Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Abel Vesa | 1340 | 100.00% | 1 | 100.00% |
Total | 1340 | 1 |
// SPDX-License-Identifier: GPL-2.0 /* * Qualcomm ICE (Inline Crypto Engine) support. * * Copyright (c) 2013-2019, The Linux Foundation. All rights reserved. * Copyright (c) 2019, Google LLC * Copyright (c) 2023, Linaro Limited */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/iopoll.h> #include <linux/of_platform.h> #include <linux/firmware/qcom/qcom_scm.h> #include <soc/qcom/ice.h> #define AES_256_XTS_KEY_SIZE 64 /* QCOM ICE registers */ #define QCOM_ICE_REG_VERSION 0x0008 #define QCOM_ICE_REG_FUSE_SETTING 0x0010 #define QCOM_ICE_REG_BIST_STATUS 0x0070 #define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000 /* BIST ("built-in self-test") status flags */ #define QCOM_ICE_BIST_STATUS_MASK GENMASK(31, 28) #define QCOM_ICE_FUSE_SETTING_MASK 0x1 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4 #define qcom_ice_writel(engine, val, reg) \ writel((val), (engine)->base + (reg)) #define qcom_ice_readl(engine, reg) \ readl((engine)->base + (reg)) struct qcom_ice { struct device *dev; void __iomem *base; struct device_link *link; struct clk *core_clk; }; static bool qcom_ice_check_supported(struct qcom_ice *ice) { u32 regval = qcom_ice_readl(ice, QCOM_ICE_REG_VERSION); struct device *dev = ice->dev; int major = FIELD_GET(GENMASK(31, 24), regval); int minor = FIELD_GET(GENMASK(23, 16), regval); int step = FIELD_GET(GENMASK(15, 0), regval); /* For now this driver only supports ICE version 3 and 4. */ if (major != 3 && major != 4) { dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n", major, minor, step); return false; } dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n", major, minor, step); /* If fuses are blown, ICE might not work in the standard way. */ regval = qcom_ice_readl(ice, QCOM_ICE_REG_FUSE_SETTING); if (regval & (QCOM_ICE_FUSE_SETTING_MASK | QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK | QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) { dev_warn(dev, "Fuses are blown; ICE is unusable!\n"); return false; } return true; } static void qcom_ice_low_power_mode_enable(struct qcom_ice *ice) { u32 regval; regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL); /* Enable low power mode sequence */ regval |= 0x7000; qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL); } static void qcom_ice_optimization_enable(struct qcom_ice *ice) { u32 regval; /* ICE Optimizations Enable Sequence */ regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL); regval |= 0xd807100; /* ICE HPG requires delay before writing */ udelay(5); qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL); udelay(5); } /* * Wait until the ICE BIST (built-in self-test) has completed. * * This may be necessary before ICE can be used. * Note that we don't really care whether the BIST passed or failed; * we really just want to make sure that it isn't still running. This is * because (a) the BIST is a FIPS compliance thing that never fails in * practice, (b) ICE is documented to reject crypto requests if the BIST * fails, so we needn't do it in software too, and (c) properly testing * storage encryption requires testing the full storage stack anyway, * and not relying on hardware-level self-tests. */ static int qcom_ice_wait_bist_status(struct qcom_ice *ice) { u32 regval; int err; err = readl_poll_timeout(ice->base + QCOM_ICE_REG_BIST_STATUS, regval, !(regval & QCOM_ICE_BIST_STATUS_MASK), 50, 5000); if (err) dev_err(ice->dev, "Timed out waiting for ICE self-test to complete\n"); return err; } int qcom_ice_enable(struct qcom_ice *ice) { qcom_ice_low_power_mode_enable(ice); qcom_ice_optimization_enable(ice); return qcom_ice_wait_bist_status(ice); } EXPORT_SYMBOL_GPL(qcom_ice_enable); int qcom_ice_resume(struct qcom_ice *ice) { struct device *dev = ice->dev; int err; err = clk_prepare_enable(ice->core_clk); if (err) { dev_err(dev, "failed to enable core clock (%d)\n", err); return err; } return qcom_ice_wait_bist_status(ice); } EXPORT_SYMBOL_GPL(qcom_ice_resume); int qcom_ice_suspend(struct qcom_ice *ice) { clk_disable_unprepare(ice->core_clk); return 0; } EXPORT_SYMBOL_GPL(qcom_ice_suspend); int qcom_ice_program_key(struct qcom_ice *ice, u8 algorithm_id, u8 key_size, const u8 crypto_key[], u8 data_unit_size, int slot) { struct device *dev = ice->dev; union { u8 bytes[AES_256_XTS_KEY_SIZE]; u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)]; } key; int i; int err; /* Only AES-256-XTS has been tested so far. */ if (algorithm_id != QCOM_ICE_CRYPTO_ALG_AES_XTS || key_size != QCOM_ICE_CRYPTO_KEY_SIZE_256) { dev_err_ratelimited(dev, "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n", algorithm_id, key_size); return -EINVAL; } memcpy(key.bytes, crypto_key, AES_256_XTS_KEY_SIZE); /* The SCM call requires that the key words are encoded in big endian */ for (i = 0; i < ARRAY_SIZE(key.words); i++) __cpu_to_be32s(&key.words[i]); err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE, QCOM_SCM_ICE_CIPHER_AES_256_XTS, data_unit_size); memzero_explicit(&key, sizeof(key)); return err; } EXPORT_SYMBOL_GPL(qcom_ice_program_key); int qcom_ice_evict_key(struct qcom_ice *ice, int slot) { return qcom_scm_ice_invalidate_key(slot); } EXPORT_SYMBOL_GPL(qcom_ice_evict_key); static struct qcom_ice *qcom_ice_create(struct device *dev, void __iomem *base) { struct qcom_ice *engine; if (!qcom_scm_is_available()) return ERR_PTR(-EPROBE_DEFER); if (!qcom_scm_ice_available()) { dev_warn(dev, "ICE SCM interface not found\n"); return NULL; } engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); if (!engine) return ERR_PTR(-ENOMEM); engine->dev = dev; engine->base = base; /* * Legacy DT binding uses different clk names for each consumer, * so lets try those first. If none of those are a match, it means * the we only have one clock and it is part of the dedicated DT node. * Also, enable the clock before we check what HW version the driver * supports. */ engine->core_clk = devm_clk_get_optional_enabled(dev, "ice_core_clk"); if (!engine->core_clk) engine->core_clk = devm_clk_get_optional_enabled(dev, "ice"); if (!engine->core_clk) engine->core_clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(engine->core_clk)) return ERR_CAST(engine->core_clk); if (!qcom_ice_check_supported(engine)) return ERR_PTR(-EOPNOTSUPP); dev_dbg(dev, "Registered Qualcomm Inline Crypto Engine\n"); return engine; } /** * of_qcom_ice_get() - get an ICE instance from a DT node * @dev: device pointer for the consumer device * * This function will provide an ICE instance either by creating one for the * consumer device if its DT node provides the 'ice' reg range and the 'ice' * clock (for legacy DT style). On the other hand, if consumer provides a * phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already * be created and so this function will return that instead. * * Return: ICE pointer on success, NULL if there is no ICE data provided by the * consumer or ERR_PTR() on error. */ struct qcom_ice *of_qcom_ice_get(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct qcom_ice *ice; struct device_node *node; struct resource *res; void __iomem *base; if (!dev || !dev->of_node) return ERR_PTR(-ENODEV); /* * In order to support legacy style devicetree bindings, we need * to create the ICE instance using the consumer device and the reg * range called 'ice' it provides. */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice"); if (res) { base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return ERR_CAST(base); /* create ICE instance using consumer dev */ return qcom_ice_create(&pdev->dev, base); } /* * If the consumer node does not provider an 'ice' reg range * (legacy DT binding), then it must at least provide a phandle * to the ICE devicetree node, otherwise ICE is not supported. */ node = of_parse_phandle(dev->of_node, "qcom,ice", 0); if (!node) return NULL; pdev = of_find_device_by_node(node); if (!pdev) { dev_err(dev, "Cannot find device node %s\n", node->name); ice = ERR_PTR(-EPROBE_DEFER); goto out; } ice = platform_get_drvdata(pdev); if (!ice) { dev_err(dev, "Cannot get ice instance from %s\n", dev_name(&pdev->dev)); platform_device_put(pdev); ice = ERR_PTR(-EPROBE_DEFER); goto out; } ice->link = device_link_add(dev, &pdev->dev, DL_FLAG_AUTOREMOVE_SUPPLIER); if (!ice->link) { dev_err(&pdev->dev, "Failed to create device link to consumer %s\n", dev_name(dev)); platform_device_put(pdev); ice = ERR_PTR(-EINVAL); } out: of_node_put(node); return ice; } EXPORT_SYMBOL_GPL(of_qcom_ice_get); static int qcom_ice_probe(struct platform_device *pdev) { struct qcom_ice *engine; void __iomem *base; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) { dev_warn(&pdev->dev, "ICE registers not found\n"); return PTR_ERR(base); } engine = qcom_ice_create(&pdev->dev, base); if (IS_ERR(engine)) return PTR_ERR(engine); platform_set_drvdata(pdev, engine); return 0; } static const struct of_device_id qcom_ice_of_match_table[] = { { .compatible = "qcom,inline-crypto-engine" }, { }, }; MODULE_DEVICE_TABLE(of, qcom_ice_of_match_table); static struct platform_driver qcom_ice_driver = { .probe = qcom_ice_probe, .driver = { .name = "qcom-ice", .of_match_table = qcom_ice_of_match_table, }, }; module_platform_driver(qcom_ice_driver); MODULE_DESCRIPTION("Qualcomm Inline Crypto Engine driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1