Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Bresticker | 3112 | 87.29% | 5 | 21.74% |
Ezequiel García | 220 | 6.17% | 3 | 13.04% |
Sifan Naeem | 81 | 2.27% | 4 | 17.39% |
Peter Ujfalusi | 68 | 1.91% | 1 | 4.35% |
Herve Codina via Alsa-devel | 35 | 0.98% | 1 | 4.35% |
Ionela Voinescu | 17 | 0.48% | 1 | 4.35% |
Pan Bian | 12 | 0.34% | 1 | 4.35% |
Linus Walleij | 6 | 0.17% | 1 | 4.35% |
Yang Yingliang | 5 | 0.14% | 1 | 4.35% |
Zheng Yongjun | 2 | 0.06% | 1 | 4.35% |
Rafael J. Wysocki | 2 | 0.06% | 1 | 4.35% |
Uwe Kleine-König | 2 | 0.06% | 1 | 4.35% |
Thomas Gleixner | 2 | 0.06% | 1 | 4.35% |
Qilong Zhang | 1 | 0.03% | 1 | 4.35% |
Total | 3565 | 23 |
// SPDX-License-Identifier: GPL-2.0-only /* * IMG SPFI controller driver * * Copyright (C) 2007,2008,2013 Imagination Technologies Ltd. * Copyright (C) 2014 Google, Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <linux/spinlock.h> #define SPFI_DEVICE_PARAMETER(x) (0x00 + 0x4 * (x)) #define SPFI_DEVICE_PARAMETER_BITCLK_SHIFT 24 #define SPFI_DEVICE_PARAMETER_BITCLK_MASK 0xff #define SPFI_DEVICE_PARAMETER_CSSETUP_SHIFT 16 #define SPFI_DEVICE_PARAMETER_CSSETUP_MASK 0xff #define SPFI_DEVICE_PARAMETER_CSHOLD_SHIFT 8 #define SPFI_DEVICE_PARAMETER_CSHOLD_MASK 0xff #define SPFI_DEVICE_PARAMETER_CSDELAY_SHIFT 0 #define SPFI_DEVICE_PARAMETER_CSDELAY_MASK 0xff #define SPFI_CONTROL 0x14 #define SPFI_CONTROL_CONTINUE BIT(12) #define SPFI_CONTROL_SOFT_RESET BIT(11) #define SPFI_CONTROL_SEND_DMA BIT(10) #define SPFI_CONTROL_GET_DMA BIT(9) #define SPFI_CONTROL_SE BIT(8) #define SPFI_CONTROL_TMODE_SHIFT 5 #define SPFI_CONTROL_TMODE_MASK 0x7 #define SPFI_CONTROL_TMODE_SINGLE 0 #define SPFI_CONTROL_TMODE_DUAL 1 #define SPFI_CONTROL_TMODE_QUAD 2 #define SPFI_CONTROL_SPFI_EN BIT(0) #define SPFI_TRANSACTION 0x18 #define SPFI_TRANSACTION_TSIZE_SHIFT 16 #define SPFI_TRANSACTION_TSIZE_MASK 0xffff #define SPFI_PORT_STATE 0x1c #define SPFI_PORT_STATE_DEV_SEL_SHIFT 20 #define SPFI_PORT_STATE_DEV_SEL_MASK 0x7 #define SPFI_PORT_STATE_CK_POL(x) BIT(19 - (x)) #define SPFI_PORT_STATE_CK_PHASE(x) BIT(14 - (x)) #define SPFI_TX_32BIT_VALID_DATA 0x20 #define SPFI_TX_8BIT_VALID_DATA 0x24 #define SPFI_RX_32BIT_VALID_DATA 0x28 #define SPFI_RX_8BIT_VALID_DATA 0x2c #define SPFI_INTERRUPT_STATUS 0x30 #define SPFI_INTERRUPT_ENABLE 0x34 #define SPFI_INTERRUPT_CLEAR 0x38 #define SPFI_INTERRUPT_IACCESS BIT(12) #define SPFI_INTERRUPT_GDEX8BIT BIT(11) #define SPFI_INTERRUPT_ALLDONETRIG BIT(9) #define SPFI_INTERRUPT_GDFUL BIT(8) #define SPFI_INTERRUPT_GDHF BIT(7) #define SPFI_INTERRUPT_GDEX32BIT BIT(6) #define SPFI_INTERRUPT_GDTRIG BIT(5) #define SPFI_INTERRUPT_SDFUL BIT(3) #define SPFI_INTERRUPT_SDHF BIT(2) #define SPFI_INTERRUPT_SDE BIT(1) #define SPFI_INTERRUPT_SDTRIG BIT(0) /* * There are four parallel FIFOs of 16 bytes each. The word buffer * (*_32BIT_VALID_DATA) accesses all four FIFOs at once, resulting in an * effective FIFO size of 64 bytes. The byte buffer (*_8BIT_VALID_DATA) * accesses only a single FIFO, resulting in an effective FIFO size of * 16 bytes. */ #define SPFI_32BIT_FIFO_SIZE 64 #define SPFI_8BIT_FIFO_SIZE 16 struct img_spfi { struct device *dev; struct spi_master *master; spinlock_t lock; void __iomem *regs; phys_addr_t phys; int irq; struct clk *spfi_clk; struct clk *sys_clk; struct dma_chan *rx_ch; struct dma_chan *tx_ch; bool tx_dma_busy; bool rx_dma_busy; }; static inline u32 spfi_readl(struct img_spfi *spfi, u32 reg) { return readl(spfi->regs + reg); } static inline void spfi_writel(struct img_spfi *spfi, u32 val, u32 reg) { writel(val, spfi->regs + reg); } static inline void spfi_start(struct img_spfi *spfi) { u32 val; val = spfi_readl(spfi, SPFI_CONTROL); val |= SPFI_CONTROL_SPFI_EN; spfi_writel(spfi, val, SPFI_CONTROL); } static inline void spfi_reset(struct img_spfi *spfi) { spfi_writel(spfi, SPFI_CONTROL_SOFT_RESET, SPFI_CONTROL); spfi_writel(spfi, 0, SPFI_CONTROL); } static int spfi_wait_all_done(struct img_spfi *spfi) { unsigned long timeout = jiffies + msecs_to_jiffies(50); while (time_before(jiffies, timeout)) { u32 status = spfi_readl(spfi, SPFI_INTERRUPT_STATUS); if (status & SPFI_INTERRUPT_ALLDONETRIG) { spfi_writel(spfi, SPFI_INTERRUPT_ALLDONETRIG, SPFI_INTERRUPT_CLEAR); return 0; } cpu_relax(); } dev_err(spfi->dev, "Timed out waiting for transaction to complete\n"); spfi_reset(spfi); return -ETIMEDOUT; } static unsigned int spfi_pio_write32(struct img_spfi *spfi, const u32 *buf, unsigned int max) { unsigned int count = 0; u32 status; while (count < max / 4) { spfi_writel(spfi, SPFI_INTERRUPT_SDFUL, SPFI_INTERRUPT_CLEAR); status = spfi_readl(spfi, SPFI_INTERRUPT_STATUS); if (status & SPFI_INTERRUPT_SDFUL) break; spfi_writel(spfi, buf[count], SPFI_TX_32BIT_VALID_DATA); count++; } return count * 4; } static unsigned int spfi_pio_write8(struct img_spfi *spfi, const u8 *buf, unsigned int max) { unsigned int count = 0; u32 status; while (count < max) { spfi_writel(spfi, SPFI_INTERRUPT_SDFUL, SPFI_INTERRUPT_CLEAR); status = spfi_readl(spfi, SPFI_INTERRUPT_STATUS); if (status & SPFI_INTERRUPT_SDFUL) break; spfi_writel(spfi, buf[count], SPFI_TX_8BIT_VALID_DATA); count++; } return count; } static unsigned int spfi_pio_read32(struct img_spfi *spfi, u32 *buf, unsigned int max) { unsigned int count = 0; u32 status; while (count < max / 4) { spfi_writel(spfi, SPFI_INTERRUPT_GDEX32BIT, SPFI_INTERRUPT_CLEAR); status = spfi_readl(spfi, SPFI_INTERRUPT_STATUS); if (!(status & SPFI_INTERRUPT_GDEX32BIT)) break; buf[count] = spfi_readl(spfi, SPFI_RX_32BIT_VALID_DATA); count++; } return count * 4; } static unsigned int spfi_pio_read8(struct img_spfi *spfi, u8 *buf, unsigned int max) { unsigned int count = 0; u32 status; while (count < max) { spfi_writel(spfi, SPFI_INTERRUPT_GDEX8BIT, SPFI_INTERRUPT_CLEAR); status = spfi_readl(spfi, SPFI_INTERRUPT_STATUS); if (!(status & SPFI_INTERRUPT_GDEX8BIT)) break; buf[count] = spfi_readl(spfi, SPFI_RX_8BIT_VALID_DATA); count++; } return count; } static int img_spfi_start_pio(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct img_spfi *spfi = spi_master_get_devdata(spi->master); unsigned int tx_bytes = 0, rx_bytes = 0; const void *tx_buf = xfer->tx_buf; void *rx_buf = xfer->rx_buf; unsigned long timeout; int ret; if (tx_buf) tx_bytes = xfer->len; if (rx_buf) rx_bytes = xfer->len; spfi_start(spfi); timeout = jiffies + msecs_to_jiffies(xfer->len * 8 * 1000 / xfer->speed_hz + 100); while ((tx_bytes > 0 || rx_bytes > 0) && time_before(jiffies, timeout)) { unsigned int tx_count, rx_count; if (tx_bytes >= 4) tx_count = spfi_pio_write32(spfi, tx_buf, tx_bytes); else tx_count = spfi_pio_write8(spfi, tx_buf, tx_bytes); if (rx_bytes >= 4) rx_count = spfi_pio_read32(spfi, rx_buf, rx_bytes); else rx_count = spfi_pio_read8(spfi, rx_buf, rx_bytes); tx_buf += tx_count; rx_buf += rx_count; tx_bytes -= tx_count; rx_bytes -= rx_count; cpu_relax(); } if (rx_bytes > 0 || tx_bytes > 0) { dev_err(spfi->dev, "PIO transfer timed out\n"); return -ETIMEDOUT; } ret = spfi_wait_all_done(spfi); if (ret < 0) return ret; return 0; } static void img_spfi_dma_rx_cb(void *data) { struct img_spfi *spfi = data; unsigned long flags; spfi_wait_all_done(spfi); spin_lock_irqsave(&spfi->lock, flags); spfi->rx_dma_busy = false; if (!spfi->tx_dma_busy) spi_finalize_current_transfer(spfi->master); spin_unlock_irqrestore(&spfi->lock, flags); } static void img_spfi_dma_tx_cb(void *data) { struct img_spfi *spfi = data; unsigned long flags; spfi_wait_all_done(spfi); spin_lock_irqsave(&spfi->lock, flags); spfi->tx_dma_busy = false; if (!spfi->rx_dma_busy) spi_finalize_current_transfer(spfi->master); spin_unlock_irqrestore(&spfi->lock, flags); } static int img_spfi_start_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct img_spfi *spfi = spi_master_get_devdata(spi->master); struct dma_async_tx_descriptor *rxdesc = NULL, *txdesc = NULL; struct dma_slave_config rxconf, txconf; spfi->rx_dma_busy = false; spfi->tx_dma_busy = false; if (xfer->rx_buf) { rxconf.direction = DMA_DEV_TO_MEM; if (xfer->len % 4 == 0) { rxconf.src_addr = spfi->phys + SPFI_RX_32BIT_VALID_DATA; rxconf.src_addr_width = 4; rxconf.src_maxburst = 4; } else { rxconf.src_addr = spfi->phys + SPFI_RX_8BIT_VALID_DATA; rxconf.src_addr_width = 1; rxconf.src_maxburst = 4; } dmaengine_slave_config(spfi->rx_ch, &rxconf); rxdesc = dmaengine_prep_slave_sg(spfi->rx_ch, xfer->rx_sg.sgl, xfer->rx_sg.nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!rxdesc) goto stop_dma; rxdesc->callback = img_spfi_dma_rx_cb; rxdesc->callback_param = spfi; } if (xfer->tx_buf) { txconf.direction = DMA_MEM_TO_DEV; if (xfer->len % 4 == 0) { txconf.dst_addr = spfi->phys + SPFI_TX_32BIT_VALID_DATA; txconf.dst_addr_width = 4; txconf.dst_maxburst = 4; } else { txconf.dst_addr = spfi->phys + SPFI_TX_8BIT_VALID_DATA; txconf.dst_addr_width = 1; txconf.dst_maxburst = 4; } dmaengine_slave_config(spfi->tx_ch, &txconf); txdesc = dmaengine_prep_slave_sg(spfi->tx_ch, xfer->tx_sg.sgl, xfer->tx_sg.nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!txdesc) goto stop_dma; txdesc->callback = img_spfi_dma_tx_cb; txdesc->callback_param = spfi; } if (xfer->rx_buf) { spfi->rx_dma_busy = true; dmaengine_submit(rxdesc); dma_async_issue_pending(spfi->rx_ch); } spfi_start(spfi); if (xfer->tx_buf) { spfi->tx_dma_busy = true; dmaengine_submit(txdesc); dma_async_issue_pending(spfi->tx_ch); } return 1; stop_dma: dmaengine_terminate_all(spfi->rx_ch); dmaengine_terminate_all(spfi->tx_ch); return -EIO; } static void img_spfi_handle_err(struct spi_master *master, struct spi_message *msg) { struct img_spfi *spfi = spi_master_get_devdata(master); unsigned long flags; /* * Stop all DMA and reset the controller if the previous transaction * timed-out and never completed it's DMA. */ spin_lock_irqsave(&spfi->lock, flags); if (spfi->tx_dma_busy || spfi->rx_dma_busy) { spfi->tx_dma_busy = false; spfi->rx_dma_busy = false; dmaengine_terminate_all(spfi->tx_ch); dmaengine_terminate_all(spfi->rx_ch); } spin_unlock_irqrestore(&spfi->lock, flags); } static int img_spfi_prepare(struct spi_master *master, struct spi_message *msg) { struct img_spfi *spfi = spi_master_get_devdata(master); u32 val; val = spfi_readl(spfi, SPFI_PORT_STATE); val &= ~(SPFI_PORT_STATE_DEV_SEL_MASK << SPFI_PORT_STATE_DEV_SEL_SHIFT); val |= spi_get_chipselect(msg->spi, 0) << SPFI_PORT_STATE_DEV_SEL_SHIFT; if (msg->spi->mode & SPI_CPHA) val |= SPFI_PORT_STATE_CK_PHASE(spi_get_chipselect(msg->spi, 0)); else val &= ~SPFI_PORT_STATE_CK_PHASE(spi_get_chipselect(msg->spi, 0)); if (msg->spi->mode & SPI_CPOL) val |= SPFI_PORT_STATE_CK_POL(spi_get_chipselect(msg->spi, 0)); else val &= ~SPFI_PORT_STATE_CK_POL(spi_get_chipselect(msg->spi, 0)); spfi_writel(spfi, val, SPFI_PORT_STATE); return 0; } static int img_spfi_unprepare(struct spi_master *master, struct spi_message *msg) { struct img_spfi *spfi = spi_master_get_devdata(master); spfi_reset(spfi); return 0; } static void img_spfi_config(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct img_spfi *spfi = spi_master_get_devdata(spi->master); u32 val, div; /* * output = spfi_clk * (BITCLK / 512), where BITCLK must be a * power of 2 up to 128 */ div = DIV_ROUND_UP(clk_get_rate(spfi->spfi_clk), xfer->speed_hz); div = clamp(512 / (1 << get_count_order(div)), 1, 128); val = spfi_readl(spfi, SPFI_DEVICE_PARAMETER(spi_get_chipselect(spi, 0))); val &= ~(SPFI_DEVICE_PARAMETER_BITCLK_MASK << SPFI_DEVICE_PARAMETER_BITCLK_SHIFT); val |= div << SPFI_DEVICE_PARAMETER_BITCLK_SHIFT; spfi_writel(spfi, val, SPFI_DEVICE_PARAMETER(spi_get_chipselect(spi, 0))); spfi_writel(spfi, xfer->len << SPFI_TRANSACTION_TSIZE_SHIFT, SPFI_TRANSACTION); val = spfi_readl(spfi, SPFI_CONTROL); val &= ~(SPFI_CONTROL_SEND_DMA | SPFI_CONTROL_GET_DMA); if (xfer->tx_buf) val |= SPFI_CONTROL_SEND_DMA; if (xfer->rx_buf) val |= SPFI_CONTROL_GET_DMA; val &= ~(SPFI_CONTROL_TMODE_MASK << SPFI_CONTROL_TMODE_SHIFT); if (xfer->tx_nbits == SPI_NBITS_DUAL && xfer->rx_nbits == SPI_NBITS_DUAL) val |= SPFI_CONTROL_TMODE_DUAL << SPFI_CONTROL_TMODE_SHIFT; else if (xfer->tx_nbits == SPI_NBITS_QUAD && xfer->rx_nbits == SPI_NBITS_QUAD) val |= SPFI_CONTROL_TMODE_QUAD << SPFI_CONTROL_TMODE_SHIFT; val |= SPFI_CONTROL_SE; spfi_writel(spfi, val, SPFI_CONTROL); } static int img_spfi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct img_spfi *spfi = spi_master_get_devdata(spi->master); int ret; if (xfer->len > SPFI_TRANSACTION_TSIZE_MASK) { dev_err(spfi->dev, "Transfer length (%d) is greater than the max supported (%d)", xfer->len, SPFI_TRANSACTION_TSIZE_MASK); return -EINVAL; } img_spfi_config(master, spi, xfer); if (master->can_dma && master->can_dma(master, spi, xfer)) ret = img_spfi_start_dma(master, spi, xfer); else ret = img_spfi_start_pio(master, spi, xfer); return ret; } static bool img_spfi_can_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { if (xfer->len > SPFI_32BIT_FIFO_SIZE) return true; return false; } static irqreturn_t img_spfi_irq(int irq, void *dev_id) { struct img_spfi *spfi = (struct img_spfi *)dev_id; u32 status; status = spfi_readl(spfi, SPFI_INTERRUPT_STATUS); if (status & SPFI_INTERRUPT_IACCESS) { spfi_writel(spfi, SPFI_INTERRUPT_IACCESS, SPFI_INTERRUPT_CLEAR); dev_err(spfi->dev, "Illegal access interrupt"); return IRQ_HANDLED; } return IRQ_NONE; } static int img_spfi_probe(struct platform_device *pdev) { struct spi_master *master; struct img_spfi *spfi; struct resource *res; int ret; u32 max_speed_hz; master = spi_alloc_master(&pdev->dev, sizeof(*spfi)); if (!master) return -ENOMEM; platform_set_drvdata(pdev, master); spfi = spi_master_get_devdata(master); spfi->dev = &pdev->dev; spfi->master = master; spin_lock_init(&spfi->lock); spfi->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(spfi->regs)) { ret = PTR_ERR(spfi->regs); goto put_spi; } spfi->phys = res->start; spfi->irq = platform_get_irq(pdev, 0); if (spfi->irq < 0) { ret = spfi->irq; goto put_spi; } ret = devm_request_irq(spfi->dev, spfi->irq, img_spfi_irq, IRQ_TYPE_LEVEL_HIGH, dev_name(spfi->dev), spfi); if (ret) goto put_spi; spfi->sys_clk = devm_clk_get(spfi->dev, "sys"); if (IS_ERR(spfi->sys_clk)) { ret = PTR_ERR(spfi->sys_clk); goto put_spi; } spfi->spfi_clk = devm_clk_get(spfi->dev, "spfi"); if (IS_ERR(spfi->spfi_clk)) { ret = PTR_ERR(spfi->spfi_clk); goto put_spi; } ret = clk_prepare_enable(spfi->sys_clk); if (ret) goto put_spi; ret = clk_prepare_enable(spfi->spfi_clk); if (ret) goto disable_pclk; spfi_reset(spfi); /* * Only enable the error (IACCESS) interrupt. In PIO mode we'll * poll the status of the FIFOs. */ spfi_writel(spfi, SPFI_INTERRUPT_IACCESS, SPFI_INTERRUPT_ENABLE); master->auto_runtime_pm = true; master->bus_num = pdev->id; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_TX_DUAL | SPI_RX_DUAL; if (of_property_read_bool(spfi->dev->of_node, "img,supports-quad-mode")) master->mode_bits |= SPI_TX_QUAD | SPI_RX_QUAD; master->dev.of_node = pdev->dev.of_node; master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(8); master->max_speed_hz = clk_get_rate(spfi->spfi_clk) / 4; master->min_speed_hz = clk_get_rate(spfi->spfi_clk) / 512; /* * Maximum speed supported by spfi is limited to the lower value * between 1/4 of the SPFI clock or to "spfi-max-frequency" * defined in the device tree. * If no value is defined in the device tree assume the maximum * speed supported to be 1/4 of the SPFI clock. */ if (!of_property_read_u32(spfi->dev->of_node, "spfi-max-frequency", &max_speed_hz)) { if (master->max_speed_hz > max_speed_hz) master->max_speed_hz = max_speed_hz; } master->transfer_one = img_spfi_transfer_one; master->prepare_message = img_spfi_prepare; master->unprepare_message = img_spfi_unprepare; master->handle_err = img_spfi_handle_err; master->use_gpio_descriptors = true; spfi->tx_ch = dma_request_chan(spfi->dev, "tx"); if (IS_ERR(spfi->tx_ch)) { ret = PTR_ERR(spfi->tx_ch); spfi->tx_ch = NULL; if (ret == -EPROBE_DEFER) goto disable_pm; } spfi->rx_ch = dma_request_chan(spfi->dev, "rx"); if (IS_ERR(spfi->rx_ch)) { ret = PTR_ERR(spfi->rx_ch); spfi->rx_ch = NULL; if (ret == -EPROBE_DEFER) goto disable_pm; } if (!spfi->tx_ch || !spfi->rx_ch) { if (spfi->tx_ch) dma_release_channel(spfi->tx_ch); if (spfi->rx_ch) dma_release_channel(spfi->rx_ch); spfi->tx_ch = NULL; spfi->rx_ch = NULL; dev_warn(spfi->dev, "Failed to get DMA channels, falling back to PIO mode\n"); } else { master->dma_tx = spfi->tx_ch; master->dma_rx = spfi->rx_ch; master->can_dma = img_spfi_can_dma; } pm_runtime_set_active(spfi->dev); pm_runtime_enable(spfi->dev); ret = devm_spi_register_master(spfi->dev, master); if (ret) goto disable_pm; return 0; disable_pm: pm_runtime_disable(spfi->dev); if (spfi->rx_ch) dma_release_channel(spfi->rx_ch); if (spfi->tx_ch) dma_release_channel(spfi->tx_ch); clk_disable_unprepare(spfi->spfi_clk); disable_pclk: clk_disable_unprepare(spfi->sys_clk); put_spi: spi_master_put(master); return ret; } static void img_spfi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct img_spfi *spfi = spi_master_get_devdata(master); if (spfi->tx_ch) dma_release_channel(spfi->tx_ch); if (spfi->rx_ch) dma_release_channel(spfi->rx_ch); pm_runtime_disable(spfi->dev); if (!pm_runtime_status_suspended(spfi->dev)) { clk_disable_unprepare(spfi->spfi_clk); clk_disable_unprepare(spfi->sys_clk); } } #ifdef CONFIG_PM static int img_spfi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct img_spfi *spfi = spi_master_get_devdata(master); clk_disable_unprepare(spfi->spfi_clk); clk_disable_unprepare(spfi->sys_clk); return 0; } static int img_spfi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct img_spfi *spfi = spi_master_get_devdata(master); int ret; ret = clk_prepare_enable(spfi->sys_clk); if (ret) return ret; ret = clk_prepare_enable(spfi->spfi_clk); if (ret) { clk_disable_unprepare(spfi->sys_clk); return ret; } return 0; } #endif /* CONFIG_PM */ #ifdef CONFIG_PM_SLEEP static int img_spfi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); return spi_master_suspend(master); } static int img_spfi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct img_spfi *spfi = spi_master_get_devdata(master); int ret; ret = pm_runtime_resume_and_get(dev); if (ret < 0) return ret; spfi_reset(spfi); pm_runtime_put(dev); return spi_master_resume(master); } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops img_spfi_pm_ops = { SET_RUNTIME_PM_OPS(img_spfi_runtime_suspend, img_spfi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(img_spfi_suspend, img_spfi_resume) }; static const struct of_device_id img_spfi_of_match[] = { { .compatible = "img,spfi", }, { }, }; MODULE_DEVICE_TABLE(of, img_spfi_of_match); static struct platform_driver img_spfi_driver = { .driver = { .name = "img-spfi", .pm = &img_spfi_pm_ops, .of_match_table = of_match_ptr(img_spfi_of_match), }, .probe = img_spfi_probe, .remove_new = img_spfi_remove, }; module_platform_driver(img_spfi_driver); MODULE_DESCRIPTION("IMG SPFI controller driver"); MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1