Contributors: 9
Author Tokens Token Proportion Commits Commit Proportion
Radu Pirea 2871 98.19% 3 27.27%
Yang Yingliang 20 0.68% 1 9.09%
Maíra Canal 15 0.51% 1 9.09%
Herve Codina via Alsa-devel 5 0.17% 1 9.09%
Axel Lin 3 0.10% 1 9.09%
Randy Dunlap 3 0.10% 1 9.09%
Lee Jones 3 0.10% 1 9.09%
Peter Ujfalusi 2 0.07% 1 9.09%
Uwe Kleine-König 2 0.07% 1 9.09%
Total 2924 11


// SPDX-License-Identifier: GPL-2.0
//
// Driver for AT91 USART Controllers as SPI
//
// Copyright (C) 2018 Microchip Technology Inc.
//
// Author: Radu Pirea <radu.pirea@microchip.com>

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/gpio/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>

#include <linux/spi/spi.h>

#define US_CR			0x00
#define US_MR			0x04
#define US_IER			0x08
#define US_IDR			0x0C
#define US_CSR			0x14
#define US_RHR			0x18
#define US_THR			0x1C
#define US_BRGR			0x20
#define US_VERSION		0xFC

#define US_CR_RSTRX		BIT(2)
#define US_CR_RSTTX		BIT(3)
#define US_CR_RXEN		BIT(4)
#define US_CR_RXDIS		BIT(5)
#define US_CR_TXEN		BIT(6)
#define US_CR_TXDIS		BIT(7)

#define US_MR_SPI_HOST		0x0E
#define US_MR_CHRL		GENMASK(7, 6)
#define US_MR_CPHA		BIT(8)
#define US_MR_CPOL		BIT(16)
#define US_MR_CLKO		BIT(18)
#define US_MR_WRDBT		BIT(20)
#define US_MR_LOOP		BIT(15)

#define US_IR_RXRDY		BIT(0)
#define US_IR_TXRDY		BIT(1)
#define US_IR_OVRE		BIT(5)

#define US_BRGR_SIZE		BIT(16)

#define US_MIN_CLK_DIV		0x06
#define US_MAX_CLK_DIV		BIT(16)

#define US_RESET		(US_CR_RSTRX | US_CR_RSTTX)
#define US_DISABLE		(US_CR_RXDIS | US_CR_TXDIS)
#define US_ENABLE		(US_CR_RXEN | US_CR_TXEN)
#define US_OVRE_RXRDY_IRQS	(US_IR_OVRE | US_IR_RXRDY)

#define US_INIT \
	(US_MR_SPI_HOST | US_MR_CHRL | US_MR_CLKO | US_MR_WRDBT)
#define US_DMA_MIN_BYTES       16
#define US_DMA_TIMEOUT         (msecs_to_jiffies(1000))

/* Register access macros */
#define at91_usart_spi_readl(port, reg) \
	readl_relaxed((port)->regs + US_##reg)
#define at91_usart_spi_writel(port, reg, value) \
	writel_relaxed((value), (port)->regs + US_##reg)

#define at91_usart_spi_readb(port, reg) \
	readb_relaxed((port)->regs + US_##reg)
#define at91_usart_spi_writeb(port, reg, value) \
	writeb_relaxed((value), (port)->regs + US_##reg)

struct at91_usart_spi {
	struct platform_device  *mpdev;
	struct spi_transfer	*current_transfer;
	void __iomem		*regs;
	struct device		*dev;
	struct clk		*clk;

	struct completion	xfer_completion;

	/*used in interrupt to protect data reading*/
	spinlock_t		lock;

	phys_addr_t		phybase;

	int			irq;
	unsigned int		current_tx_remaining_bytes;
	unsigned int		current_rx_remaining_bytes;

	u32			spi_clk;
	u32			status;

	bool			xfer_failed;
	bool			use_dma;
};

static void dma_callback(void *data)
{
	struct spi_controller   *ctlr = data;
	struct at91_usart_spi   *aus = spi_controller_get_devdata(ctlr);

	at91_usart_spi_writel(aus, IER, US_IR_RXRDY);
	aus->current_rx_remaining_bytes = 0;
	complete(&aus->xfer_completion);
}

static bool at91_usart_spi_can_dma(struct spi_controller *ctrl,
				   struct spi_device *spi,
				   struct spi_transfer *xfer)
{
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctrl);

	return aus->use_dma && xfer->len >= US_DMA_MIN_BYTES;
}

static int at91_usart_spi_configure_dma(struct spi_controller *ctlr,
					struct at91_usart_spi *aus)
{
	struct dma_slave_config slave_config;
	struct device *dev = &aus->mpdev->dev;
	phys_addr_t phybase = aus->phybase;
	dma_cap_mask_t mask;
	int err = 0;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	ctlr->dma_tx = dma_request_chan(dev, "tx");
	if (IS_ERR_OR_NULL(ctlr->dma_tx)) {
		if (IS_ERR(ctlr->dma_tx)) {
			err = PTR_ERR(ctlr->dma_tx);
			goto at91_usart_spi_error_clear;
		}

		dev_dbg(dev,
			"DMA TX channel not available, SPI unable to use DMA\n");
		err = -EBUSY;
		goto at91_usart_spi_error_clear;
	}

	ctlr->dma_rx = dma_request_chan(dev, "rx");
	if (IS_ERR_OR_NULL(ctlr->dma_rx)) {
		if (IS_ERR(ctlr->dma_rx)) {
			err = PTR_ERR(ctlr->dma_rx);
			goto at91_usart_spi_error;
		}

		dev_dbg(dev,
			"DMA RX channel not available, SPI unable to use DMA\n");
		err = -EBUSY;
		goto at91_usart_spi_error;
	}

	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	slave_config.dst_addr = (dma_addr_t)phybase + US_THR;
	slave_config.src_addr = (dma_addr_t)phybase + US_RHR;
	slave_config.src_maxburst = 1;
	slave_config.dst_maxburst = 1;
	slave_config.device_fc = false;

	slave_config.direction = DMA_DEV_TO_MEM;
	if (dmaengine_slave_config(ctlr->dma_rx, &slave_config)) {
		dev_err(&ctlr->dev,
			"failed to configure rx dma channel\n");
		err = -EINVAL;
		goto at91_usart_spi_error;
	}

	slave_config.direction = DMA_MEM_TO_DEV;
	if (dmaengine_slave_config(ctlr->dma_tx, &slave_config)) {
		dev_err(&ctlr->dev,
			"failed to configure tx dma channel\n");
		err = -EINVAL;
		goto at91_usart_spi_error;
	}

	aus->use_dma = true;
	return 0;

at91_usart_spi_error:
	if (!IS_ERR_OR_NULL(ctlr->dma_tx))
		dma_release_channel(ctlr->dma_tx);
	if (!IS_ERR_OR_NULL(ctlr->dma_rx))
		dma_release_channel(ctlr->dma_rx);
	ctlr->dma_tx = NULL;
	ctlr->dma_rx = NULL;

at91_usart_spi_error_clear:
	return err;
}

static void at91_usart_spi_release_dma(struct spi_controller *ctlr)
{
	if (ctlr->dma_rx)
		dma_release_channel(ctlr->dma_rx);
	if (ctlr->dma_tx)
		dma_release_channel(ctlr->dma_tx);
}

static void at91_usart_spi_stop_dma(struct spi_controller *ctlr)
{
	if (ctlr->dma_rx)
		dmaengine_terminate_all(ctlr->dma_rx);
	if (ctlr->dma_tx)
		dmaengine_terminate_all(ctlr->dma_tx);
}

static int at91_usart_spi_dma_transfer(struct spi_controller *ctlr,
				       struct spi_transfer *xfer)
{
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
	struct dma_chan	 *rxchan = ctlr->dma_rx;
	struct dma_chan *txchan = ctlr->dma_tx;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;
	dma_cookie_t cookie;

	/* Disable RX interrupt */
	at91_usart_spi_writel(aus, IDR, US_IR_RXRDY);

	rxdesc = dmaengine_prep_slave_sg(rxchan,
					 xfer->rx_sg.sgl,
					 xfer->rx_sg.nents,
					 DMA_DEV_TO_MEM,
					 DMA_PREP_INTERRUPT |
					 DMA_CTRL_ACK);
	if (!rxdesc)
		goto at91_usart_spi_err_dma;

	txdesc = dmaengine_prep_slave_sg(txchan,
					 xfer->tx_sg.sgl,
					 xfer->tx_sg.nents,
					 DMA_MEM_TO_DEV,
					 DMA_PREP_INTERRUPT |
					 DMA_CTRL_ACK);
	if (!txdesc)
		goto at91_usart_spi_err_dma;

	rxdesc->callback = dma_callback;
	rxdesc->callback_param = ctlr;

	cookie = rxdesc->tx_submit(rxdesc);
	if (dma_submit_error(cookie))
		goto at91_usart_spi_err_dma;

	cookie = txdesc->tx_submit(txdesc);
	if (dma_submit_error(cookie))
		goto at91_usart_spi_err_dma;

	rxchan->device->device_issue_pending(rxchan);
	txchan->device->device_issue_pending(txchan);

	return 0;

at91_usart_spi_err_dma:
	/* Enable RX interrupt if something fails and fallback to PIO */
	at91_usart_spi_writel(aus, IER, US_IR_RXRDY);
	at91_usart_spi_stop_dma(ctlr);

	return -ENOMEM;
}

static unsigned long at91_usart_spi_dma_timeout(struct at91_usart_spi *aus)
{
	return wait_for_completion_timeout(&aus->xfer_completion,
					   US_DMA_TIMEOUT);
}

static inline u32 at91_usart_spi_tx_ready(struct at91_usart_spi *aus)
{
	return aus->status & US_IR_TXRDY;
}

static inline u32 at91_usart_spi_rx_ready(struct at91_usart_spi *aus)
{
	return aus->status & US_IR_RXRDY;
}

static inline u32 at91_usart_spi_check_overrun(struct at91_usart_spi *aus)
{
	return aus->status & US_IR_OVRE;
}

static inline u32 at91_usart_spi_read_status(struct at91_usart_spi *aus)
{
	aus->status = at91_usart_spi_readl(aus, CSR);
	return aus->status;
}

static inline void at91_usart_spi_tx(struct at91_usart_spi *aus)
{
	unsigned int len = aus->current_transfer->len;
	unsigned int remaining = aus->current_tx_remaining_bytes;
	const u8  *tx_buf = aus->current_transfer->tx_buf;

	if (!remaining)
		return;

	if (at91_usart_spi_tx_ready(aus)) {
		at91_usart_spi_writeb(aus, THR, tx_buf[len - remaining]);
		aus->current_tx_remaining_bytes--;
	}
}

static inline void at91_usart_spi_rx(struct at91_usart_spi *aus)
{
	int len = aus->current_transfer->len;
	int remaining = aus->current_rx_remaining_bytes;
	u8  *rx_buf = aus->current_transfer->rx_buf;

	if (!remaining)
		return;

	rx_buf[len - remaining] = at91_usart_spi_readb(aus, RHR);
	aus->current_rx_remaining_bytes--;
}

static inline void
at91_usart_spi_set_xfer_speed(struct at91_usart_spi *aus,
			      struct spi_transfer *xfer)
{
	at91_usart_spi_writel(aus, BRGR,
			      DIV_ROUND_UP(aus->spi_clk, xfer->speed_hz));
}

static irqreturn_t at91_usart_spi_interrupt(int irq, void *dev_id)
{
	struct spi_controller *controller = dev_id;
	struct at91_usart_spi *aus = spi_controller_get_devdata(controller);

	spin_lock(&aus->lock);
	at91_usart_spi_read_status(aus);

	if (at91_usart_spi_check_overrun(aus)) {
		aus->xfer_failed = true;
		at91_usart_spi_writel(aus, IDR, US_IR_OVRE | US_IR_RXRDY);
		spin_unlock(&aus->lock);
		return IRQ_HANDLED;
	}

	if (at91_usart_spi_rx_ready(aus)) {
		at91_usart_spi_rx(aus);
		spin_unlock(&aus->lock);
		return IRQ_HANDLED;
	}

	spin_unlock(&aus->lock);

	return IRQ_NONE;
}

static int at91_usart_spi_setup(struct spi_device *spi)
{
	struct at91_usart_spi *aus = spi_controller_get_devdata(spi->controller);
	u32 *ausd = spi->controller_state;
	unsigned int mr = at91_usart_spi_readl(aus, MR);

	if (spi->mode & SPI_CPOL)
		mr |= US_MR_CPOL;
	else
		mr &= ~US_MR_CPOL;

	if (spi->mode & SPI_CPHA)
		mr |= US_MR_CPHA;
	else
		mr &= ~US_MR_CPHA;

	if (spi->mode & SPI_LOOP)
		mr |= US_MR_LOOP;
	else
		mr &= ~US_MR_LOOP;

	if (!ausd) {
		ausd = kzalloc(sizeof(*ausd), GFP_KERNEL);
		if (!ausd)
			return -ENOMEM;

		spi->controller_state = ausd;
	}

	*ausd = mr;

	dev_dbg(&spi->dev,
		"setup: bpw %u mode 0x%x -> mr %d %08x\n",
		spi->bits_per_word, spi->mode, spi_get_chipselect(spi, 0), mr);

	return 0;
}

static int at91_usart_spi_transfer_one(struct spi_controller *ctlr,
				       struct spi_device *spi,
				       struct spi_transfer *xfer)
{
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
	unsigned long dma_timeout = 0;
	int ret = 0;

	at91_usart_spi_set_xfer_speed(aus, xfer);
	aus->xfer_failed = false;
	aus->current_transfer = xfer;
	aus->current_tx_remaining_bytes = xfer->len;
	aus->current_rx_remaining_bytes = xfer->len;

	while ((aus->current_tx_remaining_bytes ||
		aus->current_rx_remaining_bytes) && !aus->xfer_failed) {
		reinit_completion(&aus->xfer_completion);
		if (at91_usart_spi_can_dma(ctlr, spi, xfer) &&
		    !ret) {
			ret = at91_usart_spi_dma_transfer(ctlr, xfer);
			if (ret)
				continue;

			dma_timeout = at91_usart_spi_dma_timeout(aus);

			if (WARN_ON(dma_timeout == 0)) {
				dev_err(&spi->dev, "DMA transfer timeout\n");
				return -EIO;
			}
			aus->current_tx_remaining_bytes = 0;
		} else {
			at91_usart_spi_read_status(aus);
			at91_usart_spi_tx(aus);
		}

		cpu_relax();
	}

	if (aus->xfer_failed) {
		dev_err(aus->dev, "Overrun!\n");
		return -EIO;
	}

	return 0;
}

static int at91_usart_spi_prepare_message(struct spi_controller *ctlr,
					  struct spi_message *message)
{
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
	struct spi_device *spi = message->spi;
	u32 *ausd = spi->controller_state;

	at91_usart_spi_writel(aus, CR, US_ENABLE);
	at91_usart_spi_writel(aus, IER, US_OVRE_RXRDY_IRQS);
	at91_usart_spi_writel(aus, MR, *ausd);

	return 0;
}

static int at91_usart_spi_unprepare_message(struct spi_controller *ctlr,
					    struct spi_message *message)
{
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);

	at91_usart_spi_writel(aus, CR, US_RESET | US_DISABLE);
	at91_usart_spi_writel(aus, IDR, US_OVRE_RXRDY_IRQS);

	return 0;
}

static void at91_usart_spi_cleanup(struct spi_device *spi)
{
	struct at91_usart_spi_device *ausd = spi->controller_state;

	spi->controller_state = NULL;
	kfree(ausd);
}

static void at91_usart_spi_init(struct at91_usart_spi *aus)
{
	at91_usart_spi_writel(aus, MR, US_INIT);
	at91_usart_spi_writel(aus, CR, US_RESET | US_DISABLE);
}

static int at91_usart_gpio_setup(struct platform_device *pdev)
{
	struct gpio_descs *cs_gpios;

	cs_gpios = devm_gpiod_get_array_optional(&pdev->dev, "cs", GPIOD_OUT_LOW);

	if (IS_ERR(cs_gpios))
		return PTR_ERR(cs_gpios);

	return 0;
}

static int at91_usart_spi_probe(struct platform_device *pdev)
{
	struct resource *regs;
	struct spi_controller *controller;
	struct at91_usart_spi *aus;
	struct clk *clk;
	int irq;
	int ret;

	regs = platform_get_resource(to_platform_device(pdev->dev.parent),
				     IORESOURCE_MEM, 0);
	if (!regs)
		return -EINVAL;

	irq = platform_get_irq(to_platform_device(pdev->dev.parent), 0);
	if (irq < 0)
		return irq;

	clk = devm_clk_get(pdev->dev.parent, "usart");
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	ret = -ENOMEM;
	controller = spi_alloc_host(&pdev->dev, sizeof(*aus));
	if (!controller)
		goto at91_usart_spi_probe_fail;

	ret = at91_usart_gpio_setup(pdev);
	if (ret)
		goto at91_usart_spi_probe_fail;

	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
	controller->dev.of_node = pdev->dev.parent->of_node;
	controller->bits_per_word_mask = SPI_BPW_MASK(8);
	controller->setup = at91_usart_spi_setup;
	controller->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
	controller->transfer_one = at91_usart_spi_transfer_one;
	controller->prepare_message = at91_usart_spi_prepare_message;
	controller->unprepare_message = at91_usart_spi_unprepare_message;
	controller->can_dma = at91_usart_spi_can_dma;
	controller->cleanup = at91_usart_spi_cleanup;
	controller->max_speed_hz = DIV_ROUND_UP(clk_get_rate(clk),
						US_MIN_CLK_DIV);
	controller->min_speed_hz = DIV_ROUND_UP(clk_get_rate(clk),
						US_MAX_CLK_DIV);
	platform_set_drvdata(pdev, controller);

	aus = spi_controller_get_devdata(controller);

	aus->dev = &pdev->dev;
	aus->regs = devm_ioremap_resource(&pdev->dev, regs);
	if (IS_ERR(aus->regs)) {
		ret = PTR_ERR(aus->regs);
		goto at91_usart_spi_probe_fail;
	}

	aus->irq = irq;
	aus->clk = clk;

	ret = devm_request_irq(&pdev->dev, irq, at91_usart_spi_interrupt, 0,
			       dev_name(&pdev->dev), controller);
	if (ret)
		goto at91_usart_spi_probe_fail;

	ret = clk_prepare_enable(clk);
	if (ret)
		goto at91_usart_spi_probe_fail;

	aus->spi_clk = clk_get_rate(clk);
	at91_usart_spi_init(aus);

	aus->phybase = regs->start;

	aus->mpdev = to_platform_device(pdev->dev.parent);

	ret = at91_usart_spi_configure_dma(controller, aus);
	if (ret)
		goto at91_usart_fail_dma;

	spin_lock_init(&aus->lock);
	init_completion(&aus->xfer_completion);

	ret = devm_spi_register_controller(&pdev->dev, controller);
	if (ret)
		goto at91_usart_fail_register_controller;

	dev_info(&pdev->dev,
		 "AT91 USART SPI Controller version 0x%x at %pa (irq %d)\n",
		 at91_usart_spi_readl(aus, VERSION),
		 &regs->start, irq);

	return 0;

at91_usart_fail_register_controller:
	at91_usart_spi_release_dma(controller);
at91_usart_fail_dma:
	clk_disable_unprepare(clk);
at91_usart_spi_probe_fail:
	spi_controller_put(controller);
	return ret;
}

__maybe_unused static int at91_usart_spi_runtime_suspend(struct device *dev)
{
	struct spi_controller *ctlr = dev_get_drvdata(dev);
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);

	clk_disable_unprepare(aus->clk);
	pinctrl_pm_select_sleep_state(dev);

	return 0;
}

__maybe_unused static int at91_usart_spi_runtime_resume(struct device *dev)
{
	struct spi_controller *ctrl = dev_get_drvdata(dev);
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctrl);

	pinctrl_pm_select_default_state(dev);

	return clk_prepare_enable(aus->clk);
}

__maybe_unused static int at91_usart_spi_suspend(struct device *dev)
{
	struct spi_controller *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = spi_controller_suspend(ctrl);
	if (ret)
		return ret;

	if (!pm_runtime_suspended(dev))
		at91_usart_spi_runtime_suspend(dev);

	return 0;
}

__maybe_unused static int at91_usart_spi_resume(struct device *dev)
{
	struct spi_controller *ctrl = dev_get_drvdata(dev);
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctrl);
	int ret;

	if (!pm_runtime_suspended(dev)) {
		ret = at91_usart_spi_runtime_resume(dev);
		if (ret)
			return ret;
	}

	at91_usart_spi_init(aus);

	return spi_controller_resume(ctrl);
}

static void at91_usart_spi_remove(struct platform_device *pdev)
{
	struct spi_controller *ctlr = platform_get_drvdata(pdev);
	struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);

	at91_usart_spi_release_dma(ctlr);
	clk_disable_unprepare(aus->clk);
}

static const struct dev_pm_ops at91_usart_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(at91_usart_spi_suspend, at91_usart_spi_resume)
	SET_RUNTIME_PM_OPS(at91_usart_spi_runtime_suspend,
			   at91_usart_spi_runtime_resume, NULL)
};

static struct platform_driver at91_usart_spi_driver = {
	.driver = {
		.name = "at91_usart_spi",
		.pm = &at91_usart_spi_pm_ops,
	},
	.probe = at91_usart_spi_probe,
	.remove_new = at91_usart_spi_remove,
};

module_platform_driver(at91_usart_spi_driver);

MODULE_DESCRIPTION("Microchip AT91 USART SPI Controller driver");
MODULE_AUTHOR("Radu Pirea <radu.pirea@microchip.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:at91_usart_spi");