock_irqrestore(&phba->devicelock, flags); return true; } /* Create an lun info structure and add to list of luns */ lun_info = lpfc_create_device_data(phba, vport_wwpn, target_wwpn, lun, pri, true); if (lun_info) { lun_info->oas_enabled = true; lun_info->priority = pri; lun_info->available = false; list_add_tail(&lun_info->listentry, &phba->luns); spin_unlock_irqrestore(&phba->devicelock, flags); return true; } spin_unlock_irqrestore(&phba->devicelock, flags); return false; } /** * lpfc_disable_oas_lun - disables a lun for OAS operations * @phba: Pointer to host bus adapter structure. * @vport_wwpn: Pointer to vport's wwpn information * @target_wwpn: Pointer to target's wwpn information * @lun: Lun * @pri: Priority * * This routine disables a lun for oas operations. The routines does so by * doing the following : * * 1) Checks to see if the device data for the lun is created. * 2) If present, clears the flag indicating this lun is for OAS. * 3) If the lun is not available by the system, the device data is * freed. * * Return codes: * false - Error * true - Success **/ bool lpfc_disable_oas_lun(struct lpfc_hba *phba, struct lpfc_name *vport_wwpn, struct lpfc_name *target_wwpn, uint64_t lun, uint8_t pri) { struct lpfc_device_data *lun_info; unsigned long flags; if (unlikely(!phba) || !vport_wwpn || !target_wwpn || !phba->cfg_fof) return false; spin_lock_irqsave(&phba->devicelock, flags); /* Check to see if the lun is available. */ lun_info = __lpfc_get_device_data(phba, &phba->luns, vport_wwpn, target_wwpn, lun); if (lun_info) { lun_info->oas_enabled = false; lun_info->priority = pri; if (!lun_info->available) lpfc_delete_device_data(phba, lun_info); spin_unlock_irqrestore(&phba->devicelock, flags); return true; } spin_unlock_irqrestore(&phba->devicelock, flags); return false; } static int lpfc_no_command(struct Scsi_Host *shost, struct scsi_cmnd *cmnd) { return SCSI_MLQUEUE_HOST_BUSY; } static int lpfc_no_slave(struct scsi_device *sdev) { return -ENODEV; } struct scsi_host_template lpfc_template_nvme = { .module = THIS_MODULE, .name = LPFC_DRIVER_NAME, .proc_name = LPFC_DRIVER_NAME, .info = lpfc_info, .queuecommand = lpfc_no_command, .slave_alloc = lpfc_no_slave, .slave_configure = lpfc_no_slave, .scan_finished = lpfc_scan_finished, .this_id = -1, .sg_tablesize = 1, .cmd_per_lun = 1, .shost_groups = lpfc_hba_groups, .max_sectors = 0xFFFFFFFF, .vendor_id = LPFC_NL_VENDOR_ID, .track_queue_depth = 0, }; struct scsi_host_template lpfc_template = { .module = THIS_MODULE, .name = LPFC_DRIVER_NAME, .proc_name = LPFC_DRIVER_NAME, .info = lpfc_info, .queuecommand = lpfc_queuecommand, .eh_timed_out = fc_eh_timed_out, .eh_should_retry_cmd = fc_eh_should_retry_cmd, .eh_abort_handler = lpfc_abort_handler, .eh_device_reset_handler = lpfc_device_reset_handler, .eh_target_reset_handler = lpfc_target_reset_handler, .eh_host_reset_handler = lpfc_host_reset_handler, .slave_alloc = lpfc_slave_alloc, .slave_configure = lpfc_slave_configure, .slave_destroy = lpfc_slave_destroy, .scan_finished = lpfc_scan_finished, .this_id = -1, .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, .cmd_per_lun = LPFC_CMD_PER_LUN, .shost_groups = lpfc_hba_groups, .max_sectors = 0xFFFFFFFF, .vendor_id = LPFC_NL_VENDOR_ID, .change_queue_depth = scsi_change_queue_depth, .track_queue_depth = 1, }; struct scsi_host_template lpfc_vport_template = { .module = THIS_MODULE, .name = LPFC_DRIVER_NAME, .proc_name = LPFC_DRIVER_NAME, .info = lpfc_info, .queuecommand = lpfc_queuecommand, .eh_timed_out = fc_eh_timed_out, .eh_should_retry_cmd = fc_eh_should_retry_cmd, .eh_abort_handler = lpfc_abort_handler, .eh_device_reset_handler = lpfc_device_reset_handler, .eh_target_reset_handler = lpfc_target_reset_handler, .eh_bus_reset_handler = NULL, .eh_host_reset_handler = NULL, .slave_alloc = lpfc_slave_alloc, .slave_configure = lpfc_slave_configure, .slave_destroy = lpfc_slave_destroy, .scan_finished = lpfc_scan_finished, .this_id = -1, .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, .cmd_per_lun = LPFC_CMD_PER_LUN, .shost_groups = lpfc_vport_groups, .max_sectors = 0xFFFFFFFF, .vendor_id = 0, .change_queue_depth = scsi_change_queue_depth, .track_queue_depth = 1, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1