Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Beniamino Galvani | 1769 | 98.01% | 1 | 9.09% |
Neil Armstrong | 13 | 0.72% | 2 | 18.18% |
Miaoqian Lin | 7 | 0.39% | 1 | 9.09% |
Luis de Bethencourt | 7 | 0.39% | 1 | 9.09% |
Yue haibing | 2 | 0.11% | 1 | 9.09% |
Rafael J. Wysocki | 2 | 0.11% | 1 | 9.09% |
Uwe Kleine-König | 2 | 0.11% | 1 | 9.09% |
Krzysztof Kozlowski | 1 | 0.06% | 1 | 9.09% |
Fengguang Wu | 1 | 0.06% | 1 | 9.09% |
Lee Jones | 1 | 0.06% | 1 | 9.09% |
Total | 1805 | 11 |
// SPDX-License-Identifier: GPL-2.0+ // // Driver for Amlogic Meson SPI flash controller (SPIFC) // // Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com> // #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/types.h> /* register map */ #define REG_CMD 0x00 #define REG_ADDR 0x04 #define REG_CTRL 0x08 #define REG_CTRL1 0x0c #define REG_STATUS 0x10 #define REG_CTRL2 0x14 #define REG_CLOCK 0x18 #define REG_USER 0x1c #define REG_USER1 0x20 #define REG_USER2 0x24 #define REG_USER3 0x28 #define REG_USER4 0x2c #define REG_SLAVE 0x30 #define REG_SLAVE1 0x34 #define REG_SLAVE2 0x38 #define REG_SLAVE3 0x3c #define REG_C0 0x40 #define REG_B8 0x60 #define REG_MAX 0x7c /* register fields */ #define CMD_USER BIT(18) #define CTRL_ENABLE_AHB BIT(17) #define CLOCK_SOURCE BIT(31) #define CLOCK_DIV_SHIFT 12 #define CLOCK_DIV_MASK (0x3f << CLOCK_DIV_SHIFT) #define CLOCK_CNT_HIGH_SHIFT 6 #define CLOCK_CNT_HIGH_MASK (0x3f << CLOCK_CNT_HIGH_SHIFT) #define CLOCK_CNT_LOW_SHIFT 0 #define CLOCK_CNT_LOW_MASK (0x3f << CLOCK_CNT_LOW_SHIFT) #define USER_DIN_EN_MS BIT(0) #define USER_CMP_MODE BIT(2) #define USER_UC_DOUT_SEL BIT(27) #define USER_UC_DIN_SEL BIT(28) #define USER_UC_MASK ((BIT(5) - 1) << 27) #define USER1_BN_UC_DOUT_SHIFT 17 #define USER1_BN_UC_DOUT_MASK (0xff << 16) #define USER1_BN_UC_DIN_SHIFT 8 #define USER1_BN_UC_DIN_MASK (0xff << 8) #define USER4_CS_ACT BIT(30) #define SLAVE_TRST_DONE BIT(4) #define SLAVE_OP_MODE BIT(30) #define SLAVE_SW_RST BIT(31) #define SPIFC_BUFFER_SIZE 64 /** * struct meson_spifc * @master: the SPI master * @regmap: regmap for device registers * @clk: input clock of the built-in baud rate generator * @dev: the device structure */ struct meson_spifc { struct spi_master *master; struct regmap *regmap; struct clk *clk; struct device *dev; }; static const struct regmap_config spifc_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = REG_MAX, }; /** * meson_spifc_wait_ready() - wait for the current operation to terminate * @spifc: the Meson SPI device * Return: 0 on success, a negative value on error */ static int meson_spifc_wait_ready(struct meson_spifc *spifc) { unsigned long deadline = jiffies + msecs_to_jiffies(5); u32 data; do { regmap_read(spifc->regmap, REG_SLAVE, &data); if (data & SLAVE_TRST_DONE) return 0; cond_resched(); } while (!time_after(jiffies, deadline)); return -ETIMEDOUT; } /** * meson_spifc_drain_buffer() - copy data from device buffer to memory * @spifc: the Meson SPI device * @buf: the destination buffer * @len: number of bytes to copy */ static void meson_spifc_drain_buffer(struct meson_spifc *spifc, u8 *buf, int len) { u32 data; int i = 0; while (i < len) { regmap_read(spifc->regmap, REG_C0 + i, &data); if (len - i >= 4) { *((u32 *)buf) = data; buf += 4; } else { memcpy(buf, &data, len - i); break; } i += 4; } } /** * meson_spifc_fill_buffer() - copy data from memory to device buffer * @spifc: the Meson SPI device * @buf: the source buffer * @len: number of bytes to copy */ static void meson_spifc_fill_buffer(struct meson_spifc *spifc, const u8 *buf, int len) { u32 data; int i = 0; while (i < len) { if (len - i >= 4) data = *(u32 *)buf; else memcpy(&data, buf, len - i); regmap_write(spifc->regmap, REG_C0 + i, data); buf += 4; i += 4; } } /** * meson_spifc_setup_speed() - program the clock divider * @spifc: the Meson SPI device * @speed: desired speed in Hz */ static void meson_spifc_setup_speed(struct meson_spifc *spifc, u32 speed) { unsigned long parent, value; int n; parent = clk_get_rate(spifc->clk); n = max_t(int, parent / speed - 1, 1); dev_dbg(spifc->dev, "parent %lu, speed %u, n %d\n", parent, speed, n); value = (n << CLOCK_DIV_SHIFT) & CLOCK_DIV_MASK; value |= (n << CLOCK_CNT_LOW_SHIFT) & CLOCK_CNT_LOW_MASK; value |= (((n + 1) / 2 - 1) << CLOCK_CNT_HIGH_SHIFT) & CLOCK_CNT_HIGH_MASK; regmap_write(spifc->regmap, REG_CLOCK, value); } /** * meson_spifc_txrx() - transfer a chunk of data * @spifc: the Meson SPI device * @xfer: the current SPI transfer * @offset: offset of the data to transfer * @len: length of the data to transfer * @last_xfer: whether this is the last transfer of the message * @last_chunk: whether this is the last chunk of the transfer * Return: 0 on success, a negative value on error */ static int meson_spifc_txrx(struct meson_spifc *spifc, struct spi_transfer *xfer, int offset, int len, bool last_xfer, bool last_chunk) { bool keep_cs = true; int ret; if (xfer->tx_buf) meson_spifc_fill_buffer(spifc, xfer->tx_buf + offset, len); /* enable DOUT stage */ regmap_update_bits(spifc->regmap, REG_USER, USER_UC_MASK, USER_UC_DOUT_SEL); regmap_write(spifc->regmap, REG_USER1, (8 * len - 1) << USER1_BN_UC_DOUT_SHIFT); /* enable data input during DOUT */ regmap_update_bits(spifc->regmap, REG_USER, USER_DIN_EN_MS, USER_DIN_EN_MS); if (last_chunk) { if (last_xfer) keep_cs = xfer->cs_change; else keep_cs = !xfer->cs_change; } regmap_update_bits(spifc->regmap, REG_USER4, USER4_CS_ACT, keep_cs ? USER4_CS_ACT : 0); /* clear transition done bit */ regmap_update_bits(spifc->regmap, REG_SLAVE, SLAVE_TRST_DONE, 0); /* start transfer */ regmap_update_bits(spifc->regmap, REG_CMD, CMD_USER, CMD_USER); ret = meson_spifc_wait_ready(spifc); if (!ret && xfer->rx_buf) meson_spifc_drain_buffer(spifc, xfer->rx_buf + offset, len); return ret; } /** * meson_spifc_transfer_one() - perform a single transfer * @master: the SPI master * @spi: the SPI device * @xfer: the current SPI transfer * Return: 0 on success, a negative value on error */ static int meson_spifc_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct meson_spifc *spifc = spi_master_get_devdata(master); int len, done = 0, ret = 0; meson_spifc_setup_speed(spifc, xfer->speed_hz); regmap_update_bits(spifc->regmap, REG_CTRL, CTRL_ENABLE_AHB, 0); while (done < xfer->len && !ret) { len = min_t(int, xfer->len - done, SPIFC_BUFFER_SIZE); ret = meson_spifc_txrx(spifc, xfer, done, len, spi_transfer_is_last(master, xfer), done + len >= xfer->len); done += len; } regmap_update_bits(spifc->regmap, REG_CTRL, CTRL_ENABLE_AHB, CTRL_ENABLE_AHB); return ret; } /** * meson_spifc_hw_init() - reset and initialize the SPI controller * @spifc: the Meson SPI device */ static void meson_spifc_hw_init(struct meson_spifc *spifc) { /* reset device */ regmap_update_bits(spifc->regmap, REG_SLAVE, SLAVE_SW_RST, SLAVE_SW_RST); /* disable compatible mode */ regmap_update_bits(spifc->regmap, REG_USER, USER_CMP_MODE, 0); /* set master mode */ regmap_update_bits(spifc->regmap, REG_SLAVE, SLAVE_OP_MODE, 0); } static int meson_spifc_probe(struct platform_device *pdev) { struct spi_master *master; struct meson_spifc *spifc; void __iomem *base; unsigned int rate; int ret = 0; master = spi_alloc_master(&pdev->dev, sizeof(struct meson_spifc)); if (!master) return -ENOMEM; platform_set_drvdata(pdev, master); spifc = spi_master_get_devdata(master); spifc->dev = &pdev->dev; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) { ret = PTR_ERR(base); goto out_err; } spifc->regmap = devm_regmap_init_mmio(spifc->dev, base, &spifc_regmap_config); if (IS_ERR(spifc->regmap)) { ret = PTR_ERR(spifc->regmap); goto out_err; } spifc->clk = devm_clk_get(spifc->dev, NULL); if (IS_ERR(spifc->clk)) { dev_err(spifc->dev, "missing clock\n"); ret = PTR_ERR(spifc->clk); goto out_err; } ret = clk_prepare_enable(spifc->clk); if (ret) { dev_err(spifc->dev, "can't prepare clock\n"); goto out_err; } rate = clk_get_rate(spifc->clk); master->num_chipselect = 1; master->dev.of_node = pdev->dev.of_node; master->bits_per_word_mask = SPI_BPW_MASK(8); master->auto_runtime_pm = true; master->transfer_one = meson_spifc_transfer_one; master->min_speed_hz = rate >> 6; master->max_speed_hz = rate >> 1; meson_spifc_hw_init(spifc); pm_runtime_set_active(spifc->dev); pm_runtime_enable(spifc->dev); ret = devm_spi_register_master(spifc->dev, master); if (ret) { dev_err(spifc->dev, "failed to register spi master\n"); goto out_clk; } return 0; out_clk: clk_disable_unprepare(spifc->clk); pm_runtime_disable(spifc->dev); out_err: spi_master_put(master); return ret; } static void meson_spifc_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct meson_spifc *spifc = spi_master_get_devdata(master); pm_runtime_get_sync(&pdev->dev); clk_disable_unprepare(spifc->clk); pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_PM_SLEEP static int meson_spifc_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct meson_spifc *spifc = spi_master_get_devdata(master); int ret; ret = spi_master_suspend(master); if (ret) return ret; if (!pm_runtime_suspended(dev)) clk_disable_unprepare(spifc->clk); return 0; } static int meson_spifc_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct meson_spifc *spifc = spi_master_get_devdata(master); int ret; if (!pm_runtime_suspended(dev)) { ret = clk_prepare_enable(spifc->clk); if (ret) return ret; } meson_spifc_hw_init(spifc); ret = spi_master_resume(master); if (ret) clk_disable_unprepare(spifc->clk); return ret; } #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM static int meson_spifc_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct meson_spifc *spifc = spi_master_get_devdata(master); clk_disable_unprepare(spifc->clk); return 0; } static int meson_spifc_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct meson_spifc *spifc = spi_master_get_devdata(master); return clk_prepare_enable(spifc->clk); } #endif /* CONFIG_PM */ static const struct dev_pm_ops meson_spifc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(meson_spifc_suspend, meson_spifc_resume) SET_RUNTIME_PM_OPS(meson_spifc_runtime_suspend, meson_spifc_runtime_resume, NULL) }; static const struct of_device_id meson_spifc_dt_match[] = { { .compatible = "amlogic,meson6-spifc", }, { .compatible = "amlogic,meson-gxbb-spifc", }, { }, }; MODULE_DEVICE_TABLE(of, meson_spifc_dt_match); static struct platform_driver meson_spifc_driver = { .probe = meson_spifc_probe, .remove_new = meson_spifc_remove, .driver = { .name = "meson-spifc", .of_match_table = of_match_ptr(meson_spifc_dt_match), .pm = &meson_spifc_pm_ops, }, }; module_platform_driver(meson_spifc_driver); MODULE_AUTHOR("Beniamino Galvani <b.galvani@gmail.com>"); MODULE_DESCRIPTION("Amlogic Meson SPIFC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1