Contributors: 26
Author Tokens Token Proportion Commits Commit Proportion
Linus Torvalds (pre-git) 6707 74.29% 28 42.42%
peter fuerst 999 11.07% 1 1.52%
Christoph Hellwig 452 5.01% 3 4.55%
Geert Uytterhoeven 219 2.43% 5 7.58%
Linus Torvalds 191 2.12% 1 1.52%
Hannes Reinecke 137 1.52% 3 4.55%
Bart Van Assche 108 1.20% 2 3.03%
Al Viro 63 0.70% 2 3.03%
Dave Jones 52 0.58% 1 1.52%
Roman Zippel 36 0.40% 3 4.55%
Boaz Harrosh 11 0.12% 1 1.52%
Rasmus Villemoes 10 0.11% 2 3.03%
Osamu Tomita 9 0.10% 1 1.52%
Jeff Garzik 6 0.07% 1 1.52%
Ming Lei 6 0.07% 1 1.52%
Randy Dunlap 4 0.04% 1 1.52%
Adrian Bunk 4 0.04% 1 1.52%
Gustavo A. R. Silva 2 0.02% 1 1.52%
Michal Marek 2 0.02% 1 1.52%
Thomas Gleixner 2 0.02% 1 1.52%
Ralf Baechle 2 0.02% 1 1.52%
Jens Axboe 2 0.02% 1 1.52%
Lucas De Marchi 1 0.01% 1 1.52%
James Bottomley 1 0.01% 1 1.52%
Arjan van de Ven 1 0.01% 1 1.52%
Tobias Klauser 1 0.01% 1 1.52%
Total 9028 66


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
 *    john@geolog.com
 *    jshiffle@netcom.com
 */

/*
 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
 * provided much of the inspiration and some of the code for this
 * driver. Everything I know about Amiga DMA was gleaned from careful
 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
 * borrowed shamelessly from all over that source. Thanks Hamish!
 *
 * _This_ driver is (I feel) an improvement over the old one in
 * several respects:
 *
 *    -  Target Disconnection/Reconnection  is now supported. Any
 *          system with more than one device active on the SCSI bus
 *          will benefit from this. The driver defaults to what I
 *          call 'adaptive disconnect' - meaning that each command
 *          is evaluated individually as to whether or not it should
 *          be run with the option to disconnect/reselect (if the
 *          device chooses), or as a "SCSI-bus-hog".
 *
 *    -  Synchronous data transfers are now supported. Because of
 *          a few devices that choke after telling the driver that
 *          they can do sync transfers, we don't automatically use
 *          this faster protocol - it can be enabled via the command-
 *          line on a device-by-device basis.
 *
 *    -  Runtime operating parameters can now be specified through
 *       the 'amiboot' or the 'insmod' command line. For amiboot do:
 *          "amiboot [usual stuff] wd33c93=blah,blah,blah"
 *       The defaults should be good for most people. See the comment
 *       for 'setup_strings' below for more details.
 *
 *    -  The old driver relied exclusively on what the Western Digital
 *          docs call "Combination Level 2 Commands", which are a great
 *          idea in that the CPU is relieved of a lot of interrupt
 *          overhead. However, by accepting a certain (user-settable)
 *          amount of additional interrupts, this driver achieves
 *          better control over the SCSI bus, and data transfers are
 *          almost as fast while being much easier to define, track,
 *          and debug.
 *
 *
 * TODO:
 *       more speed. linked commands.
 *
 *
 * People with bug reports, wish-lists, complaints, comments,
 * or improvements are asked to pah-leeez email me (John Shifflett)
 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
 * this thing into as good a shape as possible, and I'm positive
 * there are lots of lurking bugs and "Stupid Places".
 *
 * Updates:
 *
 * Added support for pre -A chips, which don't have advanced features
 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
 *	Richard Hirst <richard@sleepie.demon.co.uk>  August 2000
 *
 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
 * default_sx_per for asynchronous data transfers. Added adjustment
 * of transfer periods in sx_table to the actual input-clock.
 *  peter fuerst <post@pfrst.de>  February 2007
 */

#include <linux/module.h>

#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/blkdev.h>

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include <asm/irq.h>

#include "wd33c93.h"

#define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns


#define WD33C93_VERSION    "1.26++"
#define WD33C93_DATE       "10/Feb/2007"

MODULE_AUTHOR("John Shifflett");
MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
MODULE_LICENSE("GPL");

/*
 * 'setup_strings' is a single string used to pass operating parameters and
 * settings from the kernel/module command-line to the driver. 'setup_args[]'
 * is an array of strings that define the compile-time default values for
 * these settings. If Linux boots with an amiboot or insmod command-line,
 * those settings are combined with 'setup_args[]'. Note that amiboot
 * command-lines are prefixed with "wd33c93=" while insmod uses a
 * "setup_strings=" prefix. The driver recognizes the following keywords
 * (lower case required) and arguments:
 *
 * -  nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
 *                    the 7 possible SCSI devices. Set a bit to negotiate for
 *                    asynchronous transfers on that device. To maintain
 *                    backwards compatibility, a command-line such as
 *                    "wd33c93=255" will be automatically translated to
 *                    "wd33c93=nosync:0xff".
 * -  nodma:x        -x = 1 to disable DMA, x = 0 to enable it. Argument is
 *                    optional - if not present, same as "nodma:1".
 * -  period:ns      -ns is the minimum # of nanoseconds in a SCSI data transfer
 *                    period. Default is 500; acceptable values are 250 - 1000.
 * -  disconnect:x   -x = 0 to never allow disconnects, 2 to always allow them.
 *                    x = 1 does 'adaptive' disconnects, which is the default
 *                    and generally the best choice.
 * -  debug:x        -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
 *                    various types of debug output to printed - see the DB_xxx
 *                    defines in wd33c93.h
 * -  clock:x        -x = clock input in MHz for WD33c93 chip. Normal values
 *                    would be from 8 through 20. Default is 8.
 * -  burst:x        -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
 *                    Single Byte DMA, which is the default. Argument is
 *                    optional - if not present, same as "burst:1".
 * -  fast:x         -x = 1 to enable Fast SCSI, which is only effective with
 *                    input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
 *                    it, which is the default.  Argument is optional - if not
 *                    present, same as "fast:1".
 * -  next           -No argument. Used to separate blocks of keywords when
 *                    there's more than one host adapter in the system.
 *
 * Syntax Notes:
 * -  Numeric arguments can be decimal or the '0x' form of hex notation. There
 *    _must_ be a colon between a keyword and its numeric argument, with no
 *    spaces.
 * -  Keywords are separated by commas, no spaces, in the standard kernel
 *    command-line manner.
 * -  A keyword in the 'nth' comma-separated command-line member will overwrite
 *    the 'nth' element of setup_args[]. A blank command-line member (in
 *    other words, a comma with no preceding keyword) will _not_ overwrite
 *    the corresponding setup_args[] element.
 * -  If a keyword is used more than once, the first one applies to the first
 *    SCSI host found, the second to the second card, etc, unless the 'next'
 *    keyword is used to change the order.
 *
 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
 * -  wd33c93=nosync:255
 * -  wd33c93=nodma
 * -  wd33c93=nodma:1
 * -  wd33c93=disconnect:2,nosync:0x08,period:250
 * -  wd33c93=debug:0x1c
 */

/* Normally, no defaults are specified */
static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };

static char *setup_strings;
module_param(setup_strings, charp, 0);

static void wd33c93_execute(struct Scsi_Host *instance);

static inline uchar
read_wd33c93(const wd33c93_regs regs, uchar reg_num)
{
	*regs.SASR = reg_num;
	mb();
	return (*regs.SCMD);
}

static unsigned long
read_wd33c93_count(const wd33c93_regs regs)
{
	unsigned long value;

	*regs.SASR = WD_TRANSFER_COUNT_MSB;
	mb();
	value = *regs.SCMD << 16;
	value |= *regs.SCMD << 8;
	value |= *regs.SCMD;
	mb();
	return value;
}

static inline uchar
read_aux_stat(const wd33c93_regs regs)
{
	return *regs.SASR;
}

static inline void
write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
{
	*regs.SASR = reg_num;
	mb();
	*regs.SCMD = value;
	mb();
}

static void
write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
{
	*regs.SASR = WD_TRANSFER_COUNT_MSB;
	mb();
	*regs.SCMD = value >> 16;
	*regs.SCMD = value >> 8;
	*regs.SCMD = value;
	mb();
}

static inline void
write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
{
	*regs.SASR = WD_COMMAND;
	mb();
	*regs.SCMD = cmd;
	mb();
}

static inline void
write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
{
	int i;

	*regs.SASR = WD_CDB_1;
	for (i = 0; i < len; i++)
		*regs.SCMD = cmnd[i];
}

static inline uchar
read_1_byte(const wd33c93_regs regs)
{
	uchar asr;
	uchar x = 0;

	write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
	write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
	do {
		asr = read_aux_stat(regs);
		if (asr & ASR_DBR)
			x = read_wd33c93(regs, WD_DATA);
	} while (!(asr & ASR_INT));
	return x;
}

static int
round_period(unsigned int period, const struct sx_period *sx_table)
{
	int x;

	for (x = 1; sx_table[x].period_ns; x++) {
		if ((period <= sx_table[x - 0].period_ns) &&
		    (period > sx_table[x - 1].period_ns)) {
			return x;
		}
	}
	return 7;
}

/*
 * Calculate Synchronous Transfer Register value from SDTR code.
 */
static uchar
calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
               const struct sx_period *sx_table)
{
	/* When doing Fast SCSI synchronous data transfers, the corresponding
	 * value in 'sx_table' is two times the actually used transfer period.
	 */
	uchar result;

	if (offset && fast) {
		fast = STR_FSS;
		period *= 2;
	} else {
		fast = 0;
	}
	period *= 4;		/* convert SDTR code to ns */
	result = sx_table[round_period(period,sx_table)].reg_value;
	result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
	result |= fast;
	return result;
}

/*
 * Calculate SDTR code bytes [3],[4] from period and offset.
 */
static inline void
calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
                uchar  msg[2])
{
	/* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
	 * actually used transfer period for Fast SCSI synchronous data
	 * transfers is half that value.
	 */
	period /= 4;
	if (offset && fast)
		period /= 2;
	msg[0] = period;
	msg[1] = offset;
}

static int wd33c93_queuecommand_lck(struct scsi_cmnd *cmd)
{
	struct scsi_pointer *scsi_pointer = WD33C93_scsi_pointer(cmd);
	struct WD33C93_hostdata *hostdata;
	struct scsi_cmnd *tmp;

	hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;

	DB(DB_QUEUE_COMMAND,
	   printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0]))

/* Set up a few fields in the scsi_cmnd structure for our own use:
 *  - host_scribble is the pointer to the next cmd in the input queue
 *  - result is what you'd expect
 */
	cmd->host_scribble = NULL;
	cmd->result = 0;

/* We use the Scsi_Pointer structure that's included with each command
 * as a scratchpad (as it's intended to be used!). The handy thing about
 * the SCp.xxx fields is that they're always associated with a given
 * cmd, and are preserved across disconnect-reselect. This means we
 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
 * if we keep all the critical pointers and counters in SCp:
 *  - SCp.ptr is the pointer into the RAM buffer
 *  - SCp.this_residual is the size of that buffer
 *  - SCp.buffer points to the current scatter-gather buffer
 *  - SCp.buffers_residual tells us how many S.G. buffers there are
 *  - SCp.have_data_in is not used
 *  - SCp.sent_command is not used
 *  - SCp.phase records this command's SRCID_ER bit setting
 */

	if (scsi_bufflen(cmd)) {
		scsi_pointer->buffer = scsi_sglist(cmd);
		scsi_pointer->buffers_residual = scsi_sg_count(cmd) - 1;
		scsi_pointer->ptr = sg_virt(scsi_pointer->buffer);
		scsi_pointer->this_residual = scsi_pointer->buffer->length;
	} else {
		scsi_pointer->buffer = NULL;
		scsi_pointer->buffers_residual = 0;
		scsi_pointer->ptr = NULL;
		scsi_pointer->this_residual = 0;
	}

/* WD docs state that at the conclusion of a "LEVEL2" command, the
 * status byte can be retrieved from the LUN register. Apparently,
 * this is the case only for *uninterrupted* LEVEL2 commands! If
 * there are any unexpected phases entered, even if they are 100%
 * legal (different devices may choose to do things differently),
 * the LEVEL2 command sequence is exited. This often occurs prior
 * to receiving the status byte, in which case the driver does a
 * status phase interrupt and gets the status byte on its own.
 * While such a command can then be "resumed" (ie restarted to
 * finish up as a LEVEL2 command), the LUN register will NOT be
 * a valid status byte at the command's conclusion, and we must
 * use the byte obtained during the earlier interrupt. Here, we
 * preset SCp.Status to an illegal value (0xff) so that when
 * this command finally completes, we can tell where the actual
 * status byte is stored.
 */

	scsi_pointer->Status = ILLEGAL_STATUS_BYTE;

	/*
	 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
	 * commands are added to the head of the queue so that the desired
	 * sense data is not lost before REQUEST_SENSE executes.
	 */

	spin_lock_irq(&hostdata->lock);

	if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
		cmd->host_scribble = (uchar *) hostdata->input_Q;
		hostdata->input_Q = cmd;
	} else {		/* find the end of the queue */
		for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
		     tmp->host_scribble;
		     tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
		tmp->host_scribble = (uchar *) cmd;
	}

/* We know that there's at least one command in 'input_Q' now.
 * Go see if any of them are runnable!
 */

	wd33c93_execute(cmd->device->host);

	DB(DB_QUEUE_COMMAND, printk(")Q "))

	spin_unlock_irq(&hostdata->lock);
	return 0;
}

DEF_SCSI_QCMD(wd33c93_queuecommand)

/*
 * This routine attempts to start a scsi command. If the host_card is
 * already connected, we give up immediately. Otherwise, look through
 * the input_Q, using the first command we find that's intended
 * for a currently non-busy target/lun.
 *
 * wd33c93_execute() is always called with interrupts disabled or from
 * the wd33c93_intr itself, which means that a wd33c93 interrupt
 * cannot occur while we are in here.
 */
static void
wd33c93_execute(struct Scsi_Host *instance)
{
	struct scsi_pointer *scsi_pointer;
	struct WD33C93_hostdata *hostdata =
	    (struct WD33C93_hostdata *) instance->hostdata;
	const wd33c93_regs regs = hostdata->regs;
	struct scsi_cmnd *cmd, *prev;

	DB(DB_EXECUTE, printk("EX("))
	if (hostdata->selecting || hostdata->connected) {
		DB(DB_EXECUTE, printk(")EX-0 "))
		return;
	}

	/*
	 * Search through the input_Q for a command destined
	 * for an idle target/lun.
	 */

	cmd = (struct scsi_cmnd *) hostdata->input_Q;
	prev = NULL;
	while (cmd) {
		if (!(hostdata->busy[cmd->device->id] &
		      (1 << (cmd->device->lun & 0xff))))
			break;
		prev = cmd;
		cmd = (struct scsi_cmnd *) cmd->host_scribble;
	}

	/* quit if queue empty or all possible targets are busy */

	if (!cmd) {
		DB(DB_EXECUTE, printk(")EX-1 "))
		return;
	}

	/*  remove command from queue */

	if (prev)
		prev->host_scribble = cmd->host_scribble;
	else
		hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;

#ifdef PROC_STATISTICS
	hostdata->cmd_cnt[cmd->device->id]++;
#endif

	/*
	 * Start the selection process
	 */

	if (cmd->sc_data_direction == DMA_TO_DEVICE)
		write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
	else
		write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);

/* Now we need to figure out whether or not this command is a good
 * candidate for disconnect/reselect. We guess to the best of our
 * ability, based on a set of hierarchical rules. When several
 * devices are operating simultaneously, disconnects are usually
 * an advantage. In a single device system, or if only 1 device
 * is being accessed, transfers usually go faster if disconnects
 * are not allowed:
 *
 * + Commands should NEVER disconnect if hostdata->disconnect =
 *   DIS_NEVER (this holds for tape drives also), and ALWAYS
 *   disconnect if hostdata->disconnect = DIS_ALWAYS.
 * + Tape drive commands should always be allowed to disconnect.
 * + Disconnect should be allowed if disconnected_Q isn't empty.
 * + Commands should NOT disconnect if input_Q is empty.
 * + Disconnect should be allowed if there are commands in input_Q
 *   for a different target/lun. In this case, the other commands
 *   should be made disconnect-able, if not already.
 *
 * I know, I know - this code would flunk me out of any
 * "C Programming 101" class ever offered. But it's easy
 * to change around and experiment with for now.
 */

	scsi_pointer = WD33C93_scsi_pointer(cmd);
	scsi_pointer->phase = 0;	/* assume no disconnect */
	if (hostdata->disconnect == DIS_NEVER)
		goto no;
	if (hostdata->disconnect == DIS_ALWAYS)
		goto yes;
	if (cmd->device->type == 1)	/* tape drive? */
		goto yes;
	if (hostdata->disconnected_Q)	/* other commands disconnected? */
		goto yes;
	if (!(hostdata->input_Q))	/* input_Q empty? */
		goto no;
	for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
	     prev = (struct scsi_cmnd *) prev->host_scribble) {
		if ((prev->device->id != cmd->device->id) ||
		    (prev->device->lun != cmd->device->lun)) {
			for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
			     prev = (struct scsi_cmnd *) prev->host_scribble)
				WD33C93_scsi_pointer(prev)->phase = 1;
			goto yes;
		}
	}

	goto no;

 yes:
	scsi_pointer->phase = 1;

#ifdef PROC_STATISTICS
	hostdata->disc_allowed_cnt[cmd->device->id]++;
#endif

 no:

	write_wd33c93(regs, WD_SOURCE_ID, scsi_pointer->phase ? SRCID_ER : 0);

	write_wd33c93(regs, WD_TARGET_LUN, (u8)cmd->device->lun);
	write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
		      hostdata->sync_xfer[cmd->device->id]);
	hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF));

	if ((hostdata->level2 == L2_NONE) ||
	    (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {

		/*
		 * Do a 'Select-With-ATN' command. This will end with
		 * one of the following interrupts:
		 *    CSR_RESEL_AM:  failure - can try again later.
		 *    CSR_TIMEOUT:   failure - give up.
		 *    CSR_SELECT:    success - proceed.
		 */

		hostdata->selecting = cmd;

/* Every target has its own synchronous transfer setting, kept in the
 * sync_xfer array, and a corresponding status byte in sync_stat[].
 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
 * means that the parameters are undetermined as yet, and that we
 * need to send an SDTR message to this device after selection is
 * complete: We set SS_FIRST to tell the interrupt routine to do so.
 * If we've been asked not to try synchronous transfers on this
 * target (and _all_ luns within it), we'll still send the SDTR message
 * later, but at that time we'll negotiate for async by specifying a
 * sync fifo depth of 0.
 */
		if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
			hostdata->sync_stat[cmd->device->id] = SS_FIRST;
		hostdata->state = S_SELECTING;
		write_wd33c93_count(regs, 0);	/* guarantee a DATA_PHASE interrupt */
		write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
	} else {

		/*
		 * Do a 'Select-With-ATN-Xfer' command. This will end with
		 * one of the following interrupts:
		 *    CSR_RESEL_AM:  failure - can try again later.
		 *    CSR_TIMEOUT:   failure - give up.
		 *    anything else: success - proceed.
		 */

		hostdata->connected = cmd;
		write_wd33c93(regs, WD_COMMAND_PHASE, 0);

		/* copy command_descriptor_block into WD chip
		 * (take advantage of auto-incrementing)
		 */

		write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);

		/* The wd33c93 only knows about Group 0, 1, and 5 commands when
		 * it's doing a 'select-and-transfer'. To be safe, we write the
		 * size of the CDB into the OWN_ID register for every case. This
		 * way there won't be problems with vendor-unique, audio, etc.
		 */

		write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);

		/* When doing a non-disconnect command with DMA, we can save
		 * ourselves a DATA phase interrupt later by setting everything
		 * up ahead of time.
		 */

		if (scsi_pointer->phase == 0 && hostdata->no_dma == 0) {
			if (hostdata->dma_setup(cmd,
			    (cmd->sc_data_direction == DMA_TO_DEVICE) ?
			     DATA_OUT_DIR : DATA_IN_DIR))
				write_wd33c93_count(regs, 0);	/* guarantee a DATA_PHASE interrupt */
			else {
				write_wd33c93_count(regs,
						scsi_pointer->this_residual);
				write_wd33c93(regs, WD_CONTROL,
					      CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
				hostdata->dma = D_DMA_RUNNING;
			}
		} else
			write_wd33c93_count(regs, 0);	/* guarantee a DATA_PHASE interrupt */

		hostdata->state = S_RUNNING_LEVEL2;
		write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
	}

	/*
	 * Since the SCSI bus can handle only 1 connection at a time,
	 * we get out of here now. If the selection fails, or when
	 * the command disconnects, we'll come back to this routine
	 * to search the input_Q again...
	 */

	DB(DB_EXECUTE,
	   printk("%s)EX-2 ", scsi_pointer->phase ? "d:" : ""))
}

static void
transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
	     int data_in_dir, struct WD33C93_hostdata *hostdata)
{
	uchar asr;

	DB(DB_TRANSFER,
	   printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))

	write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
	write_wd33c93_count(regs, cnt);
	write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
	if (data_in_dir) {
		do {
			asr = read_aux_stat(regs);
			if (asr & ASR_DBR)
				*buf++ = read_wd33c93(regs, WD_DATA);
		} while (!(asr & ASR_INT));
	} else {
		do {
			asr = read_aux_stat(regs);
			if (asr & ASR_DBR)
				write_wd33c93(regs, WD_DATA, *buf++);
		} while (!(asr & ASR_INT));
	}

	/* Note: we are returning with the interrupt UN-cleared.
	 * Since (presumably) an entire I/O operation has
	 * completed, the bus phase is probably different, and
	 * the interrupt routine will discover this when it
	 * responds to the uncleared int.
	 */

}

static void
transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
		int data_in_dir)
{
	struct scsi_pointer *scsi_pointer = WD33C93_scsi_pointer(cmd);
	struct WD33C93_hostdata *hostdata;
	unsigned long length;

	hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;

/* Normally, you'd expect 'this_residual' to be non-zero here.
 * In a series of scatter-gather transfers, however, this
 * routine will usually be called with 'this_residual' equal
 * to 0 and 'buffers_residual' non-zero. This means that a
 * previous transfer completed, clearing 'this_residual', and
 * now we need to setup the next scatter-gather buffer as the
 * source or destination for THIS transfer.
 */
	if (!scsi_pointer->this_residual && scsi_pointer->buffers_residual) {
		scsi_pointer->buffer = sg_next(scsi_pointer->buffer);
		--scsi_pointer->buffers_residual;
		scsi_pointer->this_residual = scsi_pointer->buffer->length;
		scsi_pointer->ptr = sg_virt(scsi_pointer->buffer);
	}
	if (!scsi_pointer->this_residual) /* avoid bogus setups */
		return;

	write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
		      hostdata->sync_xfer[cmd->device->id]);

/* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
 */

	if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
#ifdef PROC_STATISTICS
		hostdata->pio_cnt++;
#endif
		transfer_pio(regs, (uchar *) scsi_pointer->ptr,
			     scsi_pointer->this_residual, data_in_dir,
			     hostdata);
		length = scsi_pointer->this_residual;
		scsi_pointer->this_residual = read_wd33c93_count(regs);
		scsi_pointer->ptr += length - scsi_pointer->this_residual;
	}

/* We are able to do DMA (in fact, the Amiga hardware is
 * already going!), so start up the wd33c93 in DMA mode.
 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
 * transfer completes and causes an interrupt, we're
 * reminded to tell the Amiga to shut down its end. We'll
 * postpone the updating of 'this_residual' and 'ptr'
 * until then.
 */

	else {
#ifdef PROC_STATISTICS
		hostdata->dma_cnt++;
#endif
		write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
		write_wd33c93_count(regs, scsi_pointer->this_residual);

		if ((hostdata->level2 >= L2_DATA) ||
		    (hostdata->level2 == L2_BASIC && scsi_pointer->phase == 0)) {
			write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
			write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
			hostdata->state = S_RUNNING_LEVEL2;
		} else
			write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);

		hostdata->dma = D_DMA_RUNNING;
	}
}

void
wd33c93_intr(struct Scsi_Host *instance)
{
	struct scsi_pointer *scsi_pointer;
	struct WD33C93_hostdata *hostdata =
	    (struct WD33C93_hostdata *) instance->hostdata;
	const wd33c93_regs regs = hostdata->regs;
	struct scsi_cmnd *patch, *cmd;
	uchar asr, sr, phs, id, lun, *ucp, msg;
	unsigned long length, flags;

	asr = read_aux_stat(regs);
	if (!(asr & ASR_INT) || (asr & ASR_BSY))
		return;

	spin_lock_irqsave(&hostdata->lock, flags);

#ifdef PROC_STATISTICS
	hostdata->int_cnt++;
#endif

	cmd = (struct scsi_cmnd *) hostdata->connected;	/* assume we're connected */
	scsi_pointer = WD33C93_scsi_pointer(cmd);
	sr = read_wd33c93(regs, WD_SCSI_STATUS);	/* clear the interrupt */
	phs = read_wd33c93(regs, WD_COMMAND_PHASE);

	DB(DB_INTR, printk("{%02x:%02x-", asr, sr))

/* After starting a DMA transfer, the next interrupt
 * is guaranteed to be in response to completion of
 * the transfer. Since the Amiga DMA hardware runs in
 * in an open-ended fashion, it needs to be told when
 * to stop; do that here if D_DMA_RUNNING is true.
 * Also, we have to update 'this_residual' and 'ptr'
 * based on the contents of the TRANSFER_COUNT register,
 * in case the device decided to do an intermediate
 * disconnect (a device may do this if it has to do a
 * seek, or just to be nice and let other devices have
 * some bus time during long transfers). After doing
 * whatever is needed, we go on and service the WD3393
 * interrupt normally.
 */
	    if (hostdata->dma == D_DMA_RUNNING) {
		DB(DB_TRANSFER,
		   printk("[%p/%d:", scsi_pointer->ptr, scsi_pointer->this_residual))
		    hostdata->dma_stop(cmd->device->host, cmd, 1);
		hostdata->dma = D_DMA_OFF;
		length = scsi_pointer->this_residual;
		scsi_pointer->this_residual = read_wd33c93_count(regs);
		scsi_pointer->ptr += length - scsi_pointer->this_residual;
		DB(DB_TRANSFER,
		   printk("%p/%d]", scsi_pointer->ptr, scsi_pointer->this_residual))
	}

/* Respond to the specific WD3393 interrupt - there are quite a few! */
	switch (sr) {
	case CSR_TIMEOUT:
		DB(DB_INTR, printk("TIMEOUT"))

		    if (hostdata->state == S_RUNNING_LEVEL2)
			hostdata->connected = NULL;
		else {
			cmd = (struct scsi_cmnd *) hostdata->selecting;	/* get a valid cmd */
			hostdata->selecting = NULL;
		}

		cmd->result = DID_NO_CONNECT << 16;
		hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
		hostdata->state = S_UNCONNECTED;
		scsi_done(cmd);

		/* From esp.c:
		 * There is a window of time within the scsi_done() path
		 * of execution where interrupts are turned back on full
		 * blast and left that way.  During that time we could
		 * reconnect to a disconnected command, then we'd bomb
		 * out below.  We could also end up executing two commands
		 * at _once_.  ...just so you know why the restore_flags()
		 * is here...
		 */

		spin_unlock_irqrestore(&hostdata->lock, flags);

/* We are not connected to a target - check to see if there
 * are commands waiting to be executed.
 */

		wd33c93_execute(instance);
		break;

/* Note: this interrupt should not occur in a LEVEL2 command */

	case CSR_SELECT:
		DB(DB_INTR, printk("SELECT"))
		    hostdata->connected = cmd =
		    (struct scsi_cmnd *) hostdata->selecting;
		hostdata->selecting = NULL;

		/* construct an IDENTIFY message with correct disconnect bit */

		hostdata->outgoing_msg[0] = IDENTIFY(0, cmd->device->lun);
		if (scsi_pointer->phase)
			hostdata->outgoing_msg[0] |= 0x40;

		if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {

			hostdata->sync_stat[cmd->device->id] = SS_WAITING;

/* Tack on a 2nd message to ask about synchronous transfers. If we've
 * been asked to do only asynchronous transfers on this device, we
 * request a fifo depth of 0, which is equivalent to async - should
 * solve the problems some people have had with GVP's Guru ROM.
 */

			hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
			hostdata->outgoing_msg[2] = 3;
			hostdata->outgoing_msg[3] = EXTENDED_SDTR;
			if (hostdata->no_sync & (1 << cmd->device->id)) {
				calc_sync_msg(hostdata->default_sx_per, 0,
						0, hostdata->outgoing_msg + 4);
			} else {
				calc_sync_msg(optimum_sx_per(hostdata),
						OPTIMUM_SX_OFF,
						hostdata->fast,
						hostdata->outgoing_msg + 4);
			}
			hostdata->outgoing_len = 6;
#ifdef SYNC_DEBUG
			ucp = hostdata->outgoing_msg + 1;
			printk(" sending SDTR %02x03%02x%02x%02x ",
				ucp[0], ucp[2], ucp[3], ucp[4]);
#endif
		} else
			hostdata->outgoing_len = 1;

		hostdata->state = S_CONNECTED;
		spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

	case CSR_XFER_DONE | PHS_DATA_IN:
	case CSR_UNEXP | PHS_DATA_IN:
	case CSR_SRV_REQ | PHS_DATA_IN:
		DB(DB_INTR,
		   printk("IN-%d.%d", scsi_pointer->this_residual,
			  scsi_pointer->buffers_residual))
		    transfer_bytes(regs, cmd, DATA_IN_DIR);
		if (hostdata->state != S_RUNNING_LEVEL2)
			hostdata->state = S_CONNECTED;
		spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

	case CSR_XFER_DONE | PHS_DATA_OUT:
	case CSR_UNEXP | PHS_DATA_OUT:
	case CSR_SRV_REQ | PHS_DATA_OUT:
		DB(DB_INTR,
		   printk("OUT-%d.%d", scsi_pointer->this_residual,
			  scsi_pointer->buffers_residual))
		    transfer_bytes(regs, cmd, DATA_OUT_DIR);
		if (hostdata->state != S_RUNNING_LEVEL2)
			hostdata->state = S_CONNECTED;
		spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

/* Note: this interrupt should not occur in a LEVEL2 command */

	case CSR_XFER_DONE | PHS_COMMAND:
	case CSR_UNEXP | PHS_COMMAND:
	case CSR_SRV_REQ | PHS_COMMAND:
		DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
		    transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
				 hostdata);
		hostdata->state = S_CONNECTED;
		spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

	case CSR_XFER_DONE | PHS_STATUS:
	case CSR_UNEXP | PHS_STATUS:
	case CSR_SRV_REQ | PHS_STATUS:
		DB(DB_INTR, printk("STATUS="))
		scsi_pointer->Status = read_1_byte(regs);
		DB(DB_INTR, printk("%02x", scsi_pointer->Status))
		    if (hostdata->level2 >= L2_BASIC) {
			sr = read_wd33c93(regs, WD_SCSI_STATUS);	/* clear interrupt */
			udelay(7);
			hostdata->state = S_RUNNING_LEVEL2;
			write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
			write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
		} else {
			hostdata->state = S_CONNECTED;
		}
		spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

	case CSR_XFER_DONE | PHS_MESS_IN:
	case CSR_UNEXP | PHS_MESS_IN:
	case CSR_SRV_REQ | PHS_MESS_IN:
		DB(DB_INTR, printk("MSG_IN="))

		msg = read_1_byte(regs);
		sr = read_wd33c93(regs, WD_SCSI_STATUS);	/* clear interrupt */
		udelay(7);

		hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
		if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
			msg = EXTENDED_MESSAGE;
		else
			hostdata->incoming_ptr = 0;

		scsi_pointer->Message = msg;
		switch (msg) {

		case COMMAND_COMPLETE:
			DB(DB_INTR, printk("CCMP"))
			    write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
			hostdata->state = S_PRE_CMP_DISC;
			break;

		case SAVE_POINTERS:
			DB(DB_INTR, printk("SDP"))
			    write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
			hostdata->state = S_CONNECTED;
			break;

		case RESTORE_POINTERS:
			DB(DB_INTR, printk("RDP"))
			    if (hostdata->level2 >= L2_BASIC) {
				write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
				write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
				hostdata->state = S_RUNNING_LEVEL2;
			} else {
				write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
				hostdata->state = S_CONNECTED;
			}
			break;

		case DISCONNECT:
			DB(DB_INTR, printk("DIS"))
			    cmd->device->disconnect = 1;
			write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
			hostdata->state = S_PRE_TMP_DISC;
			break;

		case MESSAGE_REJECT:
			DB(DB_INTR, printk("REJ"))
#ifdef SYNC_DEBUG
			    printk("-REJ-");
#endif
			if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
				hostdata->sync_stat[cmd->device->id] = SS_SET;
				/* we want default_sx_per, not DEFAULT_SX_PER */
				hostdata->sync_xfer[cmd->device->id] =
					calc_sync_xfer(hostdata->default_sx_per
						/ 4, 0, 0, hostdata->sx_table);
			}
			write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
			hostdata->state = S_CONNECTED;
			break;

		case EXTENDED_MESSAGE:
			DB(DB_INTR, printk("EXT"))

			    ucp = hostdata->incoming_msg;

#ifdef SYNC_DEBUG
			printk("%02x", ucp[hostdata->incoming_ptr]);
#endif
			/* Is this the last byte of the extended message? */

			if ((hostdata->incoming_ptr >= 2) &&
			    (hostdata->incoming_ptr == (ucp[1] + 1))) {

				switch (ucp[2]) {	/* what's the EXTENDED code? */
				case EXTENDED_SDTR:
					/* default to default async period */
					id = calc_sync_xfer(hostdata->
							default_sx_per / 4, 0,
							0, hostdata->sx_table);
					if (hostdata->sync_stat[cmd->device->id] !=
					    SS_WAITING) {

/* A device has sent an unsolicited SDTR message; rather than go
 * through the effort of decoding it and then figuring out what
 * our reply should be, we're just gonna say that we have a
 * synchronous fifo depth of 0. This will result in asynchronous
 * transfers - not ideal but so much easier.
 * Actually, this is OK because it assures us that if we don't
 * specifically ask for sync transfers, we won't do any.
 */

						write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
						hostdata->outgoing_msg[0] =
						    EXTENDED_MESSAGE;
						hostdata->outgoing_msg[1] = 3;
						hostdata->outgoing_msg[2] =
						    EXTENDED_SDTR;
						calc_sync_msg(hostdata->
							default_sx_per, 0,
							0, hostdata->outgoing_msg + 3);
						hostdata->outgoing_len = 5;
					} else {
						if (ucp[4]) /* well, sync transfer */
							id = calc_sync_xfer(ucp[3], ucp[4],
									hostdata->fast,
									hostdata->sx_table);
						else if (ucp[3]) /* very unlikely... */
							id = calc_sync_xfer(ucp[3], ucp[4],
									0, hostdata->sx_table);
					}
					hostdata->sync_xfer[cmd->device->id] = id;
#ifdef SYNC_DEBUG
					printk(" sync_xfer=%02x\n",
					       hostdata->sync_xfer[cmd->device->id]);
#endif
					hostdata->sync_stat[cmd->device->id] =
					    SS_SET;
					write_wd33c93_cmd(regs,
							  WD_CMD_NEGATE_ACK);
					hostdata->state = S_CONNECTED;
					break;
				case EXTENDED_WDTR:
					write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
					printk("sending WDTR ");
					hostdata->outgoing_msg[0] =
					    EXTENDED_MESSAGE;
					hostdata->outgoing_msg[1] = 2;
					hostdata->outgoing_msg[2] =
					    EXTENDED_WDTR;
					hostdata->outgoing_msg[3] = 0;	/* 8 bit transfer width */
					hostdata->outgoing_len = 4;
					write_wd33c93_cmd(regs,
							  WD_CMD_NEGATE_ACK);
					hostdata->state = S_CONNECTED;
					break;
				default:
					write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
					printk
					    ("Rejecting Unknown Extended Message(%02x). ",
					     ucp[2]);
					hostdata->outgoing_msg[0] =
					    MESSAGE_REJECT;
					hostdata->outgoing_len = 1;
					write_wd33c93_cmd(regs,
							  WD_CMD_NEGATE_ACK);
					hostdata->state = S_CONNECTED;
					break;
				}
				hostdata->incoming_ptr = 0;
			}

			/* We need to read more MESS_IN bytes for the extended message */

			else {
				hostdata->incoming_ptr++;
				write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
				hostdata->state = S_CONNECTED;
			}
			break;

		default:
			printk("Rejecting Unknown Message(%02x) ", msg);
			write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
			hostdata->outgoing_msg[0] = MESSAGE_REJECT;
			hostdata->outgoing_len = 1;
			write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
			hostdata->state = S_CONNECTED;
		}
		spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

/* Note: this interrupt will occur only after a LEVEL2 command */

	case CSR_SEL_XFER_DONE:

/* Make sure that reselection is enabled at this point - it may
 * have been turned off for the command that just completed.
 */

		write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
		if (phs == 0x60) {
			DB(DB_INTR, printk("SX-DONE"))
			    scsi_pointer->Message = COMMAND_COMPLETE;
			lun = read_wd33c93(regs, WD_TARGET_LUN);
			DB(DB_INTR, printk(":%d.%d", scsi_pointer->Status, lun))
			    hostdata->connected = NULL;
			hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
			hostdata->state = S_UNCONNECTED;
			if (scsi_pointer->Status == ILLEGAL_STATUS_BYTE)
				scsi_pointer->Status = lun;
			if (cmd->cmnd[0] == REQUEST_SENSE
			    && scsi_pointer->Status != SAM_STAT_GOOD) {
				set_host_byte(cmd, DID_ERROR);
			} else {
				set_host_byte(cmd, DID_OK);
				scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
				set_status_byte(cmd, scsi_pointer->Status);
			}
			scsi_done(cmd);

/* We are no longer  connected to a target - check to see if
 * there are commands waiting to be executed.
 */
			spin_unlock_irqrestore(&hostdata->lock, flags);
			wd33c93_execute(instance);
		} else {
			printk
			    ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---",
			     asr, sr, phs);
			spin_unlock_irqrestore(&hostdata->lock, flags);
		}
		break;

/* Note: this interrupt will occur only after a LEVEL2 command */

	case CSR_SDP:
		DB(DB_INTR, printk("SDP"))
		    hostdata->state = S_RUNNING_LEVEL2;
		write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
		write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
		spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

	case CSR_XFER_DONE | PHS_MESS_OUT:
	case CSR_UNEXP | PHS_MESS_OUT:
	case CSR_SRV_REQ | PHS_MESS_OUT:
		DB(DB_INTR, printk("MSG_OUT="))

/* To get here, we've probably requested MESSAGE_OUT and have
 * already put the correct bytes in outgoing_msg[] and filled
 * in outgoing_len. We simply send them out to the SCSI bus.
 * Sometimes we get MESSAGE_OUT phase when we're not expecting
 * it - like when our SDTR message is rejected by a target. Some
 * targets send the REJECT before receiving all of the extended
 * message, and then seem to go back to MESSAGE_OUT for a byte
 * or two. Not sure why, or if I'm doing something wrong to
 * cause this to happen. Regardless, it seems that sending
 * NOP messages in these situations results in no harm and
 * makes everyone happy.
 */
		    if (hostdata->outgoing_len == 0) {
			hostdata->outgoing_len = 1;
			hostdata->outgoing_msg[0] = NOP;
		}
		transfer_pio(regs, hostdata->outgoing_msg,
			     hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
		DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
		    hostdata->outgoing_len = 0;
		hostdata->state = S_CONNECTED;
		spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

	case CSR_UNEXP_DISC:

/* I think I've seen this after a request-sense that was in response
 * to an error condition, but not sure. We certainly need to do
 * something when we get this interrupt - the question is 'what?'.
 * Let's think positively, and assume some command has finished
 * in a legal manner (like a command that provokes a request-sense),
 * so we treat it as a normal command-complete-disconnect.
 */

/* Make sure that reselection is enabled at this point - it may
 * have been turned off for the command that just completed.
 */

		write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
		if (cmd == NULL) {
			printk(" - Already disconnected! ");
			hostdata->state = S_UNCONNECTED;
			spin_unlock_irqrestore(&hostdata->lock, flags);
			return;
		}
		DB(DB_INTR, printk("UNEXP_DISC"))
		    hostdata->connected = NULL;
		hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
		hostdata->state = S_UNCONNECTED;
		if (cmd->cmnd[0] == REQUEST_SENSE &&
		    scsi_pointer->Status != SAM_STAT_GOOD) {
			set_host_byte(cmd, DID_ERROR);
		} else {
			set_host_byte(cmd, DID_OK);
			scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
			set_status_byte(cmd, scsi_pointer->Status);
		}
		scsi_done(cmd);

/* We are no longer connected to a target - check to see if
 * there are commands waiting to be executed.
 */
		/* look above for comments on scsi_done() */
		spin_unlock_irqrestore(&hostdata->lock, flags);
		wd33c93_execute(instance);
		break;

	case CSR_DISC:

/* Make sure that reselection is enabled at this point - it may
 * have been turned off for the command that just completed.
 */

		write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
		DB(DB_INTR, printk("DISC"))
		    if (cmd == NULL) {
			printk(" - Already disconnected! ");
			hostdata->state = S_UNCONNECTED;
		}
		switch (hostdata->state) {
		case S_PRE_CMP_DISC:
			hostdata->connected = NULL;
			hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
			hostdata->state = S_UNCONNECTED;
			DB(DB_INTR, printk(":%d", scsi_pointer->Status))
			if (cmd->cmnd[0] == REQUEST_SENSE
			    && scsi_pointer->Status != SAM_STAT_GOOD) {
				set_host_byte(cmd, DID_ERROR);
			} else {
				set_host_byte(cmd, DID_OK);
				scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
				set_status_byte(cmd, scsi_pointer->Status);
			}
			scsi_done(cmd);
			break;
		case S_PRE_TMP_DISC:
		case S_RUNNING_LEVEL2:
			cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
			hostdata->disconnected_Q = cmd;
			hostdata->connected = NULL;
			hostdata->state = S_UNCONNECTED;

#ifdef PROC_STATISTICS
			hostdata->disc_done_cnt[cmd->device->id]++;
#endif

			break;
		default:
			printk("*** Unexpected DISCONNECT interrupt! ***");
			hostdata->state = S_UNCONNECTED;
		}

/* We are no longer connected to a target - check to see if
 * there are commands waiting to be executed.
 */
		spin_unlock_irqrestore(&hostdata->lock, flags);
		wd33c93_execute(instance);
		break;

	case CSR_RESEL_AM:
	case CSR_RESEL:
		DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))

		    /* Old chips (pre -A ???) don't have advanced features and will
		     * generate CSR_RESEL.  In that case we have to extract the LUN the
		     * hard way (see below).
		     * First we have to make sure this reselection didn't
		     * happen during Arbitration/Selection of some other device.
		     * If yes, put losing command back on top of input_Q.
		     */
		    if (hostdata->level2 <= L2_NONE) {

			if (hostdata->selecting) {
				cmd = (struct scsi_cmnd *) hostdata->selecting;
				hostdata->selecting = NULL;
				hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
				cmd->host_scribble =
				    (uchar *) hostdata->input_Q;
				hostdata->input_Q = cmd;
			}
		}

		else {

			if (cmd) {
				if (phs == 0x00) {
					hostdata->busy[cmd->device->id] &=
						~(1 << (cmd->device->lun & 0xff));
					cmd->host_scribble =
					    (uchar *) hostdata->input_Q;
					hostdata->input_Q = cmd;
				} else {
					printk
					    ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
					     asr, sr, phs);
					while (1)
						printk("\r");
				}
			}

		}

		/* OK - find out which device reselected us. */

		id = read_wd33c93(regs, WD_SOURCE_ID);
		id &= SRCID_MASK;

		/* and extract the lun from the ID message. (Note that we don't
		 * bother to check for a valid message here - I guess this is
		 * not the right way to go, but...)
		 */

		if (sr == CSR_RESEL_AM) {
			lun = read_wd33c93(regs, WD_DATA);
			if (hostdata->level2 < L2_RESELECT)
				write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
			lun &= 7;
		} else {
			/* Old chip; wait for msgin phase to pick up the LUN. */
			for (lun = 255; lun; lun--) {
				if ((asr = read_aux_stat(regs)) & ASR_INT)
					break;
				udelay(10);
			}
			if (!(asr & ASR_INT)) {
				printk
				    ("wd33c93: Reselected without IDENTIFY\n");
				lun = 0;
			} else {
				/* Verify this is a change to MSG_IN and read the message */
				sr = read_wd33c93(regs, WD_SCSI_STATUS);
				udelay(7);
				if (sr == (CSR_ABORT | PHS_MESS_IN) ||
				    sr == (CSR_UNEXP | PHS_MESS_IN) ||
				    sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
					/* Got MSG_IN, grab target LUN */
					lun = read_1_byte(regs);
					/* Now we expect a 'paused with ACK asserted' int.. */
					asr = read_aux_stat(regs);
					if (!(asr & ASR_INT)) {
						udelay(10);
						asr = read_aux_stat(regs);
						if (!(asr & ASR_INT))
							printk
							    ("wd33c93: No int after LUN on RESEL (%02x)\n",
							     asr);
					}
					sr = read_wd33c93(regs, WD_SCSI_STATUS);
					udelay(7);
					if (sr != CSR_MSGIN)
						printk
						    ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
						     sr);
					lun &= 7;
					write_wd33c93_cmd(regs,
							  WD_CMD_NEGATE_ACK);
				} else {
					printk
					    ("wd33c93: Not MSG_IN on reselect (%02x)\n",
					     sr);
					lun = 0;
				}
			}
		}

		/* Now we look for the command that's reconnecting. */

		cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
		patch = NULL;
		while (cmd) {
			if (id == cmd->device->id && lun == (u8)cmd->device->lun)
				break;
			patch = cmd;
			cmd = (struct scsi_cmnd *) cmd->host_scribble;
		}

		/* Hmm. Couldn't find a valid command.... What to do? */

		if (!cmd) {
			printk
			    ("---TROUBLE: target %d.%d not in disconnect queue---",
			     id, (u8)lun);
			spin_unlock_irqrestore(&hostdata->lock, flags);
			return;
		}

		/* Ok, found the command - now start it up again. */

		if (patch)
			patch->host_scribble = cmd->host_scribble;
		else
			hostdata->disconnected_Q =
			    (struct scsi_cmnd *) cmd->host_scribble;
		hostdata->connected = cmd;

		/* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
		 * because these things are preserved over a disconnect.
		 * But we DO need to fix the DPD bit so it's correct for this command.
		 */

		if (cmd->sc_data_direction == DMA_TO_DEVICE)
			write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
		else
			write_wd33c93(regs, WD_DESTINATION_ID,
				      cmd->device->id | DSTID_DPD);
		if (hostdata->level2 >= L2_RESELECT) {
			write_wd33c93_count(regs, 0);	/* we want a DATA_PHASE interrupt */
			write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
			write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
			hostdata->state = S_RUNNING_LEVEL2;
		} else
			hostdata->state = S_CONNECTED;

		    spin_unlock_irqrestore(&hostdata->lock, flags);
		break;

	default:
		printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
		spin_unlock_irqrestore(&hostdata->lock, flags);
	}

	DB(DB_INTR, printk("} "))

}

static void
reset_wd33c93(struct Scsi_Host *instance)
{
	struct WD33C93_hostdata *hostdata =
	    (struct WD33C93_hostdata *) instance->hostdata;
	const wd33c93_regs regs = hostdata->regs;
	uchar sr;

#ifdef CONFIG_SGI_IP22
	{
		int busycount = 0;
		extern void sgiwd93_reset(unsigned long);
		/* wait 'til the chip gets some time for us */
		while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
			udelay (10);
	/*
 	 * there are scsi devices out there, which manage to lock up
	 * the wd33c93 in a busy condition. In this state it won't
	 * accept the reset command. The only way to solve this is to
 	 * give the chip a hardware reset (if possible). The code below
	 * does this for the SGI Indy, where this is possible
	 */
	/* still busy ? */
	if (read_aux_stat(regs) & ASR_BSY)
		sgiwd93_reset(instance->base); /* yeah, give it the hard one */
	}
#endif

	write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
		      instance->this_id | hostdata->clock_freq);
	write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
	write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
		      calc_sync_xfer(hostdata->default_sx_per / 4,
				     DEFAULT_SX_OFF, 0, hostdata->sx_table));
	write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);


#ifdef CONFIG_MVME147_SCSI
	udelay(25);		/* The old wd33c93 on MVME147 needs this, at least */
#endif

	while (!(read_aux_stat(regs) & ASR_INT))
		;
	sr = read_wd33c93(regs, WD_SCSI_STATUS);

	hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
	if (sr == 0x00)
		hostdata->chip = C_WD33C93;
	else if (sr == 0x01) {
		write_wd33c93(regs, WD_QUEUE_TAG, 0xa5);	/* any random number */
		sr = read_wd33c93(regs, WD_QUEUE_TAG);
		if (sr == 0xa5) {
			hostdata->chip = C_WD33C93B;
			write_wd33c93(regs, WD_QUEUE_TAG, 0);
		} else
			hostdata->chip = C_WD33C93A;
	} else
		hostdata->chip = C_UNKNOWN_CHIP;

	if (hostdata->chip != C_WD33C93B)	/* Fast SCSI unavailable */
		hostdata->fast = 0;

	write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
	write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
}

int
wd33c93_host_reset(struct scsi_cmnd * SCpnt)
{
	struct Scsi_Host *instance;
	struct WD33C93_hostdata *hostdata;
	int i;

	instance = SCpnt->device->host;
	spin_lock_irq(instance->host_lock);
	hostdata = (struct WD33C93_hostdata *) instance->hostdata;

	printk("scsi%d: reset. ", instance->host_no);
	disable_irq(instance->irq);

	hostdata->dma_stop(instance, NULL, 0);
	for (i = 0; i < 8; i++) {
		hostdata->busy[i] = 0;
		hostdata->sync_xfer[i] =
			calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
					0, hostdata->sx_table);
		hostdata->sync_stat[i] = SS_UNSET;	/* using default sync values */
	}
	hostdata->input_Q = NULL;
	hostdata->selecting = NULL;
	hostdata->connected = NULL;
	hostdata->disconnected_Q = NULL;
	hostdata->state = S_UNCONNECTED;
	hostdata->dma = D_DMA_OFF;
	hostdata->incoming_ptr = 0;
	hostdata->outgoing_len = 0;

	reset_wd33c93(instance);
	SCpnt->result = DID_RESET << 16;
	enable_irq(instance->irq);
	spin_unlock_irq(instance->host_lock);
	return SUCCESS;
}

int
wd33c93_abort(struct scsi_cmnd * cmd)
{
	struct Scsi_Host *instance;
	struct WD33C93_hostdata *hostdata;
	wd33c93_regs regs;
	struct scsi_cmnd *tmp, *prev;

	disable_irq(cmd->device->host->irq);

	instance = cmd->device->host;
	hostdata = (struct WD33C93_hostdata *) instance->hostdata;
	regs = hostdata->regs;

/*
 * Case 1 : If the command hasn't been issued yet, we simply remove it
 *     from the input_Q.
 */

	tmp = (struct scsi_cmnd *) hostdata->input_Q;
	prev = NULL;
	while (tmp) {
		if (tmp == cmd) {
			if (prev)
				prev->host_scribble = cmd->host_scribble;
			else
				hostdata->input_Q =
				    (struct scsi_cmnd *) cmd->host_scribble;
			cmd->host_scribble = NULL;
			cmd->result = DID_ABORT << 16;
			printk
			    ("scsi%d: Abort - removing command from input_Q. ",
			     instance->host_no);
			enable_irq(cmd->device->host->irq);
			scsi_done(cmd);
			return SUCCESS;
		}
		prev = tmp;
		tmp = (struct scsi_cmnd *) tmp->host_scribble;
	}

/*
 * Case 2 : If the command is connected, we're going to fail the abort
 *     and let the high level SCSI driver retry at a later time or
 *     issue a reset.
 *
 *     Timeouts, and therefore aborted commands, will be highly unlikely
 *     and handling them cleanly in this situation would make the common
 *     case of noresets less efficient, and would pollute our code.  So,
 *     we fail.
 */

	if (hostdata->connected == cmd) {
		uchar sr, asr;
		unsigned long timeout;

		printk("scsi%d: Aborting connected command - ",
		       instance->host_no);

		printk("stopping DMA - ");
		if (hostdata->dma == D_DMA_RUNNING) {
			hostdata->dma_stop(instance, cmd, 0);
			hostdata->dma = D_DMA_OFF;
		}

		printk("sending wd33c93 ABORT command - ");
		write_wd33c93(regs, WD_CONTROL,
			      CTRL_IDI | CTRL_EDI | CTRL_POLLED);
		write_wd33c93_cmd(regs, WD_CMD_ABORT);

/* Now we have to attempt to flush out the FIFO... */

		printk("flushing fifo - ");
		timeout = 1000000;
		do {
			asr = read_aux_stat(regs);
			if (asr & ASR_DBR)
				read_wd33c93(regs, WD_DATA);
		} while (!(asr & ASR_INT) && timeout-- > 0);
		sr = read_wd33c93(regs, WD_SCSI_STATUS);
		printk
		    ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
		     asr, sr, read_wd33c93_count(regs), timeout);

		/*
		 * Abort command processed.
		 * Still connected.
		 * We must disconnect.
		 */

		printk("sending wd33c93 DISCONNECT command - ");
		write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);

		timeout = 1000000;
		asr = read_aux_stat(regs);
		while ((asr & ASR_CIP) && timeout-- > 0)
			asr = read_aux_stat(regs);
		sr = read_wd33c93(regs, WD_SCSI_STATUS);
		printk("asr=%02x, sr=%02x.", asr, sr);

		hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
		hostdata->connected = NULL;
		hostdata->state = S_UNCONNECTED;
		cmd->result = DID_ABORT << 16;

/*      sti();*/
		wd33c93_execute(instance);

		enable_irq(cmd->device->host->irq);
		scsi_done(cmd);
		return SUCCESS;
	}

/*
 * Case 3: If the command is currently disconnected from the bus,
 * we're not going to expend much effort here: Let's just return
 * an ABORT_SNOOZE and hope for the best...
 */

	tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
	while (tmp) {
		if (tmp == cmd) {
			printk
			    ("scsi%d: Abort - command found on disconnected_Q - ",
			     instance->host_no);
			printk("Abort SNOOZE. ");
			enable_irq(cmd->device->host->irq);
			return FAILED;
		}
		tmp = (struct scsi_cmnd *) tmp->host_scribble;
	}

/*
 * Case 4 : If we reached this point, the command was not found in any of
 *     the queues.
 *
 * We probably reached this point because of an unlikely race condition
 * between the command completing successfully and the abortion code,
 * so we won't panic, but we will notify the user in case something really
 * broke.
 */

/*   sti();*/
	wd33c93_execute(instance);

	enable_irq(cmd->device->host->irq);
	printk("scsi%d: warning : SCSI command probably completed successfully"
	       "         before abortion. ", instance->host_no);
	return FAILED;
}

#define MAX_WD33C93_HOSTS 4
#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
#define SETUP_BUFFER_SIZE 200
static char setup_buffer[SETUP_BUFFER_SIZE];
static char setup_used[MAX_SETUP_ARGS];
static int done_setup = 0;

static int
wd33c93_setup(char *str)
{
	int i;
	char *p1, *p2;

	/* The kernel does some processing of the command-line before calling
	 * this function: If it begins with any decimal or hex number arguments,
	 * ints[0] = how many numbers found and ints[1] through [n] are the values
	 * themselves. str points to where the non-numeric arguments (if any)
	 * start: We do our own parsing of those. We construct synthetic 'nosync'
	 * keywords out of numeric args (to maintain compatibility with older
	 * versions) and then add the rest of the arguments.
	 */

	p1 = setup_buffer;
	*p1 = '\0';
	if (str)
		strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
	setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
	p1 = setup_buffer;
	i = 0;
	while (*p1 && (i < MAX_SETUP_ARGS)) {
		p2 = strchr(p1, ',');
		if (p2) {
			*p2 = '\0';
			if (p1 != p2)
				setup_args[i] = p1;
			p1 = p2 + 1;
			i++;
		} else {
			setup_args[i] = p1;
			break;
		}
	}
	for (i = 0; i < MAX_SETUP_ARGS; i++)
		setup_used[i] = 0;
	done_setup = 1;

	return 1;
}
__setup("wd33c93=", wd33c93_setup);

/* check_setup_args() returns index if key found, 0 if not
 */
static int
check_setup_args(char *key, int *flags, int *val, char *buf)
{
	int x;
	char *cp;

	for (x = 0; x < MAX_SETUP_ARGS; x++) {
		if (setup_used[x])
			continue;
		if (!strncmp(setup_args[x], key, strlen(key)))
			break;
		if (!strncmp(setup_args[x], "next", strlen("next")))
			return 0;
	}
	if (x == MAX_SETUP_ARGS)
		return 0;
	setup_used[x] = 1;
	cp = setup_args[x] + strlen(key);
	*val = -1;
	if (*cp != ':')
		return ++x;
	cp++;
	if ((*cp >= '0') && (*cp <= '9')) {
		*val = simple_strtoul(cp, NULL, 0);
	}
	return ++x;
}

/*
 * Calculate internal data-transfer-clock cycle from input-clock
 * frequency (/MHz) and fill 'sx_table'.
 *
 * The original driver used to rely on a fixed sx_table, containing periods
 * for (only) the lower limits of the respective input-clock-frequency ranges
 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with
 * this setting so far, it might be desirable to adjust the transfer periods
 * closer to the really attached, possibly 25% higher, input-clock, since
 * - the wd33c93 may really use a significant shorter period, than it has
 *   negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
 *   instead).
 * - the wd33c93 may ask the target for a lower transfer rate, than the target
 *   is capable of (eg. negotiating for an assumed minimum of 252ns instead of
 *   possible 200ns, which indeed shows up in tests as an approx. 10% lower
 *   transfer rate).
 */
static inline unsigned int
round_4(unsigned int x)
{
	switch (x & 3) {
		case 1: --x;
			break;
		case 2: ++x;
			fallthrough;
		case 3: ++x;
	}
	return x;
}

static void
calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
{
	unsigned int d, i;
	if (mhz < 11)
		d = 2;	/* divisor for  8-10 MHz input-clock */
	else if (mhz < 16)
		d = 3;	/* divisor for 12-15 MHz input-clock */
	else
		d = 4;	/* divisor for 16-20 MHz input-clock */

	d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */

	sx_table[0].period_ns = 1;
	sx_table[0].reg_value = 0x20;
	for (i = 1; i < 8; i++) {
		sx_table[i].period_ns = round_4((i+1)*d / 100);
		sx_table[i].reg_value = (i+1)*0x10;
	}
	sx_table[7].reg_value = 0;
	sx_table[8].period_ns = 0;
	sx_table[8].reg_value = 0;
}

/*
 * check and, maybe, map an init- or "clock:"- argument.
 */
static uchar
set_clk_freq(int freq, int *mhz)
{
	int x = freq;
	if (WD33C93_FS_8_10 == freq)
		freq = 8;
	else if (WD33C93_FS_12_15 == freq)
		freq = 12;
	else if (WD33C93_FS_16_20 == freq)
		freq = 16;
	else if (freq > 7 && freq < 11)
		x = WD33C93_FS_8_10;
		else if (freq > 11 && freq < 16)
		x = WD33C93_FS_12_15;
		else if (freq > 15 && freq < 21)
		x = WD33C93_FS_16_20;
	else {
			/* Hmm, wouldn't it be safer to assume highest freq here? */
		x = WD33C93_FS_8_10;
		freq = 8;
	}
	*mhz = freq;
	return x;
}

/*
 * to be used with the resync: fast: ... options
 */
static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
{
	int i;
	for (i = 0; i < 8; i++)
		if (mask & (1 << i))
			hd->sync_stat[i] = SS_UNSET;
}

void
wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
	     dma_setup_t setup, dma_stop_t stop, int clock_freq)
{
	struct WD33C93_hostdata *hostdata;
	int i;
	int flags;
	int val;
	char buf[32];

	if (!done_setup && setup_strings)
		wd33c93_setup(setup_strings);

	hostdata = (struct WD33C93_hostdata *) instance->hostdata;

	hostdata->regs = regs;
	hostdata->clock_freq = set_clk_freq(clock_freq, &i);
	calc_sx_table(i, hostdata->sx_table);
	hostdata->dma_setup = setup;
	hostdata->dma_stop = stop;
	hostdata->dma_bounce_buffer = NULL;
	hostdata->dma_bounce_len = 0;
	for (i = 0; i < 8; i++) {
		hostdata->busy[i] = 0;
		hostdata->sync_xfer[i] =
			calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
					0, hostdata->sx_table);
		hostdata->sync_stat[i] = SS_UNSET;	/* using default sync values */
#ifdef PROC_STATISTICS
		hostdata->cmd_cnt[i] = 0;
		hostdata->disc_allowed_cnt[i] = 0;
		hostdata->disc_done_cnt[i] = 0;
#endif
	}
	hostdata->input_Q = NULL;
	hostdata->selecting = NULL;
	hostdata->connected = NULL;
	hostdata->disconnected_Q = NULL;
	hostdata->state = S_UNCONNECTED;
	hostdata->dma = D_DMA_OFF;
	hostdata->level2 = L2_BASIC;
	hostdata->disconnect = DIS_ADAPTIVE;
	hostdata->args = DEBUG_DEFAULTS;
	hostdata->incoming_ptr = 0;
	hostdata->outgoing_len = 0;
	hostdata->default_sx_per = DEFAULT_SX_PER;
	hostdata->no_dma = 0;	/* default is DMA enabled */

#ifdef PROC_INTERFACE
	hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
	    PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
#ifdef PROC_STATISTICS
	hostdata->dma_cnt = 0;
	hostdata->pio_cnt = 0;
	hostdata->int_cnt = 0;
#endif
#endif

	if (check_setup_args("clock", &flags, &val, buf)) {
		hostdata->clock_freq = set_clk_freq(val, &val);
		calc_sx_table(val, hostdata->sx_table);
	}

	if (check_setup_args("nosync", &flags, &val, buf))
		hostdata->no_sync = val;

	if (check_setup_args("nodma", &flags, &val, buf))
		hostdata->no_dma = (val == -1) ? 1 : val;

	if (check_setup_args("period", &flags, &val, buf))
		hostdata->default_sx_per =
		    hostdata->sx_table[round_period((unsigned int) val,
		                                    hostdata->sx_table)].period_ns;

	if (check_setup_args("disconnect", &flags, &val, buf)) {
		if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
			hostdata->disconnect = val;
		else
			hostdata->disconnect = DIS_ADAPTIVE;
	}

	if (check_setup_args("level2", &flags, &val, buf))
		hostdata->level2 = val;

	if (check_setup_args("debug", &flags, &val, buf))
		hostdata->args = val & DB_MASK;

	if (check_setup_args("burst", &flags, &val, buf))
		hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;

	if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
		&& check_setup_args("fast", &flags, &val, buf))
		hostdata->fast = !!val;

	if ((i = check_setup_args("next", &flags, &val, buf))) {
		while (i)
			setup_used[--i] = 1;
	}
#ifdef PROC_INTERFACE
	if (check_setup_args("proc", &flags, &val, buf))
		hostdata->proc = val;
#endif

	spin_lock_irq(&hostdata->lock);
	reset_wd33c93(instance);
	spin_unlock_irq(&hostdata->lock);

	printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
	       instance->host_no,
	       (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
							    C_WD33C93A) ?
	       "WD33c93A" : (hostdata->chip ==
			     C_WD33C93B) ? "WD33c93B" : "unknown",
	       hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
#ifdef DEBUGGING_ON
	printk(" debug_flags=0x%02x\n", hostdata->args);
#else
	printk(" debugging=OFF\n");
#endif
	printk("           setup_args=");
	for (i = 0; i < MAX_SETUP_ARGS; i++)
		printk("%s,", setup_args[i]);
	printk("\n");
	printk("           Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE);
}

int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len)
{
#ifdef PROC_INTERFACE
	char *bp;
	struct WD33C93_hostdata *hd;
	int x;

	hd = (struct WD33C93_hostdata *) instance->hostdata;

/* We accept the following
 * keywords (same format as command-line, but arguments are not optional):
 *    debug
 *    disconnect
 *    period
 *    resync
 *    proc
 *    nodma
 *    level2
 *    burst
 *    fast
 *    nosync
 */

	buf[len] = '\0';
	for (bp = buf; *bp; ) {
		while (',' == *bp || ' ' == *bp)
			++bp;
	if (!strncmp(bp, "debug:", 6)) {
			hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
	} else if (!strncmp(bp, "disconnect:", 11)) {
			x = simple_strtoul(bp+11, &bp, 0);
		if (x < DIS_NEVER || x > DIS_ALWAYS)
			x = DIS_ADAPTIVE;
		hd->disconnect = x;
	} else if (!strncmp(bp, "period:", 7)) {
		x = simple_strtoul(bp+7, &bp, 0);
		hd->default_sx_per =
			hd->sx_table[round_period((unsigned int) x,
						  hd->sx_table)].period_ns;
	} else if (!strncmp(bp, "resync:", 7)) {
			set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
	} else if (!strncmp(bp, "proc:", 5)) {
			hd->proc = simple_strtoul(bp+5, &bp, 0);
	} else if (!strncmp(bp, "nodma:", 6)) {
			hd->no_dma = simple_strtoul(bp+6, &bp, 0);
	} else if (!strncmp(bp, "level2:", 7)) {
			hd->level2 = simple_strtoul(bp+7, &bp, 0);
		} else if (!strncmp(bp, "burst:", 6)) {
			hd->dma_mode =
				simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
		} else if (!strncmp(bp, "fast:", 5)) {
			x = !!simple_strtol(bp+5, &bp, 0);
			if (x != hd->fast)
				set_resync(hd, 0xff);
			hd->fast = x;
		} else if (!strncmp(bp, "nosync:", 7)) {
			x = simple_strtoul(bp+7, &bp, 0);
			set_resync(hd, x ^ hd->no_sync);
			hd->no_sync = x;
		} else {
			break; /* unknown keyword,syntax-error,... */
		}
	}
	return len;
#else
	return 0;
#endif
}

int
wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance)
{
#ifdef PROC_INTERFACE
	struct WD33C93_hostdata *hd;
	struct scsi_cmnd *cmd;
	int x;

	hd = (struct WD33C93_hostdata *) instance->hostdata;

	spin_lock_irq(&hd->lock);
	if (hd->proc & PR_VERSION)
		seq_printf(m, "\nVersion %s - %s.",
			WD33C93_VERSION, WD33C93_DATE);

	if (hd->proc & PR_INFO) {
		seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
			" dma_mode=%02x fast=%d",
			hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
		seq_puts(m, "\nsync_xfer[] =       ");
		for (x = 0; x < 7; x++)
			seq_printf(m, "\t%02x", hd->sync_xfer[x]);
		seq_puts(m, "\nsync_stat[] =       ");
		for (x = 0; x < 7; x++)
			seq_printf(m, "\t%02x", hd->sync_stat[x]);
	}
#ifdef PROC_STATISTICS
	if (hd->proc & PR_STATISTICS) {
		seq_puts(m, "\ncommands issued:    ");
		for (x = 0; x < 7; x++)
			seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
		seq_puts(m, "\ndisconnects allowed:");
		for (x = 0; x < 7; x++)
			seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
		seq_puts(m, "\ndisconnects done:   ");
		for (x = 0; x < 7; x++)
			seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
		seq_printf(m,
			"\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
			hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
	}
#endif
	if (hd->proc & PR_CONNECTED) {
		seq_puts(m, "\nconnected:     ");
		if (hd->connected) {
			cmd = (struct scsi_cmnd *) hd->connected;
			seq_printf(m, " %d:%llu(%02x)",
				cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
		}
	}
	if (hd->proc & PR_INPUTQ) {
		seq_puts(m, "\ninput_Q:       ");
		cmd = (struct scsi_cmnd *) hd->input_Q;
		while (cmd) {
			seq_printf(m, " %d:%llu(%02x)",
				cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
			cmd = (struct scsi_cmnd *) cmd->host_scribble;
		}
	}
	if (hd->proc & PR_DISCQ) {
		seq_puts(m, "\ndisconnected_Q:");
		cmd = (struct scsi_cmnd *) hd->disconnected_Q;
		while (cmd) {
			seq_printf(m, " %d:%llu(%02x)",
				cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
			cmd = (struct scsi_cmnd *) cmd->host_scribble;
		}
	}
	seq_putc(m, '\n');
	spin_unlock_irq(&hd->lock);
#endif				/* PROC_INTERFACE */
	return 0;
}

EXPORT_SYMBOL(wd33c93_host_reset);
EXPORT_SYMBOL(wd33c93_init);
EXPORT_SYMBOL(wd33c93_abort);
EXPORT_SYMBOL(wd33c93_queuecommand);
EXPORT_SYMBOL(wd33c93_intr);
EXPORT_SYMBOL(wd33c93_show_info);
EXPORT_SYMBOL(wd33c93_write_info);