Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Srinivas Pandruvada | 1083 | 38.53% | 9 | 11.25% |
Fenghua Yu | 613 | 21.81% | 4 | 5.00% |
Dmitriy Zavin | 248 | 8.82% | 3 | 3.75% |
Durgadoss R | 129 | 4.59% | 1 | 1.25% |
Ingo Molnar | 123 | 4.38% | 4 | 5.00% |
Dave Jones | 85 | 3.02% | 3 | 3.75% |
Thomas Gleixner | 79 | 2.81% | 7 | 8.75% |
Bartlomiej Zolnierkiewicz | 65 | 2.31% | 1 | 1.25% |
Hidetoshi Seto | 64 | 2.28% | 6 | 7.50% |
Borislav Petkov | 54 | 1.92% | 6 | 7.50% |
Zwane Mwaikambo | 40 | 1.42% | 2 | 2.50% |
Kay Sievers | 39 | 1.39% | 1 | 1.25% |
Ricardo Neri | 38 | 1.35% | 3 | 3.75% |
Sebastian Andrzej Siewior | 21 | 0.75% | 1 | 1.25% |
Linus Torvalds (pre-git) | 21 | 0.75% | 2 | 2.50% |
Yong Wang | 19 | 0.68% | 1 | 1.25% |
Youquan Song | 15 | 0.53% | 1 | 1.25% |
Dmitry Torokhov | 10 | 0.36% | 1 | 1.25% |
Linus Torvalds | 9 | 0.32% | 3 | 3.75% |
Sergey Senozhatsky | 8 | 0.28% | 1 | 1.25% |
Rakib Mullick | 6 | 0.21% | 1 | 1.25% |
Stephen Hemminger | 5 | 0.18% | 1 | 1.25% |
Chuansheng Liu | 4 | 0.14% | 1 | 1.25% |
Andi Kleen | 4 | 0.14% | 1 | 1.25% |
Christoph Lameter | 3 | 0.11% | 1 | 1.25% |
Maciej W. Rozycki | 3 | 0.11% | 1 | 1.25% |
Paul Gortmaker | 3 | 0.11% | 1 | 1.25% |
Jin Dongming | 2 | 0.07% | 1 | 1.25% |
Harvey Harrison | 2 | 0.07% | 1 | 1.25% |
Seiji Aguchi | 2 | 0.07% | 1 | 1.25% |
Srivatsa S. Bhat | 2 | 0.07% | 1 | 1.25% |
Chen Yucong | 2 | 0.07% | 1 | 1.25% |
Andrew Morton | 2 | 0.07% | 1 | 1.25% |
Brian Gerst | 2 | 0.07% | 1 | 1.25% |
Hugh Dickins | 1 | 0.04% | 1 | 1.25% |
Akinobu Mita | 1 | 0.04% | 1 | 1.25% |
Arvind Yadav | 1 | 0.04% | 1 | 1.25% |
Arnd Bergmann | 1 | 0.04% | 1 | 1.25% |
Cyrill V. Gorcunov | 1 | 0.04% | 1 | 1.25% |
Mike Travis | 1 | 0.04% | 1 | 1.25% |
Total | 2811 | 80 |
// SPDX-License-Identifier: GPL-2.0-only /* * Thermal throttle event support code (such as syslog messaging and rate * limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c). * * This allows consistent reporting of CPU thermal throttle events. * * Maintains a counter in /sys that keeps track of the number of thermal * events, such that the user knows how bad the thermal problem might be * (since the logging to syslog is rate limited). * * Author: Dmitriy Zavin (dmitriyz@google.com) * * Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c. * Inspired by Ross Biro's and Al Borchers' counter code. */ #include <linux/interrupt.h> #include <linux/notifier.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/export.h> #include <linux/types.h> #include <linux/init.h> #include <linux/smp.h> #include <linux/cpu.h> #include <asm/processor.h> #include <asm/thermal.h> #include <asm/traps.h> #include <asm/apic.h> #include <asm/irq.h> #include <asm/msr.h> #include "intel_hfi.h" #include "thermal_interrupt.h" /* How long to wait between reporting thermal events */ #define CHECK_INTERVAL (300 * HZ) #define THERMAL_THROTTLING_EVENT 0 #define POWER_LIMIT_EVENT 1 /** * struct _thermal_state - Represent the current thermal event state * @next_check: Stores the next timestamp, when it is allowed * to log the next warning message. * @last_interrupt_time: Stores the timestamp for the last threshold * high event. * @therm_work: Delayed workqueue structure * @count: Stores the current running count for thermal * or power threshold interrupts. * @last_count: Stores the previous running count for thermal * or power threshold interrupts. * @max_time_ms: This shows the maximum amount of time CPU was * in throttled state for a single thermal * threshold high to low state. * @total_time_ms: This is a cumulative time during which CPU was * in the throttled state. * @rate_control_active: Set when a throttling message is logged. * This is used for the purpose of rate-control. * @new_event: Stores the last high/low status of the * THERM_STATUS_PROCHOT or * THERM_STATUS_POWER_LIMIT. * @level: Stores whether this _thermal_state instance is * for a CORE level or for PACKAGE level. * @sample_index: Index for storing the next sample in the buffer * temp_samples[]. * @sample_count: Total number of samples collected in the buffer * temp_samples[]. * @average: The last moving average of temperature samples * @baseline_temp: Temperature at which thermal threshold high * interrupt was generated. * @temp_samples: Storage for temperature samples to calculate * moving average. * * This structure is used to represent data related to thermal state for a CPU. * There is a separate storage for core and package level for each CPU. */ struct _thermal_state { u64 next_check; u64 last_interrupt_time; struct delayed_work therm_work; unsigned long count; unsigned long last_count; unsigned long max_time_ms; unsigned long total_time_ms; bool rate_control_active; bool new_event; u8 level; u8 sample_index; u8 sample_count; u8 average; u8 baseline_temp; u8 temp_samples[3]; }; struct thermal_state { struct _thermal_state core_throttle; struct _thermal_state core_power_limit; struct _thermal_state package_throttle; struct _thermal_state package_power_limit; struct _thermal_state core_thresh0; struct _thermal_state core_thresh1; struct _thermal_state pkg_thresh0; struct _thermal_state pkg_thresh1; }; /* Callback to handle core threshold interrupts */ int (*platform_thermal_notify)(__u64 msr_val); EXPORT_SYMBOL(platform_thermal_notify); /* Callback to handle core package threshold_interrupts */ int (*platform_thermal_package_notify)(__u64 msr_val); EXPORT_SYMBOL_GPL(platform_thermal_package_notify); /* Callback support of rate control, return true, if * callback has rate control */ bool (*platform_thermal_package_rate_control)(void); EXPORT_SYMBOL_GPL(platform_thermal_package_rate_control); static DEFINE_PER_CPU(struct thermal_state, thermal_state); static atomic_t therm_throt_en = ATOMIC_INIT(0); static u32 lvtthmr_init __read_mostly; #ifdef CONFIG_SYSFS #define define_therm_throt_device_one_ro(_name) \ static DEVICE_ATTR(_name, 0444, \ therm_throt_device_show_##_name, \ NULL) \ #define define_therm_throt_device_show_func(event, name) \ \ static ssize_t therm_throt_device_show_##event##_##name( \ struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ unsigned int cpu = dev->id; \ ssize_t ret; \ \ preempt_disable(); /* CPU hotplug */ \ if (cpu_online(cpu)) { \ ret = sprintf(buf, "%lu\n", \ per_cpu(thermal_state, cpu).event.name); \ } else \ ret = 0; \ preempt_enable(); \ \ return ret; \ } define_therm_throt_device_show_func(core_throttle, count); define_therm_throt_device_one_ro(core_throttle_count); define_therm_throt_device_show_func(core_power_limit, count); define_therm_throt_device_one_ro(core_power_limit_count); define_therm_throt_device_show_func(package_throttle, count); define_therm_throt_device_one_ro(package_throttle_count); define_therm_throt_device_show_func(package_power_limit, count); define_therm_throt_device_one_ro(package_power_limit_count); define_therm_throt_device_show_func(core_throttle, max_time_ms); define_therm_throt_device_one_ro(core_throttle_max_time_ms); define_therm_throt_device_show_func(package_throttle, max_time_ms); define_therm_throt_device_one_ro(package_throttle_max_time_ms); define_therm_throt_device_show_func(core_throttle, total_time_ms); define_therm_throt_device_one_ro(core_throttle_total_time_ms); define_therm_throt_device_show_func(package_throttle, total_time_ms); define_therm_throt_device_one_ro(package_throttle_total_time_ms); static struct attribute *thermal_throttle_attrs[] = { &dev_attr_core_throttle_count.attr, &dev_attr_core_throttle_max_time_ms.attr, &dev_attr_core_throttle_total_time_ms.attr, NULL }; static const struct attribute_group thermal_attr_group = { .attrs = thermal_throttle_attrs, .name = "thermal_throttle" }; #endif /* CONFIG_SYSFS */ #define THERM_THROT_POLL_INTERVAL HZ #define THERM_STATUS_PROCHOT_LOG BIT(1) static u64 therm_intr_core_clear_mask; static u64 therm_intr_pkg_clear_mask; static void thermal_intr_init_core_clear_mask(void) { if (therm_intr_core_clear_mask) return; /* * Reference: Intel SDM Volume 4 * "Table 2-2. IA-32 Architectural MSRs", MSR 0x19C * IA32_THERM_STATUS. */ /* * Bit 1, 3, 5: CPUID.01H:EDX[22] = 1. This driver will not * enable interrupts, when 0 as it checks for X86_FEATURE_ACPI. */ therm_intr_core_clear_mask = (BIT(1) | BIT(3) | BIT(5)); /* * Bit 7 and 9: Thermal Threshold #1 and #2 log * If CPUID.01H:ECX[8] = 1 */ if (boot_cpu_has(X86_FEATURE_TM2)) therm_intr_core_clear_mask |= (BIT(7) | BIT(9)); /* Bit 11: Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1 */ if (boot_cpu_has(X86_FEATURE_PLN)) therm_intr_core_clear_mask |= BIT(11); /* * Bit 13: Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1 * Bit 15: Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1 */ if (boot_cpu_has(X86_FEATURE_HWP)) therm_intr_core_clear_mask |= (BIT(13) | BIT(15)); } static void thermal_intr_init_pkg_clear_mask(void) { if (therm_intr_pkg_clear_mask) return; /* * Reference: Intel SDM Volume 4 * "Table 2-2. IA-32 Architectural MSRs", MSR 0x1B1 * IA32_PACKAGE_THERM_STATUS. */ /* All bits except BIT 26 depend on CPUID.06H: EAX[6] = 1 */ if (boot_cpu_has(X86_FEATURE_PTS)) therm_intr_pkg_clear_mask = (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11)); /* * Intel SDM Volume 2A: Thermal and Power Management Leaf * Bit 26: CPUID.06H: EAX[19] = 1 */ if (boot_cpu_has(X86_FEATURE_HFI)) therm_intr_pkg_clear_mask |= BIT(26); } /* * Clear the bits in package thermal status register for bit = 1 * in bitmask */ void thermal_clear_package_intr_status(int level, u64 bit_mask) { u64 msr_val; int msr; if (level == CORE_LEVEL) { msr = MSR_IA32_THERM_STATUS; msr_val = therm_intr_core_clear_mask; } else { msr = MSR_IA32_PACKAGE_THERM_STATUS; msr_val = therm_intr_pkg_clear_mask; } msr_val &= ~bit_mask; wrmsrl(msr, msr_val); } EXPORT_SYMBOL_GPL(thermal_clear_package_intr_status); static void get_therm_status(int level, bool *proc_hot, u8 *temp) { int msr; u64 msr_val; if (level == CORE_LEVEL) msr = MSR_IA32_THERM_STATUS; else msr = MSR_IA32_PACKAGE_THERM_STATUS; rdmsrl(msr, msr_val); if (msr_val & THERM_STATUS_PROCHOT_LOG) *proc_hot = true; else *proc_hot = false; *temp = (msr_val >> 16) & 0x7F; } static void __maybe_unused throttle_active_work(struct work_struct *work) { struct _thermal_state *state = container_of(to_delayed_work(work), struct _thermal_state, therm_work); unsigned int i, avg, this_cpu = smp_processor_id(); u64 now = get_jiffies_64(); bool hot; u8 temp; get_therm_status(state->level, &hot, &temp); /* temperature value is offset from the max so lesser means hotter */ if (!hot && temp > state->baseline_temp) { if (state->rate_control_active) pr_info("CPU%d: %s temperature/speed normal (total events = %lu)\n", this_cpu, state->level == CORE_LEVEL ? "Core" : "Package", state->count); state->rate_control_active = false; return; } if (time_before64(now, state->next_check) && state->rate_control_active) goto re_arm; state->next_check = now + CHECK_INTERVAL; if (state->count != state->last_count) { /* There was one new thermal interrupt */ state->last_count = state->count; state->average = 0; state->sample_count = 0; state->sample_index = 0; } state->temp_samples[state->sample_index] = temp; state->sample_count++; state->sample_index = (state->sample_index + 1) % ARRAY_SIZE(state->temp_samples); if (state->sample_count < ARRAY_SIZE(state->temp_samples)) goto re_arm; avg = 0; for (i = 0; i < ARRAY_SIZE(state->temp_samples); ++i) avg += state->temp_samples[i]; avg /= ARRAY_SIZE(state->temp_samples); if (state->average > avg) { pr_warn("CPU%d: %s temperature is above threshold, cpu clock is throttled (total events = %lu)\n", this_cpu, state->level == CORE_LEVEL ? "Core" : "Package", state->count); state->rate_control_active = true; } state->average = avg; re_arm: thermal_clear_package_intr_status(state->level, THERM_STATUS_PROCHOT_LOG); schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL); } /*** * therm_throt_process - Process thermal throttling event from interrupt * @curr: Whether the condition is current or not (boolean), since the * thermal interrupt normally gets called both when the thermal * event begins and once the event has ended. * * This function is called by the thermal interrupt after the * IRQ has been acknowledged. * * It will take care of rate limiting and printing messages to the syslog. */ static void therm_throt_process(bool new_event, int event, int level) { struct _thermal_state *state; unsigned int this_cpu = smp_processor_id(); bool old_event; u64 now; struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu); now = get_jiffies_64(); if (level == CORE_LEVEL) { if (event == THERMAL_THROTTLING_EVENT) state = &pstate->core_throttle; else if (event == POWER_LIMIT_EVENT) state = &pstate->core_power_limit; else return; } else if (level == PACKAGE_LEVEL) { if (event == THERMAL_THROTTLING_EVENT) state = &pstate->package_throttle; else if (event == POWER_LIMIT_EVENT) state = &pstate->package_power_limit; else return; } else return; old_event = state->new_event; state->new_event = new_event; if (new_event) state->count++; if (event != THERMAL_THROTTLING_EVENT) return; if (new_event && !state->last_interrupt_time) { bool hot; u8 temp; get_therm_status(state->level, &hot, &temp); /* * Ignore short temperature spike as the system is not close * to PROCHOT. 10C offset is large enough to ignore. It is * already dropped from the high threshold temperature. */ if (temp > 10) return; state->baseline_temp = temp; state->last_interrupt_time = now; schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL); } else if (old_event && state->last_interrupt_time) { unsigned long throttle_time; throttle_time = jiffies_delta_to_msecs(now - state->last_interrupt_time); if (throttle_time > state->max_time_ms) state->max_time_ms = throttle_time; state->total_time_ms += throttle_time; state->last_interrupt_time = 0; } } static int thresh_event_valid(int level, int event) { struct _thermal_state *state; unsigned int this_cpu = smp_processor_id(); struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu); u64 now = get_jiffies_64(); if (level == PACKAGE_LEVEL) state = (event == 0) ? &pstate->pkg_thresh0 : &pstate->pkg_thresh1; else state = (event == 0) ? &pstate->core_thresh0 : &pstate->core_thresh1; if (time_before64(now, state->next_check)) return 0; state->next_check = now + CHECK_INTERVAL; return 1; } static bool int_pln_enable; static int __init int_pln_enable_setup(char *s) { int_pln_enable = true; return 1; } __setup("int_pln_enable", int_pln_enable_setup); #ifdef CONFIG_SYSFS /* Add/Remove thermal_throttle interface for CPU device: */ static int thermal_throttle_add_dev(struct device *dev, unsigned int cpu) { int err; struct cpuinfo_x86 *c = &cpu_data(cpu); err = sysfs_create_group(&dev->kobj, &thermal_attr_group); if (err) return err; if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) { err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_core_power_limit_count.attr, thermal_attr_group.name); if (err) goto del_group; } if (cpu_has(c, X86_FEATURE_PTS)) { err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_package_throttle_count.attr, thermal_attr_group.name); if (err) goto del_group; err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_package_throttle_max_time_ms.attr, thermal_attr_group.name); if (err) goto del_group; err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_package_throttle_total_time_ms.attr, thermal_attr_group.name); if (err) goto del_group; if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) { err = sysfs_add_file_to_group(&dev->kobj, &dev_attr_package_power_limit_count.attr, thermal_attr_group.name); if (err) goto del_group; } } return 0; del_group: sysfs_remove_group(&dev->kobj, &thermal_attr_group); return err; } static void thermal_throttle_remove_dev(struct device *dev) { sysfs_remove_group(&dev->kobj, &thermal_attr_group); } /* Get notified when a cpu comes on/off. Be hotplug friendly. */ static int thermal_throttle_online(unsigned int cpu) { struct thermal_state *state = &per_cpu(thermal_state, cpu); struct device *dev = get_cpu_device(cpu); u32 l; state->package_throttle.level = PACKAGE_LEVEL; state->core_throttle.level = CORE_LEVEL; INIT_DELAYED_WORK(&state->package_throttle.therm_work, throttle_active_work); INIT_DELAYED_WORK(&state->core_throttle.therm_work, throttle_active_work); /* * The first CPU coming online will enable the HFI. Usually this causes * hardware to issue an HFI thermal interrupt. Such interrupt will reach * the CPU once we enable the thermal vector in the local APIC. */ intel_hfi_online(cpu); /* Unmask the thermal vector after the above workqueues are initialized. */ l = apic_read(APIC_LVTTHMR); apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED); return thermal_throttle_add_dev(dev, cpu); } static int thermal_throttle_offline(unsigned int cpu) { struct thermal_state *state = &per_cpu(thermal_state, cpu); struct device *dev = get_cpu_device(cpu); u32 l; /* Mask the thermal vector before draining evtl. pending work */ l = apic_read(APIC_LVTTHMR); apic_write(APIC_LVTTHMR, l | APIC_LVT_MASKED); intel_hfi_offline(cpu); cancel_delayed_work_sync(&state->package_throttle.therm_work); cancel_delayed_work_sync(&state->core_throttle.therm_work); state->package_throttle.rate_control_active = false; state->core_throttle.rate_control_active = false; thermal_throttle_remove_dev(dev); return 0; } static __init int thermal_throttle_init_device(void) { int ret; if (!atomic_read(&therm_throt_en)) return 0; intel_hfi_init(); ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/therm:online", thermal_throttle_online, thermal_throttle_offline); return ret < 0 ? ret : 0; } device_initcall(thermal_throttle_init_device); #endif /* CONFIG_SYSFS */ static void notify_package_thresholds(__u64 msr_val) { bool notify_thres_0 = false; bool notify_thres_1 = false; if (!platform_thermal_package_notify) return; /* lower threshold check */ if (msr_val & THERM_LOG_THRESHOLD0) notify_thres_0 = true; /* higher threshold check */ if (msr_val & THERM_LOG_THRESHOLD1) notify_thres_1 = true; if (!notify_thres_0 && !notify_thres_1) return; if (platform_thermal_package_rate_control && platform_thermal_package_rate_control()) { /* Rate control is implemented in callback */ platform_thermal_package_notify(msr_val); return; } /* lower threshold reached */ if (notify_thres_0 && thresh_event_valid(PACKAGE_LEVEL, 0)) platform_thermal_package_notify(msr_val); /* higher threshold reached */ if (notify_thres_1 && thresh_event_valid(PACKAGE_LEVEL, 1)) platform_thermal_package_notify(msr_val); } static void notify_thresholds(__u64 msr_val) { /* check whether the interrupt handler is defined; * otherwise simply return */ if (!platform_thermal_notify) return; /* lower threshold reached */ if ((msr_val & THERM_LOG_THRESHOLD0) && thresh_event_valid(CORE_LEVEL, 0)) platform_thermal_notify(msr_val); /* higher threshold reached */ if ((msr_val & THERM_LOG_THRESHOLD1) && thresh_event_valid(CORE_LEVEL, 1)) platform_thermal_notify(msr_val); } void __weak notify_hwp_interrupt(void) { wrmsrl_safe(MSR_HWP_STATUS, 0); } /* Thermal transition interrupt handler */ void intel_thermal_interrupt(void) { __u64 msr_val; if (static_cpu_has(X86_FEATURE_HWP)) notify_hwp_interrupt(); rdmsrl(MSR_IA32_THERM_STATUS, msr_val); /* Check for violation of core thermal thresholds*/ notify_thresholds(msr_val); therm_throt_process(msr_val & THERM_STATUS_PROCHOT, THERMAL_THROTTLING_EVENT, CORE_LEVEL); if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable) therm_throt_process(msr_val & THERM_STATUS_POWER_LIMIT, POWER_LIMIT_EVENT, CORE_LEVEL); if (this_cpu_has(X86_FEATURE_PTS)) { rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val); /* check violations of package thermal thresholds */ notify_package_thresholds(msr_val); therm_throt_process(msr_val & PACKAGE_THERM_STATUS_PROCHOT, THERMAL_THROTTLING_EVENT, PACKAGE_LEVEL); if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable) therm_throt_process(msr_val & PACKAGE_THERM_STATUS_POWER_LIMIT, POWER_LIMIT_EVENT, PACKAGE_LEVEL); if (this_cpu_has(X86_FEATURE_HFI)) intel_hfi_process_event(msr_val & PACKAGE_THERM_STATUS_HFI_UPDATED); } } /* Thermal monitoring depends on APIC, ACPI and clock modulation */ static int intel_thermal_supported(struct cpuinfo_x86 *c) { if (!boot_cpu_has(X86_FEATURE_APIC)) return 0; if (!cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC)) return 0; return 1; } bool x86_thermal_enabled(void) { return atomic_read(&therm_throt_en); } void __init therm_lvt_init(void) { /* * This function is only called on boot CPU. Save the init thermal * LVT value on BSP and use that value to restore APs' thermal LVT * entry BIOS programmed later */ if (intel_thermal_supported(&boot_cpu_data)) lvtthmr_init = apic_read(APIC_LVTTHMR); } void intel_init_thermal(struct cpuinfo_x86 *c) { unsigned int cpu = smp_processor_id(); int tm2 = 0; u32 l, h; if (!intel_thermal_supported(c)) return; /* * First check if its enabled already, in which case there might * be some SMM goo which handles it, so we can't even put a handler * since it might be delivered via SMI already: */ rdmsr(MSR_IA32_MISC_ENABLE, l, h); h = lvtthmr_init; /* * The initial value of thermal LVT entries on all APs always reads * 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI * sequence to them and LVT registers are reset to 0s except for * the mask bits which are set to 1s when APs receive INIT IPI. * If BIOS takes over the thermal interrupt and sets its interrupt * delivery mode to SMI (not fixed), it restores the value that the * BIOS has programmed on AP based on BSP's info we saved since BIOS * is always setting the same value for all threads/cores. */ if ((h & APIC_DM_FIXED_MASK) != APIC_DM_FIXED) apic_write(APIC_LVTTHMR, lvtthmr_init); if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) { if (system_state == SYSTEM_BOOTING) pr_debug("CPU%d: Thermal monitoring handled by SMI\n", cpu); return; } /* early Pentium M models use different method for enabling TM2 */ if (cpu_has(c, X86_FEATURE_TM2)) { if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) { rdmsr(MSR_THERM2_CTL, l, h); if (l & MSR_THERM2_CTL_TM_SELECT) tm2 = 1; } else if (l & MSR_IA32_MISC_ENABLE_TM2) tm2 = 1; } /* We'll mask the thermal vector in the lapic till we're ready: */ h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED; apic_write(APIC_LVTTHMR, h); thermal_intr_init_core_clear_mask(); thermal_intr_init_pkg_clear_mask(); rdmsr(MSR_IA32_THERM_INTERRUPT, l, h); if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable) wrmsr(MSR_IA32_THERM_INTERRUPT, (l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE)) & ~THERM_INT_PLN_ENABLE, h); else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) wrmsr(MSR_IA32_THERM_INTERRUPT, l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE | THERM_INT_PLN_ENABLE), h); else wrmsr(MSR_IA32_THERM_INTERRUPT, l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h); if (cpu_has(c, X86_FEATURE_PTS)) { rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable) wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, (l | (PACKAGE_THERM_INT_LOW_ENABLE | PACKAGE_THERM_INT_HIGH_ENABLE)) & ~PACKAGE_THERM_INT_PLN_ENABLE, h); else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l | (PACKAGE_THERM_INT_LOW_ENABLE | PACKAGE_THERM_INT_HIGH_ENABLE | PACKAGE_THERM_INT_PLN_ENABLE), h); else wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l | (PACKAGE_THERM_INT_LOW_ENABLE | PACKAGE_THERM_INT_HIGH_ENABLE), h); if (cpu_has(c, X86_FEATURE_HFI)) { rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l | PACKAGE_THERM_INT_HFI_ENABLE, h); } } rdmsr(MSR_IA32_MISC_ENABLE, l, h); wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h); pr_info_once("CPU0: Thermal monitoring enabled (%s)\n", tm2 ? "TM2" : "TM1"); /* enable thermal throttle processing */ atomic_set(&therm_throt_en, 1); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1