Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Herrenschmidt | 5109 | 47.77% | 7 | 8.05% |
Linus Torvalds (pre-git) | 4810 | 44.97% | 38 | 43.68% |
Paul Mackerras | 335 | 3.13% | 4 | 4.60% |
Linus Torvalds | 86 | 0.80% | 4 | 4.60% |
FUJITA Tomonori | 54 | 0.50% | 1 | 1.15% |
Finn Thain | 44 | 0.41% | 2 | 2.30% |
Bart Van Assche | 30 | 0.28% | 3 | 3.45% |
Al Viro | 28 | 0.26% | 1 | 1.15% |
Jeff Garzik | 26 | 0.24% | 2 | 2.30% |
Hannes Reinecke | 23 | 0.22% | 2 | 2.30% |
David Gibson | 21 | 0.20% | 1 | 1.15% |
David Brownell | 20 | 0.19% | 1 | 1.15% |
Randy Dunlap | 20 | 0.19% | 2 | 2.30% |
Christoph Hellwig | 16 | 0.15% | 3 | 3.45% |
Adam Radford | 16 | 0.15% | 1 | 1.15% |
Olaf Hering | 13 | 0.12% | 1 | 1.15% |
Jeff Mahoney | 10 | 0.09% | 1 | 1.15% |
Alan Stern | 8 | 0.07% | 1 | 1.15% |
Maximilian Attems | 7 | 0.07% | 1 | 1.15% |
Jeremy Kerr | 4 | 0.04% | 1 | 1.15% |
Rafael J. Wysocki | 3 | 0.03% | 1 | 1.15% |
Mike Rapoport | 3 | 0.03% | 1 | 1.15% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 1.15% |
Adrian Bunk | 1 | 0.01% | 1 | 1.15% |
Jean Delvare | 1 | 0.01% | 1 | 1.15% |
Christophe Leroy | 1 | 0.01% | 1 | 1.15% |
Stephen Rothwell | 1 | 0.01% | 1 | 1.15% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.15% |
Pavel Machek | 1 | 0.01% | 1 | 1.15% |
Luis R. Rodriguez | 1 | 0.01% | 1 | 1.15% |
Total | 10695 | 87 |
// SPDX-License-Identifier: GPL-2.0-only /* * SCSI low-level driver for the MESH (Macintosh Enhanced SCSI Hardware) * bus adaptor found on Power Macintosh computers. * We assume the MESH is connected to a DBDMA (descriptor-based DMA) * controller. * * Paul Mackerras, August 1996. * Copyright (C) 1996 Paul Mackerras. * * Apr. 21 2002 - BenH Rework bus reset code for new error handler * Add delay after initial bus reset * Add module parameters * * Sep. 27 2003 - BenH Move to new driver model, fix some write posting * issues * To do: * - handle aborts correctly * - retry arbitration if lost (unless higher levels do this for us) * - power down the chip when no device is detected */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/types.h> #include <linux/string.h> #include <linux/blkdev.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/interrupt.h> #include <linux/reboot.h> #include <linux/spinlock.h> #include <linux/pci.h> #include <linux/pgtable.h> #include <asm/dbdma.h> #include <asm/io.h> #include <asm/prom.h> #include <asm/irq.h> #include <asm/hydra.h> #include <asm/processor.h> #include <asm/setup.h> #include <asm/pmac_feature.h> #include <asm/macio.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include "mesh.h" #if 1 #undef KERN_DEBUG #define KERN_DEBUG KERN_WARNING #endif MODULE_AUTHOR("Paul Mackerras (paulus@samba.org)"); MODULE_DESCRIPTION("PowerMac MESH SCSI driver"); MODULE_LICENSE("GPL"); static int sync_rate = CONFIG_SCSI_MESH_SYNC_RATE; static int sync_targets = 0xff; static int resel_targets = 0xff; static int debug_targets = 0; /* print debug for these targets */ static int init_reset_delay = CONFIG_SCSI_MESH_RESET_DELAY_MS; module_param(sync_rate, int, 0); MODULE_PARM_DESC(sync_rate, "Synchronous rate (0..10, 0=async)"); module_param(sync_targets, int, 0); MODULE_PARM_DESC(sync_targets, "Bitmask of targets allowed to set synchronous"); module_param(resel_targets, int, 0); MODULE_PARM_DESC(resel_targets, "Bitmask of targets allowed to set disconnect"); module_param(debug_targets, int, 0644); MODULE_PARM_DESC(debug_targets, "Bitmask of debugged targets"); module_param(init_reset_delay, int, 0); MODULE_PARM_DESC(init_reset_delay, "Initial bus reset delay (0=no reset)"); static int mesh_sync_period = 100; static int mesh_sync_offset = 0; static unsigned char use_active_neg = 0; /* bit mask for SEQ_ACTIVE_NEG if used */ #define ALLOW_SYNC(tgt) ((sync_targets >> (tgt)) & 1) #define ALLOW_RESEL(tgt) ((resel_targets >> (tgt)) & 1) #define ALLOW_DEBUG(tgt) ((debug_targets >> (tgt)) & 1) #define DEBUG_TARGET(cmd) ((cmd) && ALLOW_DEBUG((cmd)->device->id)) #undef MESH_DBG #define N_DBG_LOG 50 #define N_DBG_SLOG 20 #define NUM_DBG_EVENTS 13 #undef DBG_USE_TB /* bombs on 601 */ struct dbglog { char *fmt; u32 tb; u8 phase; u8 bs0; u8 bs1; u8 tgt; int d; }; enum mesh_phase { idle, arbitrating, selecting, commanding, dataing, statusing, busfreeing, disconnecting, reselecting, sleeping }; enum msg_phase { msg_none, msg_out, msg_out_xxx, msg_out_last, msg_in, msg_in_bad, }; enum sdtr_phase { do_sdtr, sdtr_sent, sdtr_done }; struct mesh_target { enum sdtr_phase sdtr_state; int sync_params; int data_goes_out; /* guess as to data direction */ struct scsi_cmnd *current_req; u32 saved_ptr; #ifdef MESH_DBG int log_ix; int n_log; struct dbglog log[N_DBG_LOG]; #endif }; struct mesh_state { volatile struct mesh_regs __iomem *mesh; int meshintr; volatile struct dbdma_regs __iomem *dma; int dmaintr; struct Scsi_Host *host; struct mesh_state *next; struct scsi_cmnd *request_q; struct scsi_cmnd *request_qtail; enum mesh_phase phase; /* what we're currently trying to do */ enum msg_phase msgphase; int conn_tgt; /* target we're connected to */ struct scsi_cmnd *current_req; /* req we're currently working on */ int data_ptr; int dma_started; int dma_count; int stat; int aborting; int expect_reply; int n_msgin; u8 msgin[16]; int n_msgout; int last_n_msgout; u8 msgout[16]; struct dbdma_cmd *dma_cmds; /* space for dbdma commands, aligned */ dma_addr_t dma_cmd_bus; void *dma_cmd_space; int dma_cmd_size; int clk_freq; struct mesh_target tgts[8]; struct macio_dev *mdev; struct pci_dev* pdev; #ifdef MESH_DBG int log_ix; int n_log; struct dbglog log[N_DBG_SLOG]; #endif }; /* * Driver is too messy, we need a few prototypes... */ static void mesh_done(struct mesh_state *ms, int start_next); static void mesh_interrupt(struct mesh_state *ms); static void cmd_complete(struct mesh_state *ms); static void set_dma_cmds(struct mesh_state *ms, struct scsi_cmnd *cmd); static void halt_dma(struct mesh_state *ms); static void phase_mismatch(struct mesh_state *ms); /* * Some debugging & logging routines */ #ifdef MESH_DBG static inline u32 readtb(void) { u32 tb; #ifdef DBG_USE_TB /* Beware: if you enable this, it will crash on 601s. */ asm ("mftb %0" : "=r" (tb) : ); #else tb = 0; #endif return tb; } static void dlog(struct mesh_state *ms, char *fmt, int a) { struct mesh_target *tp = &ms->tgts[ms->conn_tgt]; struct dbglog *tlp, *slp; tlp = &tp->log[tp->log_ix]; slp = &ms->log[ms->log_ix]; tlp->fmt = fmt; tlp->tb = readtb(); tlp->phase = (ms->msgphase << 4) + ms->phase; tlp->bs0 = ms->mesh->bus_status0; tlp->bs1 = ms->mesh->bus_status1; tlp->tgt = ms->conn_tgt; tlp->d = a; *slp = *tlp; if (++tp->log_ix >= N_DBG_LOG) tp->log_ix = 0; if (tp->n_log < N_DBG_LOG) ++tp->n_log; if (++ms->log_ix >= N_DBG_SLOG) ms->log_ix = 0; if (ms->n_log < N_DBG_SLOG) ++ms->n_log; } static void dumplog(struct mesh_state *ms, int t) { struct mesh_target *tp = &ms->tgts[t]; struct dbglog *lp; int i; if (tp->n_log == 0) return; i = tp->log_ix - tp->n_log; if (i < 0) i += N_DBG_LOG; tp->n_log = 0; do { lp = &tp->log[i]; printk(KERN_DEBUG "mesh log %d: bs=%.2x%.2x ph=%.2x ", t, lp->bs1, lp->bs0, lp->phase); #ifdef DBG_USE_TB printk("tb=%10u ", lp->tb); #endif printk(lp->fmt, lp->d); printk("\n"); if (++i >= N_DBG_LOG) i = 0; } while (i != tp->log_ix); } static void dumpslog(struct mesh_state *ms) { struct dbglog *lp; int i; if (ms->n_log == 0) return; i = ms->log_ix - ms->n_log; if (i < 0) i += N_DBG_SLOG; ms->n_log = 0; do { lp = &ms->log[i]; printk(KERN_DEBUG "mesh log: bs=%.2x%.2x ph=%.2x t%d ", lp->bs1, lp->bs0, lp->phase, lp->tgt); #ifdef DBG_USE_TB printk("tb=%10u ", lp->tb); #endif printk(lp->fmt, lp->d); printk("\n"); if (++i >= N_DBG_SLOG) i = 0; } while (i != ms->log_ix); } #else static inline void dlog(struct mesh_state *ms, char *fmt, int a) {} static inline void dumplog(struct mesh_state *ms, int tgt) {} static inline void dumpslog(struct mesh_state *ms) {} #endif /* MESH_DBG */ #define MKWORD(a, b, c, d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) static void mesh_dump_regs(struct mesh_state *ms) { volatile struct mesh_regs __iomem *mr = ms->mesh; volatile struct dbdma_regs __iomem *md = ms->dma; int t; struct mesh_target *tp; printk(KERN_DEBUG "mesh: state at %p, regs at %p, dma at %p\n", ms, mr, md); printk(KERN_DEBUG " ct=%4x seq=%2x bs=%4x fc=%2x " "exc=%2x err=%2x im=%2x int=%2x sp=%2x\n", (mr->count_hi << 8) + mr->count_lo, mr->sequence, (mr->bus_status1 << 8) + mr->bus_status0, mr->fifo_count, mr->exception, mr->error, mr->intr_mask, mr->interrupt, mr->sync_params); while(in_8(&mr->fifo_count)) printk(KERN_DEBUG " fifo data=%.2x\n",in_8(&mr->fifo)); printk(KERN_DEBUG " dma stat=%x cmdptr=%x\n", in_le32(&md->status), in_le32(&md->cmdptr)); printk(KERN_DEBUG " phase=%d msgphase=%d conn_tgt=%d data_ptr=%d\n", ms->phase, ms->msgphase, ms->conn_tgt, ms->data_ptr); printk(KERN_DEBUG " dma_st=%d dma_ct=%d n_msgout=%d\n", ms->dma_started, ms->dma_count, ms->n_msgout); for (t = 0; t < 8; ++t) { tp = &ms->tgts[t]; if (tp->current_req == NULL) continue; printk(KERN_DEBUG " target %d: req=%p goes_out=%d saved_ptr=%d\n", t, tp->current_req, tp->data_goes_out, tp->saved_ptr); } } /* * Flush write buffers on the bus path to the mesh */ static inline void mesh_flush_io(volatile struct mesh_regs __iomem *mr) { (void)in_8(&mr->mesh_id); } /* Called with meshinterrupt disabled, initialize the chipset * and eventually do the initial bus reset. The lock must not be * held since we can schedule. */ static void mesh_init(struct mesh_state *ms) { volatile struct mesh_regs __iomem *mr = ms->mesh; volatile struct dbdma_regs __iomem *md = ms->dma; mesh_flush_io(mr); udelay(100); /* Reset controller */ out_le32(&md->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* stop dma */ out_8(&mr->exception, 0xff); /* clear all exception bits */ out_8(&mr->error, 0xff); /* clear all error bits */ out_8(&mr->sequence, SEQ_RESETMESH); mesh_flush_io(mr); udelay(10); out_8(&mr->intr_mask, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); out_8(&mr->source_id, ms->host->this_id); out_8(&mr->sel_timeout, 25); /* 250ms */ out_8(&mr->sync_params, ASYNC_PARAMS); if (init_reset_delay) { printk(KERN_INFO "mesh: performing initial bus reset...\n"); /* Reset bus */ out_8(&mr->bus_status1, BS1_RST); /* assert RST */ mesh_flush_io(mr); udelay(30); /* leave it on for >= 25us */ out_8(&mr->bus_status1, 0); /* negate RST */ mesh_flush_io(mr); /* Wait for bus to come back */ msleep(init_reset_delay); } /* Reconfigure controller */ out_8(&mr->interrupt, 0xff); /* clear all interrupt bits */ out_8(&mr->sequence, SEQ_FLUSHFIFO); mesh_flush_io(mr); udelay(1); out_8(&mr->sync_params, ASYNC_PARAMS); out_8(&mr->sequence, SEQ_ENBRESEL); ms->phase = idle; ms->msgphase = msg_none; } static void mesh_start_cmd(struct mesh_state *ms, struct scsi_cmnd *cmd) { volatile struct mesh_regs __iomem *mr = ms->mesh; int t, id; id = cmd->device->id; ms->current_req = cmd; ms->tgts[id].data_goes_out = cmd->sc_data_direction == DMA_TO_DEVICE; ms->tgts[id].current_req = cmd; #if 1 if (DEBUG_TARGET(cmd)) { int i; printk(KERN_DEBUG "mesh_start: %p tgt=%d cmd=", cmd, id); for (i = 0; i < cmd->cmd_len; ++i) printk(" %x", cmd->cmnd[i]); printk(" use_sg=%d buffer=%p bufflen=%u\n", scsi_sg_count(cmd), scsi_sglist(cmd), scsi_bufflen(cmd)); } #endif if (ms->dma_started) panic("mesh: double DMA start !\n"); ms->phase = arbitrating; ms->msgphase = msg_none; ms->data_ptr = 0; ms->dma_started = 0; ms->n_msgout = 0; ms->last_n_msgout = 0; ms->expect_reply = 0; ms->conn_tgt = id; ms->tgts[id].saved_ptr = 0; ms->stat = DID_OK; ms->aborting = 0; #ifdef MESH_DBG ms->tgts[id].n_log = 0; dlog(ms, "start cmd=%x", (int) cmd); #endif /* Off we go */ dlog(ms, "about to arb, intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); out_8(&mr->interrupt, INT_CMDDONE); out_8(&mr->sequence, SEQ_ENBRESEL); mesh_flush_io(mr); udelay(1); if (in_8(&mr->bus_status1) & (BS1_BSY | BS1_SEL)) { /* * Some other device has the bus or is arbitrating for it - * probably a target which is about to reselect us. */ dlog(ms, "busy b4 arb, intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); for (t = 100; t > 0; --t) { if ((in_8(&mr->bus_status1) & (BS1_BSY | BS1_SEL)) == 0) break; if (in_8(&mr->interrupt) != 0) { dlog(ms, "intr b4 arb, intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); mesh_interrupt(ms); if (ms->phase != arbitrating) return; } udelay(1); } if (in_8(&mr->bus_status1) & (BS1_BSY | BS1_SEL)) { /* XXX should try again in a little while */ ms->stat = DID_BUS_BUSY; ms->phase = idle; mesh_done(ms, 0); return; } } /* * Apparently the mesh has a bug where it will assert both its * own bit and the target's bit on the bus during arbitration. */ out_8(&mr->dest_id, mr->source_id); /* * There appears to be a race with reselection sometimes, * where a target reselects us just as we issue the * arbitrate command. It seems that then the arbitrate * command just hangs waiting for the bus to be free * without giving us a reselection exception. * The only way I have found to get it to respond correctly * is this: disable reselection before issuing the arbitrate * command, then after issuing it, if it looks like a target * is trying to reselect us, reset the mesh and then enable * reselection. */ out_8(&mr->sequence, SEQ_DISRESEL); if (in_8(&mr->interrupt) != 0) { dlog(ms, "intr after disresel, intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); mesh_interrupt(ms); if (ms->phase != arbitrating) return; dlog(ms, "after intr after disresel, intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); } out_8(&mr->sequence, SEQ_ARBITRATE); for (t = 230; t > 0; --t) { if (in_8(&mr->interrupt) != 0) break; udelay(1); } dlog(ms, "after arb, intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); if (in_8(&mr->interrupt) == 0 && (in_8(&mr->bus_status1) & BS1_SEL) && (in_8(&mr->bus_status0) & BS0_IO)) { /* looks like a reselection - try resetting the mesh */ dlog(ms, "resel? after arb, intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); out_8(&mr->sequence, SEQ_RESETMESH); mesh_flush_io(mr); udelay(10); out_8(&mr->interrupt, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); out_8(&mr->intr_mask, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); out_8(&mr->sequence, SEQ_ENBRESEL); mesh_flush_io(mr); for (t = 10; t > 0 && in_8(&mr->interrupt) == 0; --t) udelay(1); dlog(ms, "tried reset after arb, intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); #ifndef MESH_MULTIPLE_HOSTS if (in_8(&mr->interrupt) == 0 && (in_8(&mr->bus_status1) & BS1_SEL) && (in_8(&mr->bus_status0) & BS0_IO)) { printk(KERN_ERR "mesh: controller not responding" " to reselection!\n"); /* * If this is a target reselecting us, and the * mesh isn't responding, the higher levels of * the scsi code will eventually time out and * reset the bus. */ } #endif } } /* * Start the next command for a MESH. * Should be called with interrupts disabled. */ static void mesh_start(struct mesh_state *ms) { struct scsi_cmnd *cmd, *prev, *next; if (ms->phase != idle || ms->current_req != NULL) { printk(KERN_ERR "inappropriate mesh_start (phase=%d, ms=%p)", ms->phase, ms); return; } while (ms->phase == idle) { prev = NULL; for (cmd = ms->request_q; ; cmd = (struct scsi_cmnd *) cmd->host_scribble) { if (cmd == NULL) return; if (ms->tgts[cmd->device->id].current_req == NULL) break; prev = cmd; } next = (struct scsi_cmnd *) cmd->host_scribble; if (prev == NULL) ms->request_q = next; else prev->host_scribble = (void *) next; if (next == NULL) ms->request_qtail = prev; mesh_start_cmd(ms, cmd); } } static void mesh_done(struct mesh_state *ms, int start_next) { struct scsi_cmnd *cmd; struct mesh_target *tp = &ms->tgts[ms->conn_tgt]; cmd = ms->current_req; ms->current_req = NULL; tp->current_req = NULL; if (cmd) { struct mesh_cmd_priv *mcmd = mesh_priv(cmd); set_host_byte(cmd, ms->stat); set_status_byte(cmd, mcmd->status); if (ms->stat == DID_OK) scsi_msg_to_host_byte(cmd, mcmd->message); if (DEBUG_TARGET(cmd)) { printk(KERN_DEBUG "mesh_done: result = %x, data_ptr=%d, buflen=%d\n", cmd->result, ms->data_ptr, scsi_bufflen(cmd)); #if 0 /* needs to use sg? */ if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12 || cmd->cmnd[0] == 3) && cmd->request_buffer != 0) { unsigned char *b = cmd->request_buffer; printk(KERN_DEBUG "buffer = %x %x %x %x %x %x %x %x\n", b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]); } #endif } mcmd->this_residual -= ms->data_ptr; scsi_done(cmd); } if (start_next) { out_8(&ms->mesh->sequence, SEQ_ENBRESEL); mesh_flush_io(ms->mesh); udelay(1); ms->phase = idle; mesh_start(ms); } } static inline void add_sdtr_msg(struct mesh_state *ms) { int i = ms->n_msgout; ms->msgout[i] = EXTENDED_MESSAGE; ms->msgout[i+1] = 3; ms->msgout[i+2] = EXTENDED_SDTR; ms->msgout[i+3] = mesh_sync_period/4; ms->msgout[i+4] = (ALLOW_SYNC(ms->conn_tgt)? mesh_sync_offset: 0); ms->n_msgout = i + 5; } static void set_sdtr(struct mesh_state *ms, int period, int offset) { struct mesh_target *tp = &ms->tgts[ms->conn_tgt]; volatile struct mesh_regs __iomem *mr = ms->mesh; int v, tr; tp->sdtr_state = sdtr_done; if (offset == 0) { /* asynchronous */ if (SYNC_OFF(tp->sync_params)) printk(KERN_INFO "mesh: target %d now asynchronous\n", ms->conn_tgt); tp->sync_params = ASYNC_PARAMS; out_8(&mr->sync_params, ASYNC_PARAMS); return; } /* * We need to compute ceil(clk_freq * period / 500e6) - 2 * without incurring overflow. */ v = (ms->clk_freq / 5000) * period; if (v <= 250000) { /* special case: sync_period == 5 * clk_period */ v = 0; /* units of tr are 100kB/s */ tr = (ms->clk_freq + 250000) / 500000; } else { /* sync_period == (v + 2) * 2 * clk_period */ v = (v + 99999) / 100000 - 2; if (v > 15) v = 15; /* oops */ tr = ((ms->clk_freq / (v + 2)) + 199999) / 200000; } if (offset > 15) offset = 15; /* can't happen */ tp->sync_params = SYNC_PARAMS(offset, v); out_8(&mr->sync_params, tp->sync_params); printk(KERN_INFO "mesh: target %d synchronous at %d.%d MB/s\n", ms->conn_tgt, tr/10, tr%10); } static void start_phase(struct mesh_state *ms) { int i, seq, nb; volatile struct mesh_regs __iomem *mr = ms->mesh; volatile struct dbdma_regs __iomem *md = ms->dma; struct scsi_cmnd *cmd = ms->current_req; struct mesh_target *tp = &ms->tgts[ms->conn_tgt]; dlog(ms, "start_phase nmo/exc/fc/seq = %.8x", MKWORD(ms->n_msgout, mr->exception, mr->fifo_count, mr->sequence)); out_8(&mr->interrupt, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); seq = use_active_neg + (ms->n_msgout? SEQ_ATN: 0); switch (ms->msgphase) { case msg_none: break; case msg_in: out_8(&mr->count_hi, 0); out_8(&mr->count_lo, 1); out_8(&mr->sequence, SEQ_MSGIN + seq); ms->n_msgin = 0; return; case msg_out: /* * To make sure ATN drops before we assert ACK for * the last byte of the message, we have to do the * last byte specially. */ if (ms->n_msgout <= 0) { printk(KERN_ERR "mesh: msg_out but n_msgout=%d\n", ms->n_msgout); mesh_dump_regs(ms); ms->msgphase = msg_none; break; } if (ALLOW_DEBUG(ms->conn_tgt)) { printk(KERN_DEBUG "mesh: sending %d msg bytes:", ms->n_msgout); for (i = 0; i < ms->n_msgout; ++i) printk(" %x", ms->msgout[i]); printk("\n"); } dlog(ms, "msgout msg=%.8x", MKWORD(ms->n_msgout, ms->msgout[0], ms->msgout[1], ms->msgout[2])); out_8(&mr->count_hi, 0); out_8(&mr->sequence, SEQ_FLUSHFIFO); mesh_flush_io(mr); udelay(1); /* * If ATN is not already asserted, we assert it, then * issue a SEQ_MSGOUT to get the mesh to drop ACK. */ if ((in_8(&mr->bus_status0) & BS0_ATN) == 0) { dlog(ms, "bus0 was %.2x explicitly asserting ATN", mr->bus_status0); out_8(&mr->bus_status0, BS0_ATN); /* explicit ATN */ mesh_flush_io(mr); udelay(1); out_8(&mr->count_lo, 1); out_8(&mr->sequence, SEQ_MSGOUT + seq); out_8(&mr->bus_status0, 0); /* release explicit ATN */ dlog(ms,"hace: after explicit ATN bus0=%.2x",mr->bus_status0); } if (ms->n_msgout == 1) { /* * We can't issue the SEQ_MSGOUT without ATN * until the target has asserted REQ. The logic * in cmd_complete handles both situations: * REQ already asserted or not. */ cmd_complete(ms); } else { out_8(&mr->count_lo, ms->n_msgout - 1); out_8(&mr->sequence, SEQ_MSGOUT + seq); for (i = 0; i < ms->n_msgout - 1; ++i) out_8(&mr->fifo, ms->msgout[i]); } return; default: printk(KERN_ERR "mesh bug: start_phase msgphase=%d\n", ms->msgphase); } switch (ms->phase) { case selecting: out_8(&mr->dest_id, ms->conn_tgt); out_8(&mr->sequence, SEQ_SELECT + SEQ_ATN); break; case commanding: out_8(&mr->sync_params, tp->sync_params); out_8(&mr->count_hi, 0); if (cmd) { out_8(&mr->count_lo, cmd->cmd_len); out_8(&mr->sequence, SEQ_COMMAND + seq); for (i = 0; i < cmd->cmd_len; ++i) out_8(&mr->fifo, cmd->cmnd[i]); } else { out_8(&mr->count_lo, 6); out_8(&mr->sequence, SEQ_COMMAND + seq); for (i = 0; i < 6; ++i) out_8(&mr->fifo, 0); } break; case dataing: /* transfer data, if any */ if (!ms->dma_started) { set_dma_cmds(ms, cmd); out_le32(&md->cmdptr, virt_to_phys(ms->dma_cmds)); out_le32(&md->control, (RUN << 16) | RUN); ms->dma_started = 1; } nb = ms->dma_count; if (nb > 0xfff0) nb = 0xfff0; ms->dma_count -= nb; ms->data_ptr += nb; out_8(&mr->count_lo, nb); out_8(&mr->count_hi, nb >> 8); out_8(&mr->sequence, (tp->data_goes_out? SEQ_DATAOUT: SEQ_DATAIN) + SEQ_DMA_MODE + seq); break; case statusing: out_8(&mr->count_hi, 0); out_8(&mr->count_lo, 1); out_8(&mr->sequence, SEQ_STATUS + seq); break; case busfreeing: case disconnecting: out_8(&mr->sequence, SEQ_ENBRESEL); mesh_flush_io(mr); udelay(1); dlog(ms, "enbresel intr/exc/err/fc=%.8x", MKWORD(mr->interrupt, mr->exception, mr->error, mr->fifo_count)); out_8(&mr->sequence, SEQ_BUSFREE); break; default: printk(KERN_ERR "mesh: start_phase called with phase=%d\n", ms->phase); dumpslog(ms); } } static inline void get_msgin(struct mesh_state *ms) { volatile struct mesh_regs __iomem *mr = ms->mesh; int i, n; n = mr->fifo_count; if (n != 0) { i = ms->n_msgin; ms->n_msgin = i + n; for (; n > 0; --n) ms->msgin[i++] = in_8(&mr->fifo); } } static inline int msgin_length(struct mesh_state *ms) { int b, n; n = 1; if (ms->n_msgin > 0) { b = ms->msgin[0]; if (b == 1) { /* extended message */ n = ms->n_msgin < 2? 2: ms->msgin[1] + 2; } else if (0x20 <= b && b <= 0x2f) { /* 2-byte message */ n = 2; } } return n; } static void reselected(struct mesh_state *ms) { volatile struct mesh_regs __iomem *mr = ms->mesh; struct scsi_cmnd *cmd; struct mesh_target *tp; int b, t, prev; switch (ms->phase) { case idle: break; case arbitrating: if ((cmd = ms->current_req) != NULL) { /* put the command back on the queue */ cmd->host_scribble = (void *) ms->request_q; if (ms->request_q == NULL) ms->request_qtail = cmd; ms->request_q = cmd; tp = &ms->tgts[cmd->device->id]; tp->current_req = NULL; } break; case busfreeing: ms->phase = reselecting; mesh_done(ms, 0); break; case disconnecting: break; default: printk(KERN_ERR "mesh: reselected in phase %d/%d tgt %d\n", ms->msgphase, ms->phase, ms->conn_tgt); dumplog(ms, ms->conn_tgt); dumpslog(ms); } if (ms->dma_started) { printk(KERN_ERR "mesh: reselected with DMA started !\n"); halt_dma(ms); } ms->current_req = NULL; ms->phase = dataing; ms->msgphase = msg_in; ms->n_msgout = 0; ms->last_n_msgout = 0; prev = ms->conn_tgt; /* * We seem to get abortive reselections sometimes. */ while ((in_8(&mr->bus_status1) & BS1_BSY) == 0) { static int mesh_aborted_resels; mesh_aborted_resels++; out_8(&mr->interrupt, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); mesh_flush_io(mr); udelay(1); out_8(&mr->sequence, SEQ_ENBRESEL); mesh_flush_io(mr); udelay(5); dlog(ms, "extra resel err/exc/fc = %.6x", MKWORD(0, mr->error, mr->exception, mr->fifo_count)); } out_8(&mr->interrupt, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); mesh_flush_io(mr); udelay(1); out_8(&mr->sequence, SEQ_ENBRESEL); mesh_flush_io(mr); udelay(1); out_8(&mr->sync_params, ASYNC_PARAMS); /* * Find out who reselected us. */ if (in_8(&mr->fifo_count) == 0) { printk(KERN_ERR "mesh: reselection but nothing in fifo?\n"); ms->conn_tgt = ms->host->this_id; goto bogus; } /* get the last byte in the fifo */ do { b = in_8(&mr->fifo); dlog(ms, "reseldata %x", b); } while (in_8(&mr->fifo_count)); for (t = 0; t < 8; ++t) if ((b & (1 << t)) != 0 && t != ms->host->this_id) break; if (b != (1 << t) + (1 << ms->host->this_id)) { printk(KERN_ERR "mesh: bad reselection data %x\n", b); ms->conn_tgt = ms->host->this_id; goto bogus; } /* * Set up to continue with that target's transfer. */ ms->conn_tgt = t; tp = &ms->tgts[t]; out_8(&mr->sync_params, tp->sync_params); if (ALLOW_DEBUG(t)) { printk(KERN_DEBUG "mesh: reselected by target %d\n", t); printk(KERN_DEBUG "mesh: saved_ptr=%x goes_out=%d cmd=%p\n", tp->saved_ptr, tp->data_goes_out, tp->current_req); } ms->current_req = tp->current_req; if (tp->current_req == NULL) { printk(KERN_ERR "mesh: reselected by tgt %d but no cmd!\n", t); goto bogus; } ms->data_ptr = tp->saved_ptr; dlog(ms, "resel prev tgt=%d", prev); dlog(ms, "resel err/exc=%.4x", MKWORD(0, 0, mr->error, mr->exception)); start_phase(ms); return; bogus: dumplog(ms, ms->conn_tgt); dumpslog(ms); ms->data_ptr = 0; ms->aborting = 1; start_phase(ms); } static void do_abort(struct mesh_state *ms) { ms->msgout[0] = ABORT; ms->n_msgout = 1; ms->aborting = 1; ms->stat = DID_ABORT; dlog(ms, "abort", 0); } static void handle_reset(struct mesh_state *ms) { int tgt; struct mesh_target *tp; struct scsi_cmnd *cmd; volatile struct mesh_regs __iomem *mr = ms->mesh; for (tgt = 0; tgt < 8; ++tgt) { tp = &ms->tgts[tgt]; if ((cmd = tp->current_req) != NULL) { set_host_byte(cmd, DID_RESET); tp->current_req = NULL; scsi_done(cmd); } ms->tgts[tgt].sdtr_state = do_sdtr; ms->tgts[tgt].sync_params = ASYNC_PARAMS; } ms->current_req = NULL; while ((cmd = ms->request_q) != NULL) { ms->request_q = (struct scsi_cmnd *) cmd->host_scribble; set_host_byte(cmd, DID_RESET); scsi_done(cmd); } ms->phase = idle; ms->msgphase = msg_none; out_8(&mr->interrupt, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); out_8(&mr->sequence, SEQ_FLUSHFIFO); mesh_flush_io(mr); udelay(1); out_8(&mr->sync_params, ASYNC_PARAMS); out_8(&mr->sequence, SEQ_ENBRESEL); } static irqreturn_t do_mesh_interrupt(int irq, void *dev_id) { unsigned long flags; struct mesh_state *ms = dev_id; struct Scsi_Host *dev = ms->host; spin_lock_irqsave(dev->host_lock, flags); mesh_interrupt(ms); spin_unlock_irqrestore(dev->host_lock, flags); return IRQ_HANDLED; } static void handle_error(struct mesh_state *ms) { int err, exc, count; volatile struct mesh_regs __iomem *mr = ms->mesh; err = in_8(&mr->error); exc = in_8(&mr->exception); out_8(&mr->interrupt, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); dlog(ms, "error err/exc/fc/cl=%.8x", MKWORD(err, exc, mr->fifo_count, mr->count_lo)); if (err & ERR_SCSIRESET) { /* SCSI bus was reset */ printk(KERN_INFO "mesh: SCSI bus reset detected: " "waiting for end..."); while ((in_8(&mr->bus_status1) & BS1_RST) != 0) udelay(1); printk("done\n"); if (ms->dma_started) halt_dma(ms); handle_reset(ms); /* request_q is empty, no point in mesh_start() */ return; } if (err & ERR_UNEXPDISC) { /* Unexpected disconnect */ if (exc & EXC_RESELECTED) { reselected(ms); return; } if (!ms->aborting) { printk(KERN_WARNING "mesh: target %d aborted\n", ms->conn_tgt); dumplog(ms, ms->conn_tgt); dumpslog(ms); } out_8(&mr->interrupt, INT_CMDDONE); ms->stat = DID_ABORT; mesh_done(ms, 1); return; } if (err & ERR_PARITY) { if (ms->msgphase == msg_in) { printk(KERN_ERR "mesh: msg parity error, target %d\n", ms->conn_tgt); ms->msgout[0] = MSG_PARITY_ERROR; ms->n_msgout = 1; ms->msgphase = msg_in_bad; cmd_complete(ms); return; } if (ms->stat == DID_OK) { printk(KERN_ERR "mesh: parity error, target %d\n", ms->conn_tgt); ms->stat = DID_PARITY; } count = (mr->count_hi << 8) + mr->count_lo; if (count == 0) { cmd_complete(ms); } else { /* reissue the data transfer command */ out_8(&mr->sequence, mr->sequence); } return; } if (err & ERR_SEQERR) { if (exc & EXC_RESELECTED) { /* This can happen if we issue a command to get the bus just after the target reselects us. */ static int mesh_resel_seqerr; mesh_resel_seqerr++; reselected(ms); return; } if (exc == EXC_PHASEMM) { static int mesh_phasemm_seqerr; mesh_phasemm_seqerr++; phase_mismatch(ms); return; } printk(KERN_ERR "mesh: sequence error (err=%x exc=%x)\n", err, exc); } else { printk(KERN_ERR "mesh: unknown error %x (exc=%x)\n", err, exc); } mesh_dump_regs(ms); dumplog(ms, ms->conn_tgt); if (ms->phase > selecting && (in_8(&mr->bus_status1) & BS1_BSY)) { /* try to do what the target wants */ do_abort(ms); phase_mismatch(ms); return; } ms->stat = DID_ERROR; mesh_done(ms, 1); } static void handle_exception(struct mesh_state *ms) { int exc; volatile struct mesh_regs __iomem *mr = ms->mesh; exc = in_8(&mr->exception); out_8(&mr->interrupt, INT_EXCEPTION | INT_CMDDONE); if (exc & EXC_RESELECTED) { static int mesh_resel_exc; mesh_resel_exc++; reselected(ms); } else if (exc == EXC_ARBLOST) { printk(KERN_DEBUG "mesh: lost arbitration\n"); ms->stat = DID_BUS_BUSY; mesh_done(ms, 1); } else if (exc == EXC_SELTO) { /* selection timed out */ ms->stat = DID_BAD_TARGET; mesh_done(ms, 1); } else if (exc == EXC_PHASEMM) { /* target wants to do something different: find out what it wants and do it. */ phase_mismatch(ms); } else { printk(KERN_ERR "mesh: can't cope with exception %x\n", exc); mesh_dump_regs(ms); dumplog(ms, ms->conn_tgt); do_abort(ms); phase_mismatch(ms); } } static void handle_msgin(struct mesh_state *ms) { int i, code; struct scsi_cmnd *cmd = ms->current_req; struct mesh_target *tp = &ms->tgts[ms->conn_tgt]; if (ms->n_msgin == 0) return; code = ms->msgin[0]; if (ALLOW_DEBUG(ms->conn_tgt)) { printk(KERN_DEBUG "got %d message bytes:", ms->n_msgin); for (i = 0; i < ms->n_msgin; ++i) printk(" %x", ms->msgin[i]); printk("\n"); } dlog(ms, "msgin msg=%.8x", MKWORD(ms->n_msgin, code, ms->msgin[1], ms->msgin[2])); ms->expect_reply = 0; ms->n_msgout = 0; if (ms->n_msgin < msgin_length(ms)) goto reject; if (cmd) mesh_priv(cmd)->message = code; switch (code) { case COMMAND_COMPLETE: break; case EXTENDED_MESSAGE: switch (ms->msgin[2]) { case EXTENDED_MODIFY_DATA_POINTER: ms->data_ptr += (ms->msgin[3] << 24) + ms->msgin[6] + (ms->msgin[4] << 16) + (ms->msgin[5] << 8); break; case EXTENDED_SDTR: if (tp->sdtr_state != sdtr_sent) { /* reply with an SDTR */ add_sdtr_msg(ms); /* limit period to at least his value, offset to no more than his */ if (ms->msgout[3] < ms->msgin[3]) ms->msgout[3] = ms->msgin[3]; if (ms->msgout[4] > ms->msgin[4]) ms->msgout[4] = ms->msgin[4]; set_sdtr(ms, ms->msgout[3], ms->msgout[4]); ms->msgphase = msg_out; } else { set_sdtr(ms, ms->msgin[3], ms->msgin[4]); } break; default: goto reject; } break; case SAVE_POINTERS: tp->saved_ptr = ms->data_ptr; break; case RESTORE_POINTERS: ms->data_ptr = tp->saved_ptr; break; case DISCONNECT: ms->phase = disconnecting; break; case ABORT: break; case MESSAGE_REJECT: if (tp->sdtr_state == sdtr_sent) set_sdtr(ms, 0, 0); break; case NOP: break; default: if (IDENTIFY_BASE <= code && code <= IDENTIFY_BASE + 7) { if (cmd == NULL) { do_abort(ms); ms->msgphase = msg_out; } else if (code != cmd->device->lun + IDENTIFY_BASE) { printk(KERN_WARNING "mesh: lun mismatch " "(%d != %llu) on reselection from " "target %d\n", code - IDENTIFY_BASE, cmd->device->lun, ms->conn_tgt); } break; } goto reject; } return; reject: printk(KERN_WARNING "mesh: rejecting message from target %d:", ms->conn_tgt); for (i = 0; i < ms->n_msgin; ++i) printk(" %x", ms->msgin[i]); printk("\n"); ms->msgout[0] = MESSAGE_REJECT; ms->n_msgout = 1; ms->msgphase = msg_out; } /* * Set up DMA commands for transferring data. */ static void set_dma_cmds(struct mesh_state *ms, struct scsi_cmnd *cmd) { int i, dma_cmd, total, off, dtot; struct scatterlist *scl; struct dbdma_cmd *dcmds; dma_cmd = ms->tgts[ms->conn_tgt].data_goes_out? OUTPUT_MORE: INPUT_MORE; dcmds = ms->dma_cmds; dtot = 0; if (cmd) { int nseg; mesh_priv(cmd)->this_residual = scsi_bufflen(cmd); nseg = scsi_dma_map(cmd); BUG_ON(nseg < 0); if (nseg) { total = 0; off = ms->data_ptr; scsi_for_each_sg(cmd, scl, nseg, i) { u32 dma_addr = sg_dma_address(scl); u32 dma_len = sg_dma_len(scl); total += scl->length; if (off >= dma_len) { off -= dma_len; continue; } if (dma_len > 0xffff) panic("mesh: scatterlist element >= 64k"); dcmds->req_count = cpu_to_le16(dma_len - off); dcmds->command = cpu_to_le16(dma_cmd); dcmds->phy_addr = cpu_to_le32(dma_addr + off); dcmds->xfer_status = 0; ++dcmds; dtot += dma_len - off; off = 0; } } } if (dtot == 0) { /* Either the target has overrun our buffer, or the caller didn't provide a buffer. */ static char mesh_extra_buf[64]; dtot = sizeof(mesh_extra_buf); dcmds->req_count = cpu_to_le16(dtot); dcmds->phy_addr = cpu_to_le32(virt_to_phys(mesh_extra_buf)); dcmds->xfer_status = 0; ++dcmds; } dma_cmd += OUTPUT_LAST - OUTPUT_MORE; dcmds[-1].command = cpu_to_le16(dma_cmd); memset(dcmds, 0, sizeof(*dcmds)); dcmds->command = cpu_to_le16(DBDMA_STOP); ms->dma_count = dtot; } static void halt_dma(struct mesh_state *ms) { volatile struct dbdma_regs __iomem *md = ms->dma; volatile struct mesh_regs __iomem *mr = ms->mesh; struct scsi_cmnd *cmd = ms->current_req; int t, nb; if (!ms->tgts[ms->conn_tgt].data_goes_out) { /* wait a little while until the fifo drains */ t = 50; while (t > 0 && in_8(&mr->fifo_count) != 0 && (in_le32(&md->status) & ACTIVE) != 0) { --t; udelay(1); } } out_le32(&md->control, RUN << 16); /* turn off RUN bit */ nb = (mr->count_hi << 8) + mr->count_lo; dlog(ms, "halt_dma fc/count=%.6x", MKWORD(0, mr->fifo_count, 0, nb)); if (ms->tgts[ms->conn_tgt].data_goes_out) nb += mr->fifo_count; /* nb is the number of bytes not yet transferred to/from the target. */ ms->data_ptr -= nb; dlog(ms, "data_ptr %x", ms->data_ptr); if (ms->data_ptr < 0) { printk(KERN_ERR "mesh: halt_dma: data_ptr=%d (nb=%d, ms=%p)\n", ms->data_ptr, nb, ms); ms->data_ptr = 0; #ifdef MESH_DBG dumplog(ms, ms->conn_tgt); dumpslog(ms); #endif /* MESH_DBG */ } else if (cmd && scsi_bufflen(cmd) && ms->data_ptr > scsi_bufflen(cmd)) { printk(KERN_DEBUG "mesh: target %d overrun, " "data_ptr=%x total=%x goes_out=%d\n", ms->conn_tgt, ms->data_ptr, scsi_bufflen(cmd), ms->tgts[ms->conn_tgt].data_goes_out); } if (cmd) scsi_dma_unmap(cmd); ms->dma_started = 0; } static void phase_mismatch(struct mesh_state *ms) { volatile struct mesh_regs __iomem *mr = ms->mesh; int phase; dlog(ms, "phasemm ch/cl/seq/fc=%.8x", MKWORD(mr->count_hi, mr->count_lo, mr->sequence, mr->fifo_count)); phase = in_8(&mr->bus_status0) & BS0_PHASE; if (ms->msgphase == msg_out_xxx && phase == BP_MSGOUT) { /* output the last byte of the message, without ATN */ out_8(&mr->count_lo, 1); out_8(&mr->sequence, SEQ_MSGOUT + use_active_neg); mesh_flush_io(mr); udelay(1); out_8(&mr->fifo, ms->msgout[ms->n_msgout-1]); ms->msgphase = msg_out_last; return; } if (ms->msgphase == msg_in) { get_msgin(ms); if (ms->n_msgin) handle_msgin(ms); } if (ms->dma_started) halt_dma(ms); if (mr->fifo_count) { out_8(&mr->sequence, SEQ_FLUSHFIFO); mesh_flush_io(mr); udelay(1); } ms->msgphase = msg_none; switch (phase) { case BP_DATAIN: ms->tgts[ms->conn_tgt].data_goes_out = 0; ms->phase = dataing; break; case BP_DATAOUT: ms->tgts[ms->conn_tgt].data_goes_out = 1; ms->phase = dataing; break; case BP_COMMAND: ms->phase = commanding; break; case BP_STATUS: ms->phase = statusing; break; case BP_MSGIN: ms->msgphase = msg_in; ms->n_msgin = 0; break; case BP_MSGOUT: ms->msgphase = msg_out; if (ms->n_msgout == 0) { if (ms->aborting) { do_abort(ms); } else { if (ms->last_n_msgout == 0) { printk(KERN_DEBUG "mesh: no msg to repeat\n"); ms->msgout[0] = NOP; ms->last_n_msgout = 1; } ms->n_msgout = ms->last_n_msgout; } } break; default: printk(KERN_DEBUG "mesh: unknown scsi phase %x\n", phase); ms->stat = DID_ERROR; mesh_done(ms, 1); return; } start_phase(ms); } static void cmd_complete(struct mesh_state *ms) { volatile struct mesh_regs __iomem *mr = ms->mesh; struct scsi_cmnd *cmd = ms->current_req; struct mesh_target *tp = &ms->tgts[ms->conn_tgt]; int seq, n, t; dlog(ms, "cmd_complete fc=%x", mr->fifo_count); seq = use_active_neg + (ms->n_msgout? SEQ_ATN: 0); switch (ms->msgphase) { case msg_out_xxx: /* huh? we expected a phase mismatch */ ms->n_msgin = 0; ms->msgphase = msg_in; fallthrough; case msg_in: /* should have some message bytes in fifo */ get_msgin(ms); n = msgin_length(ms); if (ms->n_msgin < n) { out_8(&mr->count_lo, n - ms->n_msgin); out_8(&mr->sequence, SEQ_MSGIN + seq); } else { ms->msgphase = msg_none; handle_msgin(ms); start_phase(ms); } break; case msg_in_bad: out_8(&mr->sequence, SEQ_FLUSHFIFO); mesh_flush_io(mr); udelay(1); out_8(&mr->count_lo, 1); out_8(&mr->sequence, SEQ_MSGIN + SEQ_ATN + use_active_neg); break; case msg_out: /* * To get the right timing on ATN wrt ACK, we have * to get the MESH to drop ACK, wait until REQ gets * asserted, then drop ATN. To do this we first * issue a SEQ_MSGOUT with ATN and wait for REQ, * then change the command to a SEQ_MSGOUT w/o ATN. * If we don't see REQ in a reasonable time, we * change the command to SEQ_MSGIN with ATN, * wait for the phase mismatch interrupt, then * issue the SEQ_MSGOUT without ATN. */ out_8(&mr->count_lo, 1); out_8(&mr->sequence, SEQ_MSGOUT + use_active_neg + SEQ_ATN); t = 30; /* wait up to 30us */ while ((in_8(&mr->bus_status0) & BS0_REQ) == 0 && --t >= 0) udelay(1); dlog(ms, "last_mbyte err/exc/fc/cl=%.8x", MKWORD(mr->error, mr->exception, mr->fifo_count, mr->count_lo)); if (in_8(&mr->interrupt) & (INT_ERROR | INT_EXCEPTION)) { /* whoops, target didn't do what we expected */ ms->last_n_msgout = ms->n_msgout; ms->n_msgout = 0; if (in_8(&mr->interrupt) & INT_ERROR) { printk(KERN_ERR "mesh: error %x in msg_out\n", in_8(&mr->error)); handle_error(ms); return; } if (in_8(&mr->exception) != EXC_PHASEMM) printk(KERN_ERR "mesh: exc %x in msg_out\n", in_8(&mr->exception)); else printk(KERN_DEBUG "mesh: bs0=%x in msg_out\n", in_8(&mr->bus_status0)); handle_exception(ms); return; } if (in_8(&mr->bus_status0) & BS0_REQ) { out_8(&mr->sequence, SEQ_MSGOUT + use_active_neg); mesh_flush_io(mr); udelay(1); out_8(&mr->fifo, ms->msgout[ms->n_msgout-1]); ms->msgphase = msg_out_last; } else { out_8(&mr->sequence, SEQ_MSGIN + use_active_neg + SEQ_ATN); ms->msgphase = msg_out_xxx; } break; case msg_out_last: ms->last_n_msgout = ms->n_msgout; ms->n_msgout = 0; ms->msgphase = ms->expect_reply? msg_in: msg_none; start_phase(ms); break; case msg_none: switch (ms->phase) { case idle: printk(KERN_ERR "mesh: interrupt in idle phase?\n"); dumpslog(ms); return; case selecting: dlog(ms, "Selecting phase at command completion",0); ms->msgout[0] = IDENTIFY(ALLOW_RESEL(ms->conn_tgt), (cmd? cmd->device->lun: 0)); ms->n_msgout = 1; ms->expect_reply = 0; if (ms->aborting) { ms->msgout[0] = ABORT; ms->n_msgout++; } else if (tp->sdtr_state == do_sdtr) { /* add SDTR message */ add_sdtr_msg(ms); ms->expect_reply = 1; tp->sdtr_state = sdtr_sent; } ms->msgphase = msg_out; /* * We need to wait for REQ before dropping ATN. * We wait for at most 30us, then fall back to * a scheme where we issue a SEQ_COMMAND with ATN, * which will give us a phase mismatch interrupt * when REQ does come, and then we send the message. */ t = 230; /* wait up to 230us */ while ((in_8(&mr->bus_status0) & BS0_REQ) == 0) { if (--t < 0) { dlog(ms, "impatient for req", ms->n_msgout); ms->msgphase = msg_none; break; } udelay(1); } break; case dataing: if (ms->dma_count != 0) { start_phase(ms); return; } /* * We can get a phase mismatch here if the target * changes to the status phase, even though we have * had a command complete interrupt. Then, if we * issue the SEQ_STATUS command, we'll get a sequence * error interrupt. Which isn't so bad except that * occasionally the mesh actually executes the * SEQ_STATUS *as well as* giving us the sequence * error and phase mismatch exception. */ out_8(&mr->sequence, 0); out_8(&mr->interrupt, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); halt_dma(ms); break; case statusing: if (cmd) { struct mesh_cmd_priv *mcmd = mesh_priv(cmd); mcmd->status = mr->fifo; if (DEBUG_TARGET(cmd)) printk(KERN_DEBUG "mesh: status is %x\n", mcmd->status); } ms->msgphase = msg_in; break; case busfreeing: mesh_done(ms, 1); return; case disconnecting: ms->current_req = NULL; ms->phase = idle; mesh_start(ms); return; default: break; } ++ms->phase; start_phase(ms); break; } } /* * Called by midlayer with host locked to queue a new * request */ static int mesh_queue_lck(struct scsi_cmnd *cmd) { struct mesh_state *ms; cmd->host_scribble = NULL; ms = (struct mesh_state *) cmd->device->host->hostdata; if (ms->request_q == NULL) ms->request_q = cmd; else ms->request_qtail->host_scribble = (void *) cmd; ms->request_qtail = cmd; if (ms->phase == idle) mesh_start(ms); return 0; } static DEF_SCSI_QCMD(mesh_queue) /* * Called to handle interrupts, either call by the interrupt * handler (do_mesh_interrupt) or by other functions in * exceptional circumstances */ static void mesh_interrupt(struct mesh_state *ms) { volatile struct mesh_regs __iomem *mr = ms->mesh; int intr; #if 0 if (ALLOW_DEBUG(ms->conn_tgt)) printk(KERN_DEBUG "mesh_intr, bs0=%x int=%x exc=%x err=%x " "phase=%d msgphase=%d\n", mr->bus_status0, mr->interrupt, mr->exception, mr->error, ms->phase, ms->msgphase); #endif while ((intr = in_8(&mr->interrupt)) != 0) { dlog(ms, "interrupt intr/err/exc/seq=%.8x", MKWORD(intr, mr->error, mr->exception, mr->sequence)); if (intr & INT_ERROR) { handle_error(ms); } else if (intr & INT_EXCEPTION) { handle_exception(ms); } else if (intr & INT_CMDDONE) { out_8(&mr->interrupt, INT_CMDDONE); cmd_complete(ms); } } } /* Todo: here we can at least try to remove the command from the * queue if it isn't connected yet, and for pending command, assert * ATN until the bus gets freed. */ static int mesh_abort(struct scsi_cmnd *cmd) { struct mesh_state *ms = (struct mesh_state *) cmd->device->host->hostdata; printk(KERN_DEBUG "mesh_abort(%p)\n", cmd); mesh_dump_regs(ms); dumplog(ms, cmd->device->id); dumpslog(ms); return FAILED; } /* * Called by the midlayer with the lock held to reset the * SCSI host and bus. * The midlayer will wait for devices to come back, we don't need * to do that ourselves */ static int mesh_host_reset(struct scsi_cmnd *cmd) { struct mesh_state *ms = (struct mesh_state *) cmd->device->host->hostdata; volatile struct mesh_regs __iomem *mr = ms->mesh; volatile struct dbdma_regs __iomem *md = ms->dma; unsigned long flags; printk(KERN_DEBUG "mesh_host_reset\n"); spin_lock_irqsave(ms->host->host_lock, flags); if (ms->dma_started) halt_dma(ms); /* Reset the controller & dbdma channel */ out_le32(&md->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* stop dma */ out_8(&mr->exception, 0xff); /* clear all exception bits */ out_8(&mr->error, 0xff); /* clear all error bits */ out_8(&mr->sequence, SEQ_RESETMESH); mesh_flush_io(mr); udelay(1); out_8(&mr->intr_mask, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); out_8(&mr->source_id, ms->host->this_id); out_8(&mr->sel_timeout, 25); /* 250ms */ out_8(&mr->sync_params, ASYNC_PARAMS); /* Reset the bus */ out_8(&mr->bus_status1, BS1_RST); /* assert RST */ mesh_flush_io(mr); udelay(30); /* leave it on for >= 25us */ out_8(&mr->bus_status1, 0); /* negate RST */ /* Complete pending commands */ handle_reset(ms); spin_unlock_irqrestore(ms->host->host_lock, flags); return SUCCESS; } static void set_mesh_power(struct mesh_state *ms, int state) { if (!machine_is(powermac)) return; if (state) { pmac_call_feature(PMAC_FTR_MESH_ENABLE, macio_get_of_node(ms->mdev), 0, 1); msleep(200); } else { pmac_call_feature(PMAC_FTR_MESH_ENABLE, macio_get_of_node(ms->mdev), 0, 0); msleep(10); } } #ifdef CONFIG_PM static int mesh_suspend(struct macio_dev *mdev, pm_message_t mesg) { struct mesh_state *ms = (struct mesh_state *)macio_get_drvdata(mdev); unsigned long flags; switch (mesg.event) { case PM_EVENT_SUSPEND: case PM_EVENT_HIBERNATE: case PM_EVENT_FREEZE: break; default: return 0; } if (ms->phase == sleeping) return 0; scsi_block_requests(ms->host); spin_lock_irqsave(ms->host->host_lock, flags); while(ms->phase != idle) { spin_unlock_irqrestore(ms->host->host_lock, flags); msleep(10); spin_lock_irqsave(ms->host->host_lock, flags); } ms->phase = sleeping; spin_unlock_irqrestore(ms->host->host_lock, flags); disable_irq(ms->meshintr); set_mesh_power(ms, 0); return 0; } static int mesh_resume(struct macio_dev *mdev) { struct mesh_state *ms = (struct mesh_state *)macio_get_drvdata(mdev); unsigned long flags; if (ms->phase != sleeping) return 0; set_mesh_power(ms, 1); mesh_init(ms); spin_lock_irqsave(ms->host->host_lock, flags); mesh_start(ms); spin_unlock_irqrestore(ms->host->host_lock, flags); enable_irq(ms->meshintr); scsi_unblock_requests(ms->host); return 0; } #endif /* CONFIG_PM */ /* * If we leave drives set for synchronous transfers (especially * CDROMs), and reboot to MacOS, it gets confused, poor thing. * So, on reboot we reset the SCSI bus. */ static int mesh_shutdown(struct macio_dev *mdev) { struct mesh_state *ms = (struct mesh_state *)macio_get_drvdata(mdev); volatile struct mesh_regs __iomem *mr; unsigned long flags; printk(KERN_INFO "resetting MESH scsi bus(es)\n"); spin_lock_irqsave(ms->host->host_lock, flags); mr = ms->mesh; out_8(&mr->intr_mask, 0); out_8(&mr->interrupt, INT_ERROR | INT_EXCEPTION | INT_CMDDONE); out_8(&mr->bus_status1, BS1_RST); mesh_flush_io(mr); udelay(30); out_8(&mr->bus_status1, 0); spin_unlock_irqrestore(ms->host->host_lock, flags); return 0; } static const struct scsi_host_template mesh_template = { .proc_name = "mesh", .name = "MESH", .queuecommand = mesh_queue, .eh_abort_handler = mesh_abort, .eh_host_reset_handler = mesh_host_reset, .can_queue = 20, .this_id = 7, .sg_tablesize = SG_ALL, .cmd_per_lun = 2, .max_segment_size = 65535, .cmd_size = sizeof(struct mesh_cmd_priv), }; static int mesh_probe(struct macio_dev *mdev, const struct of_device_id *match) { struct device_node *mesh = macio_get_of_node(mdev); struct pci_dev* pdev = macio_get_pci_dev(mdev); int tgt, minper; const int *cfp; struct mesh_state *ms; struct Scsi_Host *mesh_host; void *dma_cmd_space; dma_addr_t dma_cmd_bus; switch (mdev->bus->chip->type) { case macio_heathrow: case macio_gatwick: case macio_paddington: use_active_neg = 0; break; default: use_active_neg = SEQ_ACTIVE_NEG; } if (macio_resource_count(mdev) != 2 || macio_irq_count(mdev) != 2) { printk(KERN_ERR "mesh: expected 2 addrs and 2 intrs" " (got %d,%d)\n", macio_resource_count(mdev), macio_irq_count(mdev)); return -ENODEV; } if (macio_request_resources(mdev, "mesh") != 0) { printk(KERN_ERR "mesh: unable to request memory resources"); return -EBUSY; } mesh_host = scsi_host_alloc(&mesh_template, sizeof(struct mesh_state)); if (mesh_host == NULL) { printk(KERN_ERR "mesh: couldn't register host"); goto out_release; } mesh_host->base = macio_resource_start(mdev, 0); mesh_host->irq = macio_irq(mdev, 0); ms = (struct mesh_state *) mesh_host->hostdata; macio_set_drvdata(mdev, ms); ms->host = mesh_host; ms->mdev = mdev; ms->pdev = pdev; ms->mesh = ioremap(macio_resource_start(mdev, 0), 0x1000); if (ms->mesh == NULL) { printk(KERN_ERR "mesh: can't map registers\n"); goto out_free; } ms->dma = ioremap(macio_resource_start(mdev, 1), 0x1000); if (ms->dma == NULL) { printk(KERN_ERR "mesh: can't map registers\n"); iounmap(ms->mesh); goto out_free; } ms->meshintr = macio_irq(mdev, 0); ms->dmaintr = macio_irq(mdev, 1); /* Space for dma command list: +1 for stop command, * +1 to allow for aligning. */ ms->dma_cmd_size = (mesh_host->sg_tablesize + 2) * sizeof(struct dbdma_cmd); /* We use the PCI APIs for now until the generic one gets fixed * enough or until we get some macio-specific versions */ dma_cmd_space = dma_alloc_coherent(&macio_get_pci_dev(mdev)->dev, ms->dma_cmd_size, &dma_cmd_bus, GFP_KERNEL); if (dma_cmd_space == NULL) { printk(KERN_ERR "mesh: can't allocate DMA table\n"); goto out_unmap; } ms->dma_cmds = (struct dbdma_cmd *) DBDMA_ALIGN(dma_cmd_space); ms->dma_cmd_space = dma_cmd_space; ms->dma_cmd_bus = dma_cmd_bus + ((unsigned long)ms->dma_cmds) - (unsigned long)dma_cmd_space; ms->current_req = NULL; for (tgt = 0; tgt < 8; ++tgt) { ms->tgts[tgt].sdtr_state = do_sdtr; ms->tgts[tgt].sync_params = ASYNC_PARAMS; ms->tgts[tgt].current_req = NULL; } if ((cfp = of_get_property(mesh, "clock-frequency", NULL))) ms->clk_freq = *cfp; else { printk(KERN_INFO "mesh: assuming 50MHz clock frequency\n"); ms->clk_freq = 50000000; } /* The maximum sync rate is clock / 5; increase * mesh_sync_period if necessary. */ minper = 1000000000 / (ms->clk_freq / 5); /* ns */ if (mesh_sync_period < minper) mesh_sync_period = minper; /* Power up the chip */ set_mesh_power(ms, 1); /* Set it up */ mesh_init(ms); /* Request interrupt */ if (request_irq(ms->meshintr, do_mesh_interrupt, 0, "MESH", ms)) { printk(KERN_ERR "MESH: can't get irq %d\n", ms->meshintr); goto out_shutdown; } /* Add scsi host & scan */ if (scsi_add_host(mesh_host, &mdev->ofdev.dev)) goto out_release_irq; scsi_scan_host(mesh_host); return 0; out_release_irq: free_irq(ms->meshintr, ms); out_shutdown: /* shutdown & reset bus in case of error or macos can be confused * at reboot if the bus was set to synchronous mode already */ mesh_shutdown(mdev); set_mesh_power(ms, 0); dma_free_coherent(&macio_get_pci_dev(mdev)->dev, ms->dma_cmd_size, ms->dma_cmd_space, ms->dma_cmd_bus); out_unmap: iounmap(ms->dma); iounmap(ms->mesh); out_free: scsi_host_put(mesh_host); out_release: macio_release_resources(mdev); return -ENODEV; } static int mesh_remove(struct macio_dev *mdev) { struct mesh_state *ms = (struct mesh_state *)macio_get_drvdata(mdev); struct Scsi_Host *mesh_host = ms->host; scsi_remove_host(mesh_host); free_irq(ms->meshintr, ms); /* Reset scsi bus */ mesh_shutdown(mdev); /* Shut down chip & termination */ set_mesh_power(ms, 0); /* Unmap registers & dma controller */ iounmap(ms->mesh); iounmap(ms->dma); /* Free DMA commands memory */ dma_free_coherent(&macio_get_pci_dev(mdev)->dev, ms->dma_cmd_size, ms->dma_cmd_space, ms->dma_cmd_bus); /* Release memory resources */ macio_release_resources(mdev); scsi_host_put(mesh_host); return 0; } static struct of_device_id mesh_match[] = { { .name = "mesh", }, { .type = "scsi", .compatible = "chrp,mesh0" }, {}, }; MODULE_DEVICE_TABLE (of, mesh_match); static struct macio_driver mesh_driver = { .driver = { .name = "mesh", .owner = THIS_MODULE, .of_match_table = mesh_match, }, .probe = mesh_probe, .remove = mesh_remove, .shutdown = mesh_shutdown, #ifdef CONFIG_PM .suspend = mesh_suspend, .resume = mesh_resume, #endif }; static int __init init_mesh(void) { /* Calculate sync rate from module parameters */ if (sync_rate > 10) sync_rate = 10; if (sync_rate > 0) { printk(KERN_INFO "mesh: configured for synchronous %d MB/s\n", sync_rate); mesh_sync_period = 1000 / sync_rate; /* ns */ mesh_sync_offset = 15; } else printk(KERN_INFO "mesh: configured for asynchronous\n"); return macio_register_driver(&mesh_driver); } static void __exit exit_mesh(void) { return macio_unregister_driver(&mesh_driver); } module_init(init_mesh); module_exit(exit_mesh);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1