Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jack Wang | 3877 | 49.33% | 4 | 3.70% |
Sakthivel K | 1065 | 13.55% | 10 | 9.26% |
Benjamin Rood | 671 | 8.54% | 7 | 6.48% |
Viswas G | 479 | 6.09% | 7 | 6.48% |
Nikith Ganigarakoppal | 281 | 3.58% | 2 | 1.85% |
Anand Kumar Santhanam | 249 | 3.17% | 4 | 3.70% |
John Garry | 163 | 2.07% | 7 | 6.48% |
Bradley Grove | 137 | 1.74% | 2 | 1.85% |
peter chang | 128 | 1.63% | 4 | 3.70% |
Vikram Auradkar | 108 | 1.37% | 2 | 1.85% |
Changyuan Lyu | 96 | 1.22% | 2 | 1.85% |
Joe Perches | 87 | 1.11% | 4 | 3.70% |
Christoph Hellwig | 67 | 0.85% | 5 | 4.63% |
Tomas Henzl | 63 | 0.80% | 2 | 1.85% |
Ajish Koshy | 54 | 0.69% | 2 | 1.85% |
Tejun Heo | 51 | 0.65% | 1 | 0.93% |
Vaibhav Gupta | 46 | 0.59% | 1 | 0.93% |
Arnd Bergmann | 38 | 0.48% | 2 | 1.85% |
Maurizio Lombardi | 34 | 0.43% | 1 | 0.93% |
akshatzen | 31 | 0.39% | 3 | 2.78% |
Suresh Thiagarajan | 25 | 0.32% | 2 | 1.85% |
Randy Dunlap | 11 | 0.14% | 1 | 0.93% |
Alexander Gordeev | 11 | 0.14% | 2 | 1.85% |
Lee Jones | 10 | 0.13% | 2 | 1.85% |
Igor Pylypiv | 9 | 0.11% | 3 | 2.78% |
Yijing Wang | 9 | 0.11% | 2 | 1.85% |
Christophe Jaillet | 9 | 0.11% | 1 | 0.93% |
Deepak Ukey | 7 | 0.09% | 2 | 1.85% |
Qilong Zhang | 6 | 0.08% | 1 | 0.93% |
Yang Yingliang | 6 | 0.08% | 1 | 0.93% |
Yufen Yu | 5 | 0.06% | 1 | 0.93% |
Bart Van Assche | 4 | 0.05% | 3 | 2.78% |
Damien Le Moal | 4 | 0.05% | 2 | 1.85% |
Mark Salyzyn | 4 | 0.05% | 1 | 0.93% |
Julia Lawall | 2 | 0.03% | 2 | 1.85% |
Hannes Reinecke | 2 | 0.03% | 1 | 0.93% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 0.93% |
Colin Ian King | 2 | 0.03% | 1 | 0.93% |
Linus Torvalds | 1 | 0.01% | 1 | 0.93% |
Denis Efremov | 1 | 0.01% | 1 | 0.93% |
Pan Bian | 1 | 0.01% | 1 | 0.93% |
Dan J Williams | 1 | 0.01% | 1 | 0.93% |
James Bottomley | 1 | 0.01% | 1 | 0.93% |
Saurav Girepunje | 1 | 0.01% | 1 | 0.93% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.93% |
Total | 7860 | 108 |
/* * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver * * Copyright (c) 2008-2009 USI Co., Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * */ #include <linux/slab.h> #include "pm8001_sas.h" #include "pm8001_chips.h" #include "pm80xx_hwi.h" static ulong logging_level = PM8001_FAIL_LOGGING | PM8001_IOERR_LOGGING | PM8001_EVENT_LOGGING | PM8001_INIT_LOGGING; module_param(logging_level, ulong, 0644); MODULE_PARM_DESC(logging_level, " bits for enabling logging info."); static ulong link_rate = LINKRATE_15 | LINKRATE_30 | LINKRATE_60 | LINKRATE_120; module_param(link_rate, ulong, 0644); MODULE_PARM_DESC(link_rate, "Enable link rate.\n" " 1: Link rate 1.5G\n" " 2: Link rate 3.0G\n" " 4: Link rate 6.0G\n" " 8: Link rate 12.0G\n"); static struct scsi_transport_template *pm8001_stt; static int pm8001_init_ccb_tag(struct pm8001_hba_info *); /* * chip info structure to identify chip key functionality as * encryption available/not, no of ports, hw specific function ref */ static const struct pm8001_chip_info pm8001_chips[] = { [chip_8001] = {0, 8, &pm8001_8001_dispatch,}, [chip_8008] = {0, 8, &pm8001_80xx_dispatch,}, [chip_8009] = {1, 8, &pm8001_80xx_dispatch,}, [chip_8018] = {0, 16, &pm8001_80xx_dispatch,}, [chip_8019] = {1, 16, &pm8001_80xx_dispatch,}, [chip_8074] = {0, 8, &pm8001_80xx_dispatch,}, [chip_8076] = {0, 16, &pm8001_80xx_dispatch,}, [chip_8077] = {0, 16, &pm8001_80xx_dispatch,}, [chip_8006] = {0, 16, &pm8001_80xx_dispatch,}, [chip_8070] = {0, 8, &pm8001_80xx_dispatch,}, [chip_8072] = {0, 16, &pm8001_80xx_dispatch,}, }; static int pm8001_id; LIST_HEAD(hba_list); struct workqueue_struct *pm8001_wq; static void pm8001_map_queues(struct Scsi_Host *shost) { struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; struct blk_mq_queue_map *qmap = &shost->tag_set.map[HCTX_TYPE_DEFAULT]; if (pm8001_ha->number_of_intr > 1) blk_mq_pci_map_queues(qmap, pm8001_ha->pdev, 1); return blk_mq_map_queues(qmap); } /* * The main structure which LLDD must register for scsi core. */ static const struct scsi_host_template pm8001_sht = { .module = THIS_MODULE, .name = DRV_NAME, .proc_name = DRV_NAME, .queuecommand = sas_queuecommand, .dma_need_drain = ata_scsi_dma_need_drain, .target_alloc = sas_target_alloc, .slave_configure = sas_slave_configure, .scan_finished = pm8001_scan_finished, .scan_start = pm8001_scan_start, .change_queue_depth = sas_change_queue_depth, .bios_param = sas_bios_param, .can_queue = 1, .this_id = -1, .sg_tablesize = PM8001_MAX_DMA_SG, .max_sectors = SCSI_DEFAULT_MAX_SECTORS, .eh_device_reset_handler = sas_eh_device_reset_handler, .eh_target_reset_handler = sas_eh_target_reset_handler, .slave_alloc = sas_slave_alloc, .target_destroy = sas_target_destroy, .ioctl = sas_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = sas_ioctl, #endif .shost_groups = pm8001_host_groups, .track_queue_depth = 1, .cmd_per_lun = 32, .map_queues = pm8001_map_queues, }; /* * Sas layer call this function to execute specific task. */ static struct sas_domain_function_template pm8001_transport_ops = { .lldd_dev_found = pm8001_dev_found, .lldd_dev_gone = pm8001_dev_gone, .lldd_execute_task = pm8001_queue_command, .lldd_control_phy = pm8001_phy_control, .lldd_abort_task = pm8001_abort_task, .lldd_abort_task_set = sas_abort_task_set, .lldd_clear_task_set = pm8001_clear_task_set, .lldd_I_T_nexus_reset = pm8001_I_T_nexus_reset, .lldd_lu_reset = pm8001_lu_reset, .lldd_query_task = pm8001_query_task, .lldd_port_formed = pm8001_port_formed, .lldd_tmf_exec_complete = pm8001_setds_completion, .lldd_tmf_aborted = pm8001_tmf_aborted, }; /** * pm8001_phy_init - initiate our adapter phys * @pm8001_ha: our hba structure. * @phy_id: phy id. */ static void pm8001_phy_init(struct pm8001_hba_info *pm8001_ha, int phy_id) { struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; struct asd_sas_phy *sas_phy = &phy->sas_phy; phy->phy_state = PHY_LINK_DISABLE; phy->pm8001_ha = pm8001_ha; phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS; phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS; sas_phy->enabled = (phy_id < pm8001_ha->chip->n_phy) ? 1 : 0; sas_phy->class = SAS; sas_phy->iproto = SAS_PROTOCOL_ALL; sas_phy->tproto = 0; sas_phy->type = PHY_TYPE_PHYSICAL; sas_phy->role = PHY_ROLE_INITIATOR; sas_phy->oob_mode = OOB_NOT_CONNECTED; sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN; sas_phy->id = phy_id; sas_phy->sas_addr = (u8 *)&phy->dev_sas_addr; sas_phy->frame_rcvd = &phy->frame_rcvd[0]; sas_phy->ha = (struct sas_ha_struct *)pm8001_ha->shost->hostdata; sas_phy->lldd_phy = phy; } /** * pm8001_free - free hba * @pm8001_ha: our hba structure. */ static void pm8001_free(struct pm8001_hba_info *pm8001_ha) { int i; if (!pm8001_ha) return; for (i = 0; i < USI_MAX_MEMCNT; i++) { if (pm8001_ha->memoryMap.region[i].virt_ptr != NULL) { dma_free_coherent(&pm8001_ha->pdev->dev, (pm8001_ha->memoryMap.region[i].total_len + pm8001_ha->memoryMap.region[i].alignment), pm8001_ha->memoryMap.region[i].virt_ptr, pm8001_ha->memoryMap.region[i].phys_addr); } } PM8001_CHIP_DISP->chip_iounmap(pm8001_ha); flush_workqueue(pm8001_wq); bitmap_free(pm8001_ha->rsvd_tags); kfree(pm8001_ha); } #ifdef PM8001_USE_TASKLET /** * pm8001_tasklet() - tasklet for 64 msi-x interrupt handler * @opaque: the passed general host adapter struct * Note: pm8001_tasklet is common for pm8001 & pm80xx */ static void pm8001_tasklet(unsigned long opaque) { struct pm8001_hba_info *pm8001_ha; struct isr_param *irq_vector; irq_vector = (struct isr_param *)opaque; pm8001_ha = irq_vector->drv_inst; if (unlikely(!pm8001_ha)) BUG_ON(1); PM8001_CHIP_DISP->isr(pm8001_ha, irq_vector->irq_id); } #endif /** * pm8001_interrupt_handler_msix - main MSIX interrupt handler. * It obtains the vector number and calls the equivalent bottom * half or services directly. * @irq: interrupt number * @opaque: the passed outbound queue/vector. Host structure is * retrieved from the same. */ static irqreturn_t pm8001_interrupt_handler_msix(int irq, void *opaque) { struct isr_param *irq_vector; struct pm8001_hba_info *pm8001_ha; irqreturn_t ret = IRQ_HANDLED; irq_vector = (struct isr_param *)opaque; pm8001_ha = irq_vector->drv_inst; if (unlikely(!pm8001_ha)) return IRQ_NONE; if (!PM8001_CHIP_DISP->is_our_interrupt(pm8001_ha)) return IRQ_NONE; #ifdef PM8001_USE_TASKLET tasklet_schedule(&pm8001_ha->tasklet[irq_vector->irq_id]); #else ret = PM8001_CHIP_DISP->isr(pm8001_ha, irq_vector->irq_id); #endif return ret; } /** * pm8001_interrupt_handler_intx - main INTx interrupt handler. * @irq: interrupt number * @dev_id: sas_ha structure. The HBA is retrieved from sas_ha structure. */ static irqreturn_t pm8001_interrupt_handler_intx(int irq, void *dev_id) { struct pm8001_hba_info *pm8001_ha; irqreturn_t ret = IRQ_HANDLED; struct sas_ha_struct *sha = dev_id; pm8001_ha = sha->lldd_ha; if (unlikely(!pm8001_ha)) return IRQ_NONE; if (!PM8001_CHIP_DISP->is_our_interrupt(pm8001_ha)) return IRQ_NONE; #ifdef PM8001_USE_TASKLET tasklet_schedule(&pm8001_ha->tasklet[0]); #else ret = PM8001_CHIP_DISP->isr(pm8001_ha, 0); #endif return ret; } static u32 pm8001_setup_irq(struct pm8001_hba_info *pm8001_ha); static u32 pm8001_request_irq(struct pm8001_hba_info *pm8001_ha); /** * pm8001_alloc - initiate our hba structure and 6 DMAs area. * @pm8001_ha: our hba structure. * @ent: PCI device ID structure to match on */ static int pm8001_alloc(struct pm8001_hba_info *pm8001_ha, const struct pci_device_id *ent) { int i, count = 0, rc = 0; u32 ci_offset, ib_offset, ob_offset, pi_offset; struct inbound_queue_table *ibq; struct outbound_queue_table *obq; spin_lock_init(&pm8001_ha->lock); spin_lock_init(&pm8001_ha->bitmap_lock); pm8001_dbg(pm8001_ha, INIT, "pm8001_alloc: PHY:%x\n", pm8001_ha->chip->n_phy); /* Setup Interrupt */ rc = pm8001_setup_irq(pm8001_ha); if (rc) { pm8001_dbg(pm8001_ha, FAIL, "pm8001_setup_irq failed [ret: %d]\n", rc); goto err_out; } /* Request Interrupt */ rc = pm8001_request_irq(pm8001_ha); if (rc) goto err_out; count = pm8001_ha->max_q_num; /* Queues are chosen based on the number of cores/msix availability */ ib_offset = pm8001_ha->ib_offset = USI_MAX_MEMCNT_BASE; ci_offset = pm8001_ha->ci_offset = ib_offset + count; ob_offset = pm8001_ha->ob_offset = ci_offset + count; pi_offset = pm8001_ha->pi_offset = ob_offset + count; pm8001_ha->max_memcnt = pi_offset + count; for (i = 0; i < pm8001_ha->chip->n_phy; i++) { pm8001_phy_init(pm8001_ha, i); pm8001_ha->port[i].wide_port_phymap = 0; pm8001_ha->port[i].port_attached = 0; pm8001_ha->port[i].port_state = 0; INIT_LIST_HEAD(&pm8001_ha->port[i].list); } /* MPI Memory region 1 for AAP Event Log for fw */ pm8001_ha->memoryMap.region[AAP1].num_elements = 1; pm8001_ha->memoryMap.region[AAP1].element_size = PM8001_EVENT_LOG_SIZE; pm8001_ha->memoryMap.region[AAP1].total_len = PM8001_EVENT_LOG_SIZE; pm8001_ha->memoryMap.region[AAP1].alignment = 32; /* MPI Memory region 2 for IOP Event Log for fw */ pm8001_ha->memoryMap.region[IOP].num_elements = 1; pm8001_ha->memoryMap.region[IOP].element_size = PM8001_EVENT_LOG_SIZE; pm8001_ha->memoryMap.region[IOP].total_len = PM8001_EVENT_LOG_SIZE; pm8001_ha->memoryMap.region[IOP].alignment = 32; for (i = 0; i < count; i++) { ibq = &pm8001_ha->inbnd_q_tbl[i]; spin_lock_init(&ibq->iq_lock); /* MPI Memory region 3 for consumer Index of inbound queues */ pm8001_ha->memoryMap.region[ci_offset+i].num_elements = 1; pm8001_ha->memoryMap.region[ci_offset+i].element_size = 4; pm8001_ha->memoryMap.region[ci_offset+i].total_len = 4; pm8001_ha->memoryMap.region[ci_offset+i].alignment = 4; if ((ent->driver_data) != chip_8001) { /* MPI Memory region 5 inbound queues */ pm8001_ha->memoryMap.region[ib_offset+i].num_elements = PM8001_MPI_QUEUE; pm8001_ha->memoryMap.region[ib_offset+i].element_size = 128; pm8001_ha->memoryMap.region[ib_offset+i].total_len = PM8001_MPI_QUEUE * 128; pm8001_ha->memoryMap.region[ib_offset+i].alignment = 128; } else { pm8001_ha->memoryMap.region[ib_offset+i].num_elements = PM8001_MPI_QUEUE; pm8001_ha->memoryMap.region[ib_offset+i].element_size = 64; pm8001_ha->memoryMap.region[ib_offset+i].total_len = PM8001_MPI_QUEUE * 64; pm8001_ha->memoryMap.region[ib_offset+i].alignment = 64; } } for (i = 0; i < count; i++) { obq = &pm8001_ha->outbnd_q_tbl[i]; spin_lock_init(&obq->oq_lock); /* MPI Memory region 4 for producer Index of outbound queues */ pm8001_ha->memoryMap.region[pi_offset+i].num_elements = 1; pm8001_ha->memoryMap.region[pi_offset+i].element_size = 4; pm8001_ha->memoryMap.region[pi_offset+i].total_len = 4; pm8001_ha->memoryMap.region[pi_offset+i].alignment = 4; if (ent->driver_data != chip_8001) { /* MPI Memory region 6 Outbound queues */ pm8001_ha->memoryMap.region[ob_offset+i].num_elements = PM8001_MPI_QUEUE; pm8001_ha->memoryMap.region[ob_offset+i].element_size = 128; pm8001_ha->memoryMap.region[ob_offset+i].total_len = PM8001_MPI_QUEUE * 128; pm8001_ha->memoryMap.region[ob_offset+i].alignment = 128; } else { /* MPI Memory region 6 Outbound queues */ pm8001_ha->memoryMap.region[ob_offset+i].num_elements = PM8001_MPI_QUEUE; pm8001_ha->memoryMap.region[ob_offset+i].element_size = 64; pm8001_ha->memoryMap.region[ob_offset+i].total_len = PM8001_MPI_QUEUE * 64; pm8001_ha->memoryMap.region[ob_offset+i].alignment = 64; } } /* Memory region write DMA*/ pm8001_ha->memoryMap.region[NVMD].num_elements = 1; pm8001_ha->memoryMap.region[NVMD].element_size = 4096; pm8001_ha->memoryMap.region[NVMD].total_len = 4096; /* Memory region for fw flash */ pm8001_ha->memoryMap.region[FW_FLASH].total_len = 4096; pm8001_ha->memoryMap.region[FORENSIC_MEM].num_elements = 1; pm8001_ha->memoryMap.region[FORENSIC_MEM].total_len = 0x10000; pm8001_ha->memoryMap.region[FORENSIC_MEM].element_size = 0x10000; pm8001_ha->memoryMap.region[FORENSIC_MEM].alignment = 0x10000; for (i = 0; i < pm8001_ha->max_memcnt; i++) { struct mpi_mem *region = &pm8001_ha->memoryMap.region[i]; if (pm8001_mem_alloc(pm8001_ha->pdev, ®ion->virt_ptr, ®ion->phys_addr, ®ion->phys_addr_hi, ®ion->phys_addr_lo, region->total_len, region->alignment) != 0) { pm8001_dbg(pm8001_ha, FAIL, "Mem%d alloc failed\n", i); goto err_out; } } /* Memory region for devices*/ pm8001_ha->devices = kzalloc(PM8001_MAX_DEVICES * sizeof(struct pm8001_device), GFP_KERNEL); if (!pm8001_ha->devices) { rc = -ENOMEM; goto err_out_nodev; } for (i = 0; i < PM8001_MAX_DEVICES; i++) { pm8001_ha->devices[i].dev_type = SAS_PHY_UNUSED; pm8001_ha->devices[i].id = i; pm8001_ha->devices[i].device_id = PM8001_MAX_DEVICES; atomic_set(&pm8001_ha->devices[i].running_req, 0); } pm8001_ha->flags = PM8001F_INIT_TIME; return 0; err_out_nodev: for (i = 0; i < pm8001_ha->max_memcnt; i++) { if (pm8001_ha->memoryMap.region[i].virt_ptr != NULL) { dma_free_coherent(&pm8001_ha->pdev->dev, (pm8001_ha->memoryMap.region[i].total_len + pm8001_ha->memoryMap.region[i].alignment), pm8001_ha->memoryMap.region[i].virt_ptr, pm8001_ha->memoryMap.region[i].phys_addr); } } err_out: return 1; } /** * pm8001_ioremap - remap the pci high physical address to kernel virtual * address so that we can access them. * @pm8001_ha: our hba structure. */ static int pm8001_ioremap(struct pm8001_hba_info *pm8001_ha) { u32 bar; u32 logicalBar = 0; struct pci_dev *pdev; pdev = pm8001_ha->pdev; /* map pci mem (PMC pci base 0-3)*/ for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { /* ** logical BARs for SPC: ** bar 0 and 1 - logical BAR0 ** bar 2 and 3 - logical BAR1 ** bar4 - logical BAR2 ** bar5 - logical BAR3 ** Skip the appropriate assignments: */ if ((bar == 1) || (bar == 3)) continue; if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { pm8001_ha->io_mem[logicalBar].membase = pci_resource_start(pdev, bar); pm8001_ha->io_mem[logicalBar].memsize = pci_resource_len(pdev, bar); pm8001_ha->io_mem[logicalBar].memvirtaddr = ioremap(pm8001_ha->io_mem[logicalBar].membase, pm8001_ha->io_mem[logicalBar].memsize); if (!pm8001_ha->io_mem[logicalBar].memvirtaddr) { pm8001_dbg(pm8001_ha, INIT, "Failed to ioremap bar %d, logicalBar %d", bar, logicalBar); return -ENOMEM; } pm8001_dbg(pm8001_ha, INIT, "base addr %llx virt_addr=%llx len=%d\n", (u64)pm8001_ha->io_mem[logicalBar].membase, (u64)(unsigned long) pm8001_ha->io_mem[logicalBar].memvirtaddr, pm8001_ha->io_mem[logicalBar].memsize); } else { pm8001_ha->io_mem[logicalBar].membase = 0; pm8001_ha->io_mem[logicalBar].memsize = 0; pm8001_ha->io_mem[logicalBar].memvirtaddr = NULL; } logicalBar++; } return 0; } /** * pm8001_pci_alloc - initialize our ha card structure * @pdev: pci device. * @ent: ent * @shost: scsi host struct which has been initialized before. */ static struct pm8001_hba_info *pm8001_pci_alloc(struct pci_dev *pdev, const struct pci_device_id *ent, struct Scsi_Host *shost) { struct pm8001_hba_info *pm8001_ha; struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); int j; pm8001_ha = sha->lldd_ha; if (!pm8001_ha) return NULL; pm8001_ha->pdev = pdev; pm8001_ha->dev = &pdev->dev; pm8001_ha->chip_id = ent->driver_data; pm8001_ha->chip = &pm8001_chips[pm8001_ha->chip_id]; pm8001_ha->irq = pdev->irq; pm8001_ha->sas = sha; pm8001_ha->shost = shost; pm8001_ha->id = pm8001_id++; pm8001_ha->logging_level = logging_level; pm8001_ha->non_fatal_count = 0; if (link_rate >= 1 && link_rate <= 15) pm8001_ha->link_rate = (link_rate << 8); else { pm8001_ha->link_rate = LINKRATE_15 | LINKRATE_30 | LINKRATE_60 | LINKRATE_120; pm8001_dbg(pm8001_ha, FAIL, "Setting link rate to default value\n"); } sprintf(pm8001_ha->name, "%s%d", DRV_NAME, pm8001_ha->id); /* IOMB size is 128 for 8088/89 controllers */ if (pm8001_ha->chip_id != chip_8001) pm8001_ha->iomb_size = IOMB_SIZE_SPCV; else pm8001_ha->iomb_size = IOMB_SIZE_SPC; #ifdef PM8001_USE_TASKLET /* Tasklet for non msi-x interrupt handler */ if ((!pdev->msix_cap || !pci_msi_enabled()) || (pm8001_ha->chip_id == chip_8001)) tasklet_init(&pm8001_ha->tasklet[0], pm8001_tasklet, (unsigned long)&(pm8001_ha->irq_vector[0])); else for (j = 0; j < PM8001_MAX_MSIX_VEC; j++) tasklet_init(&pm8001_ha->tasklet[j], pm8001_tasklet, (unsigned long)&(pm8001_ha->irq_vector[j])); #endif if (pm8001_ioremap(pm8001_ha)) goto failed_pci_alloc; if (!pm8001_alloc(pm8001_ha, ent)) return pm8001_ha; failed_pci_alloc: pm8001_free(pm8001_ha); return NULL; } /** * pci_go_44 - pm8001 specified, its DMA is 44 bit rather than 64 bit * @pdev: pci device. */ static int pci_go_44(struct pci_dev *pdev) { int rc; rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44)); if (rc) { rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (rc) dev_printk(KERN_ERR, &pdev->dev, "32-bit DMA enable failed\n"); } return rc; } /** * pm8001_prep_sas_ha_init - allocate memory in general hba struct && init them. * @shost: scsi host which has been allocated outside. * @chip_info: our ha struct. */ static int pm8001_prep_sas_ha_init(struct Scsi_Host *shost, const struct pm8001_chip_info *chip_info) { int phy_nr, port_nr; struct asd_sas_phy **arr_phy; struct asd_sas_port **arr_port; struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); phy_nr = chip_info->n_phy; port_nr = phy_nr; memset(sha, 0x00, sizeof(*sha)); arr_phy = kcalloc(phy_nr, sizeof(void *), GFP_KERNEL); if (!arr_phy) goto exit; arr_port = kcalloc(port_nr, sizeof(void *), GFP_KERNEL); if (!arr_port) goto exit_free2; sha->sas_phy = arr_phy; sha->sas_port = arr_port; sha->lldd_ha = kzalloc(sizeof(struct pm8001_hba_info), GFP_KERNEL); if (!sha->lldd_ha) goto exit_free1; shost->transportt = pm8001_stt; shost->max_id = PM8001_MAX_DEVICES; shost->unique_id = pm8001_id; shost->max_cmd_len = 16; return 0; exit_free1: kfree(arr_port); exit_free2: kfree(arr_phy); exit: return -1; } /** * pm8001_post_sas_ha_init - initialize general hba struct defined in libsas * @shost: scsi host which has been allocated outside * @chip_info: our ha struct. */ static void pm8001_post_sas_ha_init(struct Scsi_Host *shost, const struct pm8001_chip_info *chip_info) { int i = 0; struct pm8001_hba_info *pm8001_ha; struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); pm8001_ha = sha->lldd_ha; for (i = 0; i < chip_info->n_phy; i++) { sha->sas_phy[i] = &pm8001_ha->phy[i].sas_phy; sha->sas_port[i] = &pm8001_ha->port[i].sas_port; sha->sas_phy[i]->sas_addr = (u8 *)&pm8001_ha->phy[i].dev_sas_addr; } sha->sas_ha_name = DRV_NAME; sha->dev = pm8001_ha->dev; sha->strict_wide_ports = 1; sha->lldd_module = THIS_MODULE; sha->sas_addr = &pm8001_ha->sas_addr[0]; sha->num_phys = chip_info->n_phy; sha->core.shost = shost; } /** * pm8001_init_sas_add - initialize sas address * @pm8001_ha: our ha struct. * * Currently we just set the fixed SAS address to our HBA, for manufacture, * it should read from the EEPROM */ static int pm8001_init_sas_add(struct pm8001_hba_info *pm8001_ha) { u8 i, j; u8 sas_add[8]; #ifdef PM8001_READ_VPD /* For new SPC controllers WWN is stored in flash vpd * For SPC/SPCve controllers WWN is stored in EEPROM * For Older SPC WWN is stored in NVMD */ DECLARE_COMPLETION_ONSTACK(completion); struct pm8001_ioctl_payload payload; u16 deviceid; int rc; unsigned long time_remaining; if (PM8001_CHIP_DISP->fatal_errors(pm8001_ha)) { pm8001_dbg(pm8001_ha, FAIL, "controller is in fatal error state\n"); return -EIO; } pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); pm8001_ha->nvmd_completion = &completion; if (pm8001_ha->chip_id == chip_8001) { if (deviceid == 0x8081 || deviceid == 0x0042) { payload.minor_function = 4; payload.rd_length = 4096; } else { payload.minor_function = 0; payload.rd_length = 128; } } else if ((pm8001_ha->chip_id == chip_8070 || pm8001_ha->chip_id == chip_8072) && pm8001_ha->pdev->subsystem_vendor == PCI_VENDOR_ID_ATTO) { payload.minor_function = 4; payload.rd_length = 4096; } else { payload.minor_function = 1; payload.rd_length = 4096; } payload.offset = 0; payload.func_specific = kzalloc(payload.rd_length, GFP_KERNEL); if (!payload.func_specific) { pm8001_dbg(pm8001_ha, FAIL, "mem alloc fail\n"); return -ENOMEM; } rc = PM8001_CHIP_DISP->get_nvmd_req(pm8001_ha, &payload); if (rc) { kfree(payload.func_specific); pm8001_dbg(pm8001_ha, FAIL, "nvmd failed\n"); return -EIO; } time_remaining = wait_for_completion_timeout(&completion, msecs_to_jiffies(60*1000)); // 1 min if (!time_remaining) { kfree(payload.func_specific); pm8001_dbg(pm8001_ha, FAIL, "get_nvmd_req timeout\n"); return -EIO; } for (i = 0, j = 0; i <= 7; i++, j++) { if (pm8001_ha->chip_id == chip_8001) { if (deviceid == 0x8081) pm8001_ha->sas_addr[j] = payload.func_specific[0x704 + i]; else if (deviceid == 0x0042) pm8001_ha->sas_addr[j] = payload.func_specific[0x010 + i]; } else if ((pm8001_ha->chip_id == chip_8070 || pm8001_ha->chip_id == chip_8072) && pm8001_ha->pdev->subsystem_vendor == PCI_VENDOR_ID_ATTO) { pm8001_ha->sas_addr[j] = payload.func_specific[0x010 + i]; } else pm8001_ha->sas_addr[j] = payload.func_specific[0x804 + i]; } memcpy(sas_add, pm8001_ha->sas_addr, SAS_ADDR_SIZE); for (i = 0; i < pm8001_ha->chip->n_phy; i++) { if (i && ((i % 4) == 0)) sas_add[7] = sas_add[7] + 4; memcpy(&pm8001_ha->phy[i].dev_sas_addr, sas_add, SAS_ADDR_SIZE); pm8001_dbg(pm8001_ha, INIT, "phy %d sas_addr = %016llx\n", i, pm8001_ha->phy[i].dev_sas_addr); } kfree(payload.func_specific); #else for (i = 0; i < pm8001_ha->chip->n_phy; i++) { pm8001_ha->phy[i].dev_sas_addr = 0x50010c600047f9d0ULL; pm8001_ha->phy[i].dev_sas_addr = cpu_to_be64((u64) (*(u64 *)&pm8001_ha->phy[i].dev_sas_addr)); } memcpy(pm8001_ha->sas_addr, &pm8001_ha->phy[0].dev_sas_addr, SAS_ADDR_SIZE); #endif return 0; } /* * pm8001_get_phy_settings_info : Read phy setting values. * @pm8001_ha : our hba. */ static int pm8001_get_phy_settings_info(struct pm8001_hba_info *pm8001_ha) { #ifdef PM8001_READ_VPD /*OPTION ROM FLASH read for the SPC cards */ DECLARE_COMPLETION_ONSTACK(completion); struct pm8001_ioctl_payload payload; int rc; pm8001_ha->nvmd_completion = &completion; /* SAS ADDRESS read from flash / EEPROM */ payload.minor_function = 6; payload.offset = 0; payload.rd_length = 4096; payload.func_specific = kzalloc(4096, GFP_KERNEL); if (!payload.func_specific) return -ENOMEM; /* Read phy setting values from flash */ rc = PM8001_CHIP_DISP->get_nvmd_req(pm8001_ha, &payload); if (rc) { kfree(payload.func_specific); pm8001_dbg(pm8001_ha, INIT, "nvmd failed\n"); return -ENOMEM; } wait_for_completion(&completion); pm8001_set_phy_profile(pm8001_ha, sizeof(u8), payload.func_specific); kfree(payload.func_specific); #endif return 0; } struct pm8001_mpi3_phy_pg_trx_config { u32 LaneLosCfg; u32 LanePgaCfg1; u32 LanePisoCfg1; u32 LanePisoCfg2; u32 LanePisoCfg3; u32 LanePisoCfg4; u32 LanePisoCfg5; u32 LanePisoCfg6; u32 LaneBctCtrl; }; /** * pm8001_get_internal_phy_settings - Retrieves the internal PHY settings * @pm8001_ha : our adapter * @phycfg : PHY config page to populate */ static void pm8001_get_internal_phy_settings(struct pm8001_hba_info *pm8001_ha, struct pm8001_mpi3_phy_pg_trx_config *phycfg) { phycfg->LaneLosCfg = 0x00000132; phycfg->LanePgaCfg1 = 0x00203949; phycfg->LanePisoCfg1 = 0x000000FF; phycfg->LanePisoCfg2 = 0xFF000001; phycfg->LanePisoCfg3 = 0xE7011300; phycfg->LanePisoCfg4 = 0x631C40C0; phycfg->LanePisoCfg5 = 0xF8102036; phycfg->LanePisoCfg6 = 0xF74A1000; phycfg->LaneBctCtrl = 0x00FB33F8; } /** * pm8001_get_external_phy_settings - Retrieves the external PHY settings * @pm8001_ha : our adapter * @phycfg : PHY config page to populate */ static void pm8001_get_external_phy_settings(struct pm8001_hba_info *pm8001_ha, struct pm8001_mpi3_phy_pg_trx_config *phycfg) { phycfg->LaneLosCfg = 0x00000132; phycfg->LanePgaCfg1 = 0x00203949; phycfg->LanePisoCfg1 = 0x000000FF; phycfg->LanePisoCfg2 = 0xFF000001; phycfg->LanePisoCfg3 = 0xE7011300; phycfg->LanePisoCfg4 = 0x63349140; phycfg->LanePisoCfg5 = 0xF8102036; phycfg->LanePisoCfg6 = 0xF80D9300; phycfg->LaneBctCtrl = 0x00FB33F8; } /** * pm8001_get_phy_mask - Retrieves the mask that denotes if a PHY is int/ext * @pm8001_ha : our adapter * @phymask : The PHY mask */ static void pm8001_get_phy_mask(struct pm8001_hba_info *pm8001_ha, int *phymask) { switch (pm8001_ha->pdev->subsystem_device) { case 0x0070: /* H1280 - 8 external 0 internal */ case 0x0072: /* H12F0 - 16 external 0 internal */ *phymask = 0x0000; break; case 0x0071: /* H1208 - 0 external 8 internal */ case 0x0073: /* H120F - 0 external 16 internal */ *phymask = 0xFFFF; break; case 0x0080: /* H1244 - 4 external 4 internal */ *phymask = 0x00F0; break; case 0x0081: /* H1248 - 4 external 8 internal */ *phymask = 0x0FF0; break; case 0x0082: /* H1288 - 8 external 8 internal */ *phymask = 0xFF00; break; default: pm8001_dbg(pm8001_ha, INIT, "Unknown subsystem device=0x%.04x\n", pm8001_ha->pdev->subsystem_device); } } /** * pm8001_set_phy_settings_ven_117c_12G() - Configure ATTO 12Gb PHY settings * @pm8001_ha : our adapter */ static int pm8001_set_phy_settings_ven_117c_12G(struct pm8001_hba_info *pm8001_ha) { struct pm8001_mpi3_phy_pg_trx_config phycfg_int; struct pm8001_mpi3_phy_pg_trx_config phycfg_ext; int phymask = 0; int i = 0; memset(&phycfg_int, 0, sizeof(phycfg_int)); memset(&phycfg_ext, 0, sizeof(phycfg_ext)); pm8001_get_internal_phy_settings(pm8001_ha, &phycfg_int); pm8001_get_external_phy_settings(pm8001_ha, &phycfg_ext); pm8001_get_phy_mask(pm8001_ha, &phymask); for (i = 0; i < pm8001_ha->chip->n_phy; i++) { if (phymask & (1 << i)) {/* Internal PHY */ pm8001_set_phy_profile_single(pm8001_ha, i, sizeof(phycfg_int) / sizeof(u32), (u32 *)&phycfg_int); } else { /* External PHY */ pm8001_set_phy_profile_single(pm8001_ha, i, sizeof(phycfg_ext) / sizeof(u32), (u32 *)&phycfg_ext); } } return 0; } /** * pm8001_configure_phy_settings - Configures PHY settings based on vendor ID. * @pm8001_ha : our hba. */ static int pm8001_configure_phy_settings(struct pm8001_hba_info *pm8001_ha) { switch (pm8001_ha->pdev->subsystem_vendor) { case PCI_VENDOR_ID_ATTO: if (pm8001_ha->pdev->device == 0x0042) /* 6Gb */ return 0; else return pm8001_set_phy_settings_ven_117c_12G(pm8001_ha); case PCI_VENDOR_ID_ADAPTEC2: case 0: return 0; default: return pm8001_get_phy_settings_info(pm8001_ha); } } #ifdef PM8001_USE_MSIX /** * pm8001_setup_msix - enable MSI-X interrupt * @pm8001_ha: our ha struct. */ static u32 pm8001_setup_msix(struct pm8001_hba_info *pm8001_ha) { unsigned int allocated_irq_vectors; int rc; /* SPCv controllers supports 64 msi-x */ if (pm8001_ha->chip_id == chip_8001) { rc = pci_alloc_irq_vectors(pm8001_ha->pdev, 1, 1, PCI_IRQ_MSIX); } else { /* * Queue index #0 is used always for housekeeping, so don't * include in the affinity spreading. */ struct irq_affinity desc = { .pre_vectors = 1, }; rc = pci_alloc_irq_vectors_affinity( pm8001_ha->pdev, 2, PM8001_MAX_MSIX_VEC, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, &desc); } allocated_irq_vectors = rc; if (rc < 0) return rc; /* Assigns the number of interrupts */ pm8001_ha->number_of_intr = allocated_irq_vectors; /* Maximum queue number updating in HBA structure */ pm8001_ha->max_q_num = allocated_irq_vectors; pm8001_dbg(pm8001_ha, INIT, "pci_alloc_irq_vectors request ret:%d no of intr %d\n", rc, pm8001_ha->number_of_intr); return 0; } static u32 pm8001_request_msix(struct pm8001_hba_info *pm8001_ha) { u32 i = 0, j = 0; int flag = 0, rc = 0; int nr_irqs = pm8001_ha->number_of_intr; if (pm8001_ha->chip_id != chip_8001) flag &= ~IRQF_SHARED; pm8001_dbg(pm8001_ha, INIT, "pci_enable_msix request number of intr %d\n", pm8001_ha->number_of_intr); if (nr_irqs > ARRAY_SIZE(pm8001_ha->intr_drvname)) nr_irqs = ARRAY_SIZE(pm8001_ha->intr_drvname); for (i = 0; i < nr_irqs; i++) { snprintf(pm8001_ha->intr_drvname[i], sizeof(pm8001_ha->intr_drvname[0]), "%s-%d", pm8001_ha->name, i); pm8001_ha->irq_vector[i].irq_id = i; pm8001_ha->irq_vector[i].drv_inst = pm8001_ha; rc = request_irq(pci_irq_vector(pm8001_ha->pdev, i), pm8001_interrupt_handler_msix, flag, pm8001_ha->intr_drvname[i], &(pm8001_ha->irq_vector[i])); if (rc) { for (j = 0; j < i; j++) { free_irq(pci_irq_vector(pm8001_ha->pdev, i), &(pm8001_ha->irq_vector[i])); } pci_free_irq_vectors(pm8001_ha->pdev); break; } } return rc; } #endif static u32 pm8001_setup_irq(struct pm8001_hba_info *pm8001_ha) { struct pci_dev *pdev; pdev = pm8001_ha->pdev; #ifdef PM8001_USE_MSIX if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) return pm8001_setup_msix(pm8001_ha); pm8001_dbg(pm8001_ha, INIT, "MSIX not supported!!!\n"); #endif return 0; } /** * pm8001_request_irq - register interrupt * @pm8001_ha: our ha struct. */ static u32 pm8001_request_irq(struct pm8001_hba_info *pm8001_ha) { struct pci_dev *pdev; int rc; pdev = pm8001_ha->pdev; #ifdef PM8001_USE_MSIX if (pdev->msix_cap && pci_msi_enabled()) return pm8001_request_msix(pm8001_ha); else { pm8001_dbg(pm8001_ha, INIT, "MSIX not supported!!!\n"); goto intx; } #endif intx: /* initialize the INT-X interrupt */ pm8001_ha->irq_vector[0].irq_id = 0; pm8001_ha->irq_vector[0].drv_inst = pm8001_ha; rc = request_irq(pdev->irq, pm8001_interrupt_handler_intx, IRQF_SHARED, pm8001_ha->name, SHOST_TO_SAS_HA(pm8001_ha->shost)); return rc; } /** * pm8001_pci_probe - probe supported device * @pdev: pci device which kernel has been prepared for. * @ent: pci device id * * This function is the main initialization function, when register a new * pci driver it is invoked, all struct and hardware initialization should be * done here, also, register interrupt. */ static int pm8001_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { unsigned int rc; u32 pci_reg; u8 i = 0; struct pm8001_hba_info *pm8001_ha; struct Scsi_Host *shost = NULL; const struct pm8001_chip_info *chip; struct sas_ha_struct *sha; dev_printk(KERN_INFO, &pdev->dev, "pm80xx: driver version %s\n", DRV_VERSION); rc = pci_enable_device(pdev); if (rc) goto err_out_enable; pci_set_master(pdev); /* * Enable pci slot busmaster by setting pci command register. * This is required by FW for Cyclone card. */ pci_read_config_dword(pdev, PCI_COMMAND, &pci_reg); pci_reg |= 0x157; pci_write_config_dword(pdev, PCI_COMMAND, pci_reg); rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out_disable; rc = pci_go_44(pdev); if (rc) goto err_out_regions; shost = scsi_host_alloc(&pm8001_sht, sizeof(void *)); if (!shost) { rc = -ENOMEM; goto err_out_regions; } chip = &pm8001_chips[ent->driver_data]; sha = kzalloc(sizeof(struct sas_ha_struct), GFP_KERNEL); if (!sha) { rc = -ENOMEM; goto err_out_free_host; } SHOST_TO_SAS_HA(shost) = sha; rc = pm8001_prep_sas_ha_init(shost, chip); if (rc) { rc = -ENOMEM; goto err_out_free; } pci_set_drvdata(pdev, SHOST_TO_SAS_HA(shost)); /* ent->driver variable is used to differentiate between controllers */ pm8001_ha = pm8001_pci_alloc(pdev, ent, shost); if (!pm8001_ha) { rc = -ENOMEM; goto err_out_free; } PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha); rc = PM8001_CHIP_DISP->chip_init(pm8001_ha); if (rc) { pm8001_dbg(pm8001_ha, FAIL, "chip_init failed [ret: %d]\n", rc); goto err_out_ha_free; } rc = pm8001_init_ccb_tag(pm8001_ha); if (rc) goto err_out_enable; PM8001_CHIP_DISP->chip_post_init(pm8001_ha); if (pm8001_ha->number_of_intr > 1) { shost->nr_hw_queues = pm8001_ha->number_of_intr - 1; /* * For now, ensure we're not sent too many commands by setting * host_tagset. This is also required if we start using request * tag. */ shost->host_tagset = 1; } rc = scsi_add_host(shost, &pdev->dev); if (rc) goto err_out_ha_free; PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, 0); if (pm8001_ha->chip_id != chip_8001) { for (i = 1; i < pm8001_ha->number_of_intr; i++) PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, i); /* setup thermal configuration. */ pm80xx_set_thermal_config(pm8001_ha); } rc = pm8001_init_sas_add(pm8001_ha); if (rc) goto err_out_shost; /* phy setting support for motherboard controller */ rc = pm8001_configure_phy_settings(pm8001_ha); if (rc) goto err_out_shost; pm8001_post_sas_ha_init(shost, chip); rc = sas_register_ha(SHOST_TO_SAS_HA(shost)); if (rc) { pm8001_dbg(pm8001_ha, FAIL, "sas_register_ha failed [ret: %d]\n", rc); goto err_out_shost; } list_add_tail(&pm8001_ha->list, &hba_list); pm8001_ha->flags = PM8001F_RUN_TIME; scsi_scan_host(pm8001_ha->shost); return 0; err_out_shost: scsi_remove_host(pm8001_ha->shost); err_out_ha_free: pm8001_free(pm8001_ha); err_out_free: kfree(sha); err_out_free_host: scsi_host_put(shost); err_out_regions: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); err_out_enable: return rc; } /** * pm8001_init_ccb_tag - allocate memory to CCB and tag. * @pm8001_ha: our hba card information. */ static int pm8001_init_ccb_tag(struct pm8001_hba_info *pm8001_ha) { struct Scsi_Host *shost = pm8001_ha->shost; struct device *dev = pm8001_ha->dev; u32 max_out_io, ccb_count; int i; max_out_io = pm8001_ha->main_cfg_tbl.pm80xx_tbl.max_out_io; ccb_count = min_t(int, PM8001_MAX_CCB, max_out_io); shost->can_queue = ccb_count - PM8001_RESERVE_SLOT; pm8001_ha->rsvd_tags = bitmap_zalloc(PM8001_RESERVE_SLOT, GFP_KERNEL); if (!pm8001_ha->rsvd_tags) goto err_out; /* Memory region for ccb_info*/ pm8001_ha->ccb_count = ccb_count; pm8001_ha->ccb_info = kcalloc(ccb_count, sizeof(struct pm8001_ccb_info), GFP_KERNEL); if (!pm8001_ha->ccb_info) { pm8001_dbg(pm8001_ha, FAIL, "Unable to allocate memory for ccb\n"); goto err_out_noccb; } for (i = 0; i < ccb_count; i++) { pm8001_ha->ccb_info[i].buf_prd = dma_alloc_coherent(dev, sizeof(struct pm8001_prd) * PM8001_MAX_DMA_SG, &pm8001_ha->ccb_info[i].ccb_dma_handle, GFP_KERNEL); if (!pm8001_ha->ccb_info[i].buf_prd) { pm8001_dbg(pm8001_ha, FAIL, "ccb prd memory allocation error\n"); goto err_out; } pm8001_ha->ccb_info[i].task = NULL; pm8001_ha->ccb_info[i].ccb_tag = PM8001_INVALID_TAG; pm8001_ha->ccb_info[i].device = NULL; } return 0; err_out_noccb: kfree(pm8001_ha->devices); err_out: return -ENOMEM; } static void pm8001_pci_remove(struct pci_dev *pdev) { struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct pm8001_hba_info *pm8001_ha; int i, j; pm8001_ha = sha->lldd_ha; sas_unregister_ha(sha); sas_remove_host(pm8001_ha->shost); list_del(&pm8001_ha->list); PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF); PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha); #ifdef PM8001_USE_MSIX for (i = 0; i < pm8001_ha->number_of_intr; i++) synchronize_irq(pci_irq_vector(pdev, i)); for (i = 0; i < pm8001_ha->number_of_intr; i++) free_irq(pci_irq_vector(pdev, i), &pm8001_ha->irq_vector[i]); pci_free_irq_vectors(pdev); #else free_irq(pm8001_ha->irq, sha); #endif #ifdef PM8001_USE_TASKLET /* For non-msix and msix interrupts */ if ((!pdev->msix_cap || !pci_msi_enabled()) || (pm8001_ha->chip_id == chip_8001)) tasklet_kill(&pm8001_ha->tasklet[0]); else for (j = 0; j < PM8001_MAX_MSIX_VEC; j++) tasklet_kill(&pm8001_ha->tasklet[j]); #endif scsi_host_put(pm8001_ha->shost); for (i = 0; i < pm8001_ha->ccb_count; i++) { dma_free_coherent(&pm8001_ha->pdev->dev, sizeof(struct pm8001_prd) * PM8001_MAX_DMA_SG, pm8001_ha->ccb_info[i].buf_prd, pm8001_ha->ccb_info[i].ccb_dma_handle); } kfree(pm8001_ha->ccb_info); kfree(pm8001_ha->devices); pm8001_free(pm8001_ha); kfree(sha->sas_phy); kfree(sha->sas_port); kfree(sha); pci_release_regions(pdev); pci_disable_device(pdev); } /** * pm8001_pci_suspend - power management suspend main entry point * @dev: Device struct * * Return: 0 on success, anything else on error. */ static int __maybe_unused pm8001_pci_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; int i, j; sas_suspend_ha(sha); flush_workqueue(pm8001_wq); scsi_block_requests(pm8001_ha->shost); if (!pdev->pm_cap) { dev_err(dev, " PCI PM not supported\n"); return -ENODEV; } PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF); PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha); #ifdef PM8001_USE_MSIX for (i = 0; i < pm8001_ha->number_of_intr; i++) synchronize_irq(pci_irq_vector(pdev, i)); for (i = 0; i < pm8001_ha->number_of_intr; i++) free_irq(pci_irq_vector(pdev, i), &pm8001_ha->irq_vector[i]); pci_free_irq_vectors(pdev); #else free_irq(pm8001_ha->irq, sha); #endif #ifdef PM8001_USE_TASKLET /* For non-msix and msix interrupts */ if ((!pdev->msix_cap || !pci_msi_enabled()) || (pm8001_ha->chip_id == chip_8001)) tasklet_kill(&pm8001_ha->tasklet[0]); else for (j = 0; j < PM8001_MAX_MSIX_VEC; j++) tasklet_kill(&pm8001_ha->tasklet[j]); #endif pm8001_info(pm8001_ha, "pdev=0x%p, slot=%s, entering " "suspended state\n", pdev, pm8001_ha->name); return 0; } /** * pm8001_pci_resume - power management resume main entry point * @dev: Device struct * * Return: 0 on success, anything else on error. */ static int __maybe_unused pm8001_pci_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct pm8001_hba_info *pm8001_ha; int rc; u8 i = 0, j; DECLARE_COMPLETION_ONSTACK(completion); pm8001_ha = sha->lldd_ha; pm8001_info(pm8001_ha, "pdev=0x%p, slot=%s, resuming from previous operating state [D%d]\n", pdev, pm8001_ha->name, pdev->current_state); rc = pci_go_44(pdev); if (rc) goto err_out_disable; sas_prep_resume_ha(sha); /* chip soft rst only for spc */ if (pm8001_ha->chip_id == chip_8001) { PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha); pm8001_dbg(pm8001_ha, INIT, "chip soft reset successful\n"); } rc = PM8001_CHIP_DISP->chip_init(pm8001_ha); if (rc) goto err_out_disable; /* disable all the interrupt bits */ PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF); rc = pm8001_request_irq(pm8001_ha); if (rc) goto err_out_disable; #ifdef PM8001_USE_TASKLET /* Tasklet for non msi-x interrupt handler */ if ((!pdev->msix_cap || !pci_msi_enabled()) || (pm8001_ha->chip_id == chip_8001)) tasklet_init(&pm8001_ha->tasklet[0], pm8001_tasklet, (unsigned long)&(pm8001_ha->irq_vector[0])); else for (j = 0; j < PM8001_MAX_MSIX_VEC; j++) tasklet_init(&pm8001_ha->tasklet[j], pm8001_tasklet, (unsigned long)&(pm8001_ha->irq_vector[j])); #endif PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, 0); if (pm8001_ha->chip_id != chip_8001) { for (i = 1; i < pm8001_ha->number_of_intr; i++) PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, i); } /* Chip documentation for the 8070 and 8072 SPCv */ /* states that a 500ms minimum delay is required */ /* before issuing commands. Otherwise, the firmware */ /* will enter an unrecoverable state. */ if (pm8001_ha->chip_id == chip_8070 || pm8001_ha->chip_id == chip_8072) { mdelay(500); } /* Spin up the PHYs */ pm8001_ha->flags = PM8001F_RUN_TIME; for (i = 0; i < pm8001_ha->chip->n_phy; i++) { pm8001_ha->phy[i].enable_completion = &completion; PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); wait_for_completion(&completion); } sas_resume_ha(sha); return 0; err_out_disable: scsi_remove_host(pm8001_ha->shost); return rc; } /* update of pci device, vendor id and driver data with * unique value for each of the controller */ static struct pci_device_id pm8001_pci_table[] = { { PCI_VDEVICE(PMC_Sierra, 0x8001), chip_8001 }, { PCI_VDEVICE(PMC_Sierra, 0x8006), chip_8006 }, { PCI_VDEVICE(ADAPTEC2, 0x8006), chip_8006 }, { PCI_VDEVICE(ATTO, 0x0042), chip_8001 }, /* Support for SPC/SPCv/SPCve controllers */ { PCI_VDEVICE(ADAPTEC2, 0x8001), chip_8001 }, { PCI_VDEVICE(PMC_Sierra, 0x8008), chip_8008 }, { PCI_VDEVICE(ADAPTEC2, 0x8008), chip_8008 }, { PCI_VDEVICE(PMC_Sierra, 0x8018), chip_8018 }, { PCI_VDEVICE(ADAPTEC2, 0x8018), chip_8018 }, { PCI_VDEVICE(PMC_Sierra, 0x8009), chip_8009 }, { PCI_VDEVICE(ADAPTEC2, 0x8009), chip_8009 }, { PCI_VDEVICE(PMC_Sierra, 0x8019), chip_8019 }, { PCI_VDEVICE(ADAPTEC2, 0x8019), chip_8019 }, { PCI_VDEVICE(PMC_Sierra, 0x8074), chip_8074 }, { PCI_VDEVICE(ADAPTEC2, 0x8074), chip_8074 }, { PCI_VDEVICE(PMC_Sierra, 0x8076), chip_8076 }, { PCI_VDEVICE(ADAPTEC2, 0x8076), chip_8076 }, { PCI_VDEVICE(PMC_Sierra, 0x8077), chip_8077 }, { PCI_VDEVICE(ADAPTEC2, 0x8077), chip_8077 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8081, PCI_VENDOR_ID_ADAPTEC2, 0x0400, 0, 0, chip_8001 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8081, PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8001 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8088, PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8008 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8088, PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8008 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8089, PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8009 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8089, PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8009 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8088, PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8018 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8088, PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8018 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8089, PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8019 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8089, PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8019 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8074, PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8074 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8076, PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8076 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8077, PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8077 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8074, PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8074 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8076, PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8076 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8077, PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8077 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8076, PCI_VENDOR_ID_ADAPTEC2, 0x0808, 0, 0, chip_8076 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8077, PCI_VENDOR_ID_ADAPTEC2, 0x0808, 0, 0, chip_8077 }, { PCI_VENDOR_ID_ADAPTEC2, 0x8074, PCI_VENDOR_ID_ADAPTEC2, 0x0404, 0, 0, chip_8074 }, { PCI_VENDOR_ID_ATTO, 0x8070, PCI_VENDOR_ID_ATTO, 0x0070, 0, 0, chip_8070 }, { PCI_VENDOR_ID_ATTO, 0x8070, PCI_VENDOR_ID_ATTO, 0x0071, 0, 0, chip_8070 }, { PCI_VENDOR_ID_ATTO, 0x8072, PCI_VENDOR_ID_ATTO, 0x0072, 0, 0, chip_8072 }, { PCI_VENDOR_ID_ATTO, 0x8072, PCI_VENDOR_ID_ATTO, 0x0073, 0, 0, chip_8072 }, { PCI_VENDOR_ID_ATTO, 0x8070, PCI_VENDOR_ID_ATTO, 0x0080, 0, 0, chip_8070 }, { PCI_VENDOR_ID_ATTO, 0x8072, PCI_VENDOR_ID_ATTO, 0x0081, 0, 0, chip_8072 }, { PCI_VENDOR_ID_ATTO, 0x8072, PCI_VENDOR_ID_ATTO, 0x0082, 0, 0, chip_8072 }, {} /* terminate list */ }; static SIMPLE_DEV_PM_OPS(pm8001_pci_pm_ops, pm8001_pci_suspend, pm8001_pci_resume); static struct pci_driver pm8001_pci_driver = { .name = DRV_NAME, .id_table = pm8001_pci_table, .probe = pm8001_pci_probe, .remove = pm8001_pci_remove, .driver.pm = &pm8001_pci_pm_ops, }; /** * pm8001_init - initialize scsi transport template */ static int __init pm8001_init(void) { int rc = -ENOMEM; pm8001_wq = alloc_workqueue("pm80xx", 0, 0); if (!pm8001_wq) goto err; pm8001_id = 0; pm8001_stt = sas_domain_attach_transport(&pm8001_transport_ops); if (!pm8001_stt) goto err_wq; rc = pci_register_driver(&pm8001_pci_driver); if (rc) goto err_tp; return 0; err_tp: sas_release_transport(pm8001_stt); err_wq: destroy_workqueue(pm8001_wq); err: return rc; } static void __exit pm8001_exit(void) { pci_unregister_driver(&pm8001_pci_driver); sas_release_transport(pm8001_stt); destroy_workqueue(pm8001_wq); } module_init(pm8001_init); module_exit(pm8001_exit); MODULE_AUTHOR("Jack Wang <jack_wang@usish.com>"); MODULE_AUTHOR("Anand Kumar Santhanam <AnandKumar.Santhanam@pmcs.com>"); MODULE_AUTHOR("Sangeetha Gnanasekaran <Sangeetha.Gnanasekaran@pmcs.com>"); MODULE_AUTHOR("Nikith Ganigarakoppal <Nikith.Ganigarakoppal@pmcs.com>"); MODULE_DESCRIPTION( "PMC-Sierra PM8001/8006/8081/8088/8089/8074/8076/8077/8070/8072 " "SAS/SATA controller driver"); MODULE_VERSION(DRV_VERSION); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, pm8001_pci_table);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1