Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Isaac Hazan | 3184 | 95.76% | 1 | 16.67% |
Mika Westerberg | 103 | 3.10% | 3 | 50.00% |
Gil Fine | 35 | 1.05% | 1 | 16.67% |
Tian Tao | 3 | 0.09% | 1 | 16.67% |
Total | 3325 | 6 |
// SPDX-License-Identifier: GPL-2.0 /* * DMA traffic test driver * * Copyright (C) 2020, Intel Corporation * Authors: Isaac Hazan <isaac.hazan@intel.com> * Mika Westerberg <mika.westerberg@linux.intel.com> */ #include <linux/completion.h> #include <linux/debugfs.h> #include <linux/module.h> #include <linux/sizes.h> #include <linux/thunderbolt.h> #define DMA_TEST_TX_RING_SIZE 64 #define DMA_TEST_RX_RING_SIZE 256 #define DMA_TEST_FRAME_SIZE SZ_4K #define DMA_TEST_DATA_PATTERN 0x0123456789abcdefLL #define DMA_TEST_MAX_PACKETS 1000 enum dma_test_frame_pdf { DMA_TEST_PDF_FRAME_START = 1, DMA_TEST_PDF_FRAME_END, }; struct dma_test_frame { struct dma_test *dma_test; void *data; struct ring_frame frame; }; enum dma_test_test_error { DMA_TEST_NO_ERROR, DMA_TEST_INTERRUPTED, DMA_TEST_BUFFER_ERROR, DMA_TEST_DMA_ERROR, DMA_TEST_CONFIG_ERROR, DMA_TEST_SPEED_ERROR, DMA_TEST_WIDTH_ERROR, DMA_TEST_BONDING_ERROR, DMA_TEST_PACKET_ERROR, }; static const char * const dma_test_error_names[] = { [DMA_TEST_NO_ERROR] = "no errors", [DMA_TEST_INTERRUPTED] = "interrupted by signal", [DMA_TEST_BUFFER_ERROR] = "no memory for packet buffers", [DMA_TEST_DMA_ERROR] = "DMA ring setup failed", [DMA_TEST_CONFIG_ERROR] = "configuration is not valid", [DMA_TEST_SPEED_ERROR] = "unexpected link speed", [DMA_TEST_WIDTH_ERROR] = "unexpected link width", [DMA_TEST_BONDING_ERROR] = "lane bonding configuration error", [DMA_TEST_PACKET_ERROR] = "packet check failed", }; enum dma_test_result { DMA_TEST_NOT_RUN, DMA_TEST_SUCCESS, DMA_TEST_FAIL, }; static const char * const dma_test_result_names[] = { [DMA_TEST_NOT_RUN] = "not run", [DMA_TEST_SUCCESS] = "success", [DMA_TEST_FAIL] = "failed", }; /** * struct dma_test - DMA test device driver private data * @svc: XDomain service the driver is bound to * @xd: XDomain the service belongs to * @rx_ring: Software ring holding RX frames * @rx_hopid: HopID used for receiving frames * @tx_ring: Software ring holding TX frames * @tx_hopid: HopID used for sending fames * @packets_to_send: Number of packets to send * @packets_to_receive: Number of packets to receive * @packets_sent: Actual number of packets sent * @packets_received: Actual number of packets received * @link_speed: Expected link speed (Gb/s), %0 to use whatever is negotiated * @link_width: Expected link width (Gb/s), %0 to use whatever is negotiated * @crc_errors: Number of CRC errors during the test run * @buffer_overflow_errors: Number of buffer overflow errors during the test * run * @result: Result of the last run * @error_code: Error code of the last run * @complete: Used to wait for the Rx to complete * @lock: Lock serializing access to this structure * @debugfs_dir: dentry of this dma_test */ struct dma_test { const struct tb_service *svc; struct tb_xdomain *xd; struct tb_ring *rx_ring; int rx_hopid; struct tb_ring *tx_ring; int tx_hopid; unsigned int packets_to_send; unsigned int packets_to_receive; unsigned int packets_sent; unsigned int packets_received; unsigned int link_speed; unsigned int link_width; unsigned int crc_errors; unsigned int buffer_overflow_errors; enum dma_test_result result; enum dma_test_test_error error_code; struct completion complete; struct mutex lock; struct dentry *debugfs_dir; }; /* DMA test property directory UUID: 3188cd10-6523-4a5a-a682-fdca07a248d8 */ static const uuid_t dma_test_dir_uuid = UUID_INIT(0x3188cd10, 0x6523, 0x4a5a, 0xa6, 0x82, 0xfd, 0xca, 0x07, 0xa2, 0x48, 0xd8); static struct tb_property_dir *dma_test_dir; static void *dma_test_pattern; static void dma_test_free_rings(struct dma_test *dt) { if (dt->rx_ring) { tb_xdomain_release_in_hopid(dt->xd, dt->rx_hopid); tb_ring_free(dt->rx_ring); dt->rx_ring = NULL; } if (dt->tx_ring) { tb_xdomain_release_out_hopid(dt->xd, dt->tx_hopid); tb_ring_free(dt->tx_ring); dt->tx_ring = NULL; } } static int dma_test_start_rings(struct dma_test *dt) { unsigned int flags = RING_FLAG_FRAME; struct tb_xdomain *xd = dt->xd; int ret, e2e_tx_hop = 0; struct tb_ring *ring; /* * If we are both sender and receiver (traffic goes over a * special loopback dongle) enable E2E flow control. This avoids * losing packets. */ if (dt->packets_to_send && dt->packets_to_receive) flags |= RING_FLAG_E2E; if (dt->packets_to_send) { ring = tb_ring_alloc_tx(xd->tb->nhi, -1, DMA_TEST_TX_RING_SIZE, flags); if (!ring) return -ENOMEM; dt->tx_ring = ring; e2e_tx_hop = ring->hop; ret = tb_xdomain_alloc_out_hopid(xd, -1); if (ret < 0) { dma_test_free_rings(dt); return ret; } dt->tx_hopid = ret; } if (dt->packets_to_receive) { u16 sof_mask, eof_mask; sof_mask = BIT(DMA_TEST_PDF_FRAME_START); eof_mask = BIT(DMA_TEST_PDF_FRAME_END); ring = tb_ring_alloc_rx(xd->tb->nhi, -1, DMA_TEST_RX_RING_SIZE, flags, e2e_tx_hop, sof_mask, eof_mask, NULL, NULL); if (!ring) { dma_test_free_rings(dt); return -ENOMEM; } dt->rx_ring = ring; ret = tb_xdomain_alloc_in_hopid(xd, -1); if (ret < 0) { dma_test_free_rings(dt); return ret; } dt->rx_hopid = ret; } ret = tb_xdomain_enable_paths(dt->xd, dt->tx_hopid, dt->tx_ring ? dt->tx_ring->hop : -1, dt->rx_hopid, dt->rx_ring ? dt->rx_ring->hop : -1); if (ret) { dma_test_free_rings(dt); return ret; } if (dt->tx_ring) tb_ring_start(dt->tx_ring); if (dt->rx_ring) tb_ring_start(dt->rx_ring); return 0; } static void dma_test_stop_rings(struct dma_test *dt) { int ret; if (dt->rx_ring) tb_ring_stop(dt->rx_ring); if (dt->tx_ring) tb_ring_stop(dt->tx_ring); ret = tb_xdomain_disable_paths(dt->xd, dt->tx_hopid, dt->tx_ring ? dt->tx_ring->hop : -1, dt->rx_hopid, dt->rx_ring ? dt->rx_ring->hop : -1); if (ret) dev_warn(&dt->svc->dev, "failed to disable DMA paths\n"); dma_test_free_rings(dt); } static void dma_test_rx_callback(struct tb_ring *ring, struct ring_frame *frame, bool canceled) { struct dma_test_frame *tf = container_of(frame, typeof(*tf), frame); struct dma_test *dt = tf->dma_test; struct device *dma_dev = tb_ring_dma_device(dt->rx_ring); dma_unmap_single(dma_dev, tf->frame.buffer_phy, DMA_TEST_FRAME_SIZE, DMA_FROM_DEVICE); kfree(tf->data); if (canceled) { kfree(tf); return; } dt->packets_received++; dev_dbg(&dt->svc->dev, "packet %u/%u received\n", dt->packets_received, dt->packets_to_receive); if (tf->frame.flags & RING_DESC_CRC_ERROR) dt->crc_errors++; if (tf->frame.flags & RING_DESC_BUFFER_OVERRUN) dt->buffer_overflow_errors++; kfree(tf); if (dt->packets_received == dt->packets_to_receive) complete(&dt->complete); } static int dma_test_submit_rx(struct dma_test *dt, size_t npackets) { struct device *dma_dev = tb_ring_dma_device(dt->rx_ring); int i; for (i = 0; i < npackets; i++) { struct dma_test_frame *tf; dma_addr_t dma_addr; tf = kzalloc(sizeof(*tf), GFP_KERNEL); if (!tf) return -ENOMEM; tf->data = kzalloc(DMA_TEST_FRAME_SIZE, GFP_KERNEL); if (!tf->data) { kfree(tf); return -ENOMEM; } dma_addr = dma_map_single(dma_dev, tf->data, DMA_TEST_FRAME_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dma_dev, dma_addr)) { kfree(tf->data); kfree(tf); return -ENOMEM; } tf->frame.buffer_phy = dma_addr; tf->frame.callback = dma_test_rx_callback; tf->dma_test = dt; INIT_LIST_HEAD(&tf->frame.list); tb_ring_rx(dt->rx_ring, &tf->frame); } return 0; } static void dma_test_tx_callback(struct tb_ring *ring, struct ring_frame *frame, bool canceled) { struct dma_test_frame *tf = container_of(frame, typeof(*tf), frame); struct dma_test *dt = tf->dma_test; struct device *dma_dev = tb_ring_dma_device(dt->tx_ring); dma_unmap_single(dma_dev, tf->frame.buffer_phy, DMA_TEST_FRAME_SIZE, DMA_TO_DEVICE); kfree(tf->data); kfree(tf); } static int dma_test_submit_tx(struct dma_test *dt, size_t npackets) { struct device *dma_dev = tb_ring_dma_device(dt->tx_ring); int i; for (i = 0; i < npackets; i++) { struct dma_test_frame *tf; dma_addr_t dma_addr; tf = kzalloc(sizeof(*tf), GFP_KERNEL); if (!tf) return -ENOMEM; tf->frame.size = 0; /* means 4096 */ tf->dma_test = dt; tf->data = kmemdup(dma_test_pattern, DMA_TEST_FRAME_SIZE, GFP_KERNEL); if (!tf->data) { kfree(tf); return -ENOMEM; } dma_addr = dma_map_single(dma_dev, tf->data, DMA_TEST_FRAME_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, dma_addr)) { kfree(tf->data); kfree(tf); return -ENOMEM; } tf->frame.buffer_phy = dma_addr; tf->frame.callback = dma_test_tx_callback; tf->frame.sof = DMA_TEST_PDF_FRAME_START; tf->frame.eof = DMA_TEST_PDF_FRAME_END; INIT_LIST_HEAD(&tf->frame.list); dt->packets_sent++; dev_dbg(&dt->svc->dev, "packet %u/%u sent\n", dt->packets_sent, dt->packets_to_send); tb_ring_tx(dt->tx_ring, &tf->frame); } return 0; } #define DMA_TEST_DEBUGFS_ATTR(__fops, __get, __validate, __set) \ static int __fops ## _show(void *data, u64 *val) \ { \ struct tb_service *svc = data; \ struct dma_test *dt = tb_service_get_drvdata(svc); \ int ret; \ \ ret = mutex_lock_interruptible(&dt->lock); \ if (ret) \ return ret; \ __get(dt, val); \ mutex_unlock(&dt->lock); \ return 0; \ } \ static int __fops ## _store(void *data, u64 val) \ { \ struct tb_service *svc = data; \ struct dma_test *dt = tb_service_get_drvdata(svc); \ int ret; \ \ ret = __validate(val); \ if (ret) \ return ret; \ ret = mutex_lock_interruptible(&dt->lock); \ if (ret) \ return ret; \ __set(dt, val); \ mutex_unlock(&dt->lock); \ return 0; \ } \ DEFINE_DEBUGFS_ATTRIBUTE(__fops ## _fops, __fops ## _show, \ __fops ## _store, "%llu\n") static void lanes_get(const struct dma_test *dt, u64 *val) { *val = dt->link_width; } static int lanes_validate(u64 val) { return val > 2 ? -EINVAL : 0; } static void lanes_set(struct dma_test *dt, u64 val) { dt->link_width = val; } DMA_TEST_DEBUGFS_ATTR(lanes, lanes_get, lanes_validate, lanes_set); static void speed_get(const struct dma_test *dt, u64 *val) { *val = dt->link_speed; } static int speed_validate(u64 val) { switch (val) { case 40: case 20: case 10: case 0: return 0; default: return -EINVAL; } } static void speed_set(struct dma_test *dt, u64 val) { dt->link_speed = val; } DMA_TEST_DEBUGFS_ATTR(speed, speed_get, speed_validate, speed_set); static void packets_to_receive_get(const struct dma_test *dt, u64 *val) { *val = dt->packets_to_receive; } static int packets_to_receive_validate(u64 val) { return val > DMA_TEST_MAX_PACKETS ? -EINVAL : 0; } static void packets_to_receive_set(struct dma_test *dt, u64 val) { dt->packets_to_receive = val; } DMA_TEST_DEBUGFS_ATTR(packets_to_receive, packets_to_receive_get, packets_to_receive_validate, packets_to_receive_set); static void packets_to_send_get(const struct dma_test *dt, u64 *val) { *val = dt->packets_to_send; } static int packets_to_send_validate(u64 val) { return val > DMA_TEST_MAX_PACKETS ? -EINVAL : 0; } static void packets_to_send_set(struct dma_test *dt, u64 val) { dt->packets_to_send = val; } DMA_TEST_DEBUGFS_ATTR(packets_to_send, packets_to_send_get, packets_to_send_validate, packets_to_send_set); static int dma_test_set_bonding(struct dma_test *dt) { switch (dt->link_width) { case 2: return tb_xdomain_lane_bonding_enable(dt->xd); case 1: tb_xdomain_lane_bonding_disable(dt->xd); fallthrough; default: return 0; } } static bool dma_test_validate_config(struct dma_test *dt) { if (!dt->packets_to_send && !dt->packets_to_receive) return false; if (dt->packets_to_send && dt->packets_to_receive && dt->packets_to_send != dt->packets_to_receive) return false; return true; } static void dma_test_check_errors(struct dma_test *dt, int ret) { if (!dt->error_code) { if (dt->link_speed && dt->xd->link_speed != dt->link_speed) { dt->error_code = DMA_TEST_SPEED_ERROR; } else if (dt->link_width) { const struct tb_xdomain *xd = dt->xd; if ((dt->link_width == 1 && xd->link_width != TB_LINK_WIDTH_SINGLE) || (dt->link_width == 2 && xd->link_width < TB_LINK_WIDTH_DUAL)) dt->error_code = DMA_TEST_WIDTH_ERROR; } else if (dt->packets_to_send != dt->packets_sent || dt->packets_to_receive != dt->packets_received || dt->crc_errors || dt->buffer_overflow_errors) { dt->error_code = DMA_TEST_PACKET_ERROR; } else { return; } } dt->result = DMA_TEST_FAIL; } static int test_store(void *data, u64 val) { struct tb_service *svc = data; struct dma_test *dt = tb_service_get_drvdata(svc); int ret; if (val != 1) return -EINVAL; ret = mutex_lock_interruptible(&dt->lock); if (ret) return ret; dt->packets_sent = 0; dt->packets_received = 0; dt->crc_errors = 0; dt->buffer_overflow_errors = 0; dt->result = DMA_TEST_SUCCESS; dt->error_code = DMA_TEST_NO_ERROR; dev_dbg(&svc->dev, "DMA test starting\n"); if (dt->link_speed) dev_dbg(&svc->dev, "link_speed: %u Gb/s\n", dt->link_speed); if (dt->link_width) dev_dbg(&svc->dev, "link_width: %u\n", dt->link_width); dev_dbg(&svc->dev, "packets_to_send: %u\n", dt->packets_to_send); dev_dbg(&svc->dev, "packets_to_receive: %u\n", dt->packets_to_receive); if (!dma_test_validate_config(dt)) { dev_err(&svc->dev, "invalid test configuration\n"); dt->error_code = DMA_TEST_CONFIG_ERROR; goto out_unlock; } ret = dma_test_set_bonding(dt); if (ret) { dev_err(&svc->dev, "failed to set lanes\n"); dt->error_code = DMA_TEST_BONDING_ERROR; goto out_unlock; } ret = dma_test_start_rings(dt); if (ret) { dev_err(&svc->dev, "failed to enable DMA rings\n"); dt->error_code = DMA_TEST_DMA_ERROR; goto out_unlock; } if (dt->packets_to_receive) { reinit_completion(&dt->complete); ret = dma_test_submit_rx(dt, dt->packets_to_receive); if (ret) { dev_err(&svc->dev, "failed to submit receive buffers\n"); dt->error_code = DMA_TEST_BUFFER_ERROR; goto out_stop; } } if (dt->packets_to_send) { ret = dma_test_submit_tx(dt, dt->packets_to_send); if (ret) { dev_err(&svc->dev, "failed to submit transmit buffers\n"); dt->error_code = DMA_TEST_BUFFER_ERROR; goto out_stop; } } if (dt->packets_to_receive) { ret = wait_for_completion_interruptible(&dt->complete); if (ret) { dt->error_code = DMA_TEST_INTERRUPTED; goto out_stop; } } out_stop: dma_test_stop_rings(dt); out_unlock: dma_test_check_errors(dt, ret); mutex_unlock(&dt->lock); dev_dbg(&svc->dev, "DMA test %s\n", dma_test_result_names[dt->result]); return ret; } DEFINE_DEBUGFS_ATTRIBUTE(test_fops, NULL, test_store, "%llu\n"); static int status_show(struct seq_file *s, void *not_used) { struct tb_service *svc = s->private; struct dma_test *dt = tb_service_get_drvdata(svc); int ret; ret = mutex_lock_interruptible(&dt->lock); if (ret) return ret; seq_printf(s, "result: %s\n", dma_test_result_names[dt->result]); if (dt->result == DMA_TEST_NOT_RUN) goto out_unlock; seq_printf(s, "packets received: %u\n", dt->packets_received); seq_printf(s, "packets sent: %u\n", dt->packets_sent); seq_printf(s, "CRC errors: %u\n", dt->crc_errors); seq_printf(s, "buffer overflow errors: %u\n", dt->buffer_overflow_errors); seq_printf(s, "error: %s\n", dma_test_error_names[dt->error_code]); out_unlock: mutex_unlock(&dt->lock); return 0; } DEFINE_SHOW_ATTRIBUTE(status); static void dma_test_debugfs_init(struct tb_service *svc) { struct dma_test *dt = tb_service_get_drvdata(svc); dt->debugfs_dir = debugfs_create_dir("dma_test", svc->debugfs_dir); debugfs_create_file("lanes", 0600, dt->debugfs_dir, svc, &lanes_fops); debugfs_create_file("speed", 0600, dt->debugfs_dir, svc, &speed_fops); debugfs_create_file("packets_to_receive", 0600, dt->debugfs_dir, svc, &packets_to_receive_fops); debugfs_create_file("packets_to_send", 0600, dt->debugfs_dir, svc, &packets_to_send_fops); debugfs_create_file("status", 0400, dt->debugfs_dir, svc, &status_fops); debugfs_create_file("test", 0200, dt->debugfs_dir, svc, &test_fops); } static int dma_test_probe(struct tb_service *svc, const struct tb_service_id *id) { struct tb_xdomain *xd = tb_service_parent(svc); struct dma_test *dt; dt = devm_kzalloc(&svc->dev, sizeof(*dt), GFP_KERNEL); if (!dt) return -ENOMEM; dt->svc = svc; dt->xd = xd; mutex_init(&dt->lock); init_completion(&dt->complete); tb_service_set_drvdata(svc, dt); dma_test_debugfs_init(svc); return 0; } static void dma_test_remove(struct tb_service *svc) { struct dma_test *dt = tb_service_get_drvdata(svc); mutex_lock(&dt->lock); debugfs_remove_recursive(dt->debugfs_dir); mutex_unlock(&dt->lock); } static int __maybe_unused dma_test_suspend(struct device *dev) { /* * No need to do anything special here. If userspace is writing * to the test attribute when suspend started, it comes out from * wait_for_completion_interruptible() with -ERESTARTSYS and the * DMA test fails tearing down the rings. Once userspace is * thawed the kernel restarts the write syscall effectively * re-running the test. */ return 0; } static int __maybe_unused dma_test_resume(struct device *dev) { return 0; } static const struct dev_pm_ops dma_test_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(dma_test_suspend, dma_test_resume) }; static const struct tb_service_id dma_test_ids[] = { { TB_SERVICE("dma_test", 1) }, { }, }; MODULE_DEVICE_TABLE(tbsvc, dma_test_ids); static struct tb_service_driver dma_test_driver = { .driver = { .owner = THIS_MODULE, .name = "thunderbolt_dma_test", .pm = &dma_test_pm_ops, }, .probe = dma_test_probe, .remove = dma_test_remove, .id_table = dma_test_ids, }; static int __init dma_test_init(void) { u64 data_value = DMA_TEST_DATA_PATTERN; int i, ret; dma_test_pattern = kmalloc(DMA_TEST_FRAME_SIZE, GFP_KERNEL); if (!dma_test_pattern) return -ENOMEM; for (i = 0; i < DMA_TEST_FRAME_SIZE / sizeof(data_value); i++) ((u32 *)dma_test_pattern)[i] = data_value++; dma_test_dir = tb_property_create_dir(&dma_test_dir_uuid); if (!dma_test_dir) { ret = -ENOMEM; goto err_free_pattern; } tb_property_add_immediate(dma_test_dir, "prtcid", 1); tb_property_add_immediate(dma_test_dir, "prtcvers", 1); tb_property_add_immediate(dma_test_dir, "prtcrevs", 0); tb_property_add_immediate(dma_test_dir, "prtcstns", 0); ret = tb_register_property_dir("dma_test", dma_test_dir); if (ret) goto err_free_dir; ret = tb_register_service_driver(&dma_test_driver); if (ret) goto err_unregister_dir; return 0; err_unregister_dir: tb_unregister_property_dir("dma_test", dma_test_dir); err_free_dir: tb_property_free_dir(dma_test_dir); err_free_pattern: kfree(dma_test_pattern); return ret; } module_init(dma_test_init); static void __exit dma_test_exit(void) { tb_unregister_service_driver(&dma_test_driver); tb_unregister_property_dir("dma_test", dma_test_dir); tb_property_free_dir(dma_test_dir); kfree(dma_test_pattern); } module_exit(dma_test_exit); MODULE_AUTHOR("Isaac Hazan <isaac.hazan@intel.com>"); MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); MODULE_DESCRIPTION("Thunderbolt/USB4 DMA traffic test driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1