Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andreas Noever | 1822 | 61.68% | 11 | 29.73% |
Mika Westerberg | 656 | 22.21% | 11 | 29.73% |
Mario Limonciello | 274 | 9.28% | 4 | 10.81% |
Lukas Wunner | 165 | 5.59% | 3 | 8.11% |
Gil Fine | 20 | 0.68% | 1 | 2.70% |
Lee Jones | 9 | 0.30% | 1 | 2.70% |
Sachin Kamat | 3 | 0.10% | 1 | 2.70% |
Arnd Bergmann | 1 | 0.03% | 1 | 2.70% |
Andy Shevchenko | 1 | 0.03% | 1 | 2.70% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 2.70% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 2.70% |
Colin Ian King | 1 | 0.03% | 1 | 2.70% |
Total | 2954 | 37 |
// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt driver - eeprom access * * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> * Copyright (C) 2018, Intel Corporation */ #include <linux/crc32.h> #include <linux/delay.h> #include <linux/property.h> #include <linux/slab.h> #include "tb.h" /* * tb_eeprom_ctl_write() - write control word */ static int tb_eeprom_ctl_write(struct tb_switch *sw, struct tb_eeprom_ctl *ctl) { return tb_sw_write(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + ROUTER_CS_4, 1); } /* * tb_eeprom_ctl_write() - read control word */ static int tb_eeprom_ctl_read(struct tb_switch *sw, struct tb_eeprom_ctl *ctl) { return tb_sw_read(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + ROUTER_CS_4, 1); } enum tb_eeprom_transfer { TB_EEPROM_IN, TB_EEPROM_OUT, }; /* * tb_eeprom_active - enable rom access * * WARNING: Always disable access after usage. Otherwise the controller will * fail to reprobe. */ static int tb_eeprom_active(struct tb_switch *sw, bool enable) { struct tb_eeprom_ctl ctl; int res = tb_eeprom_ctl_read(sw, &ctl); if (res) return res; if (enable) { ctl.bit_banging_enable = 1; res = tb_eeprom_ctl_write(sw, &ctl); if (res) return res; ctl.fl_cs = 0; return tb_eeprom_ctl_write(sw, &ctl); } else { ctl.fl_cs = 1; res = tb_eeprom_ctl_write(sw, &ctl); if (res) return res; ctl.bit_banging_enable = 0; return tb_eeprom_ctl_write(sw, &ctl); } } /* * tb_eeprom_transfer - transfer one bit * * If TB_EEPROM_IN is passed, then the bit can be retrieved from ctl->fl_do. * If TB_EEPROM_OUT is passed, then ctl->fl_di will be written. */ static int tb_eeprom_transfer(struct tb_switch *sw, struct tb_eeprom_ctl *ctl, enum tb_eeprom_transfer direction) { int res; if (direction == TB_EEPROM_OUT) { res = tb_eeprom_ctl_write(sw, ctl); if (res) return res; } ctl->fl_sk = 1; res = tb_eeprom_ctl_write(sw, ctl); if (res) return res; if (direction == TB_EEPROM_IN) { res = tb_eeprom_ctl_read(sw, ctl); if (res) return res; } ctl->fl_sk = 0; return tb_eeprom_ctl_write(sw, ctl); } /* * tb_eeprom_out - write one byte to the bus */ static int tb_eeprom_out(struct tb_switch *sw, u8 val) { struct tb_eeprom_ctl ctl; int i; int res = tb_eeprom_ctl_read(sw, &ctl); if (res) return res; for (i = 0; i < 8; i++) { ctl.fl_di = val & 0x80; res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_OUT); if (res) return res; val <<= 1; } return 0; } /* * tb_eeprom_in - read one byte from the bus */ static int tb_eeprom_in(struct tb_switch *sw, u8 *val) { struct tb_eeprom_ctl ctl; int i; int res = tb_eeprom_ctl_read(sw, &ctl); if (res) return res; *val = 0; for (i = 0; i < 8; i++) { *val <<= 1; res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_IN); if (res) return res; *val |= ctl.fl_do; } return 0; } /* * tb_eeprom_get_drom_offset - get drom offset within eeprom */ static int tb_eeprom_get_drom_offset(struct tb_switch *sw, u16 *offset) { struct tb_cap_plug_events cap; int res; if (!sw->cap_plug_events) { tb_sw_warn(sw, "no TB_CAP_PLUG_EVENTS, cannot read eeprom\n"); return -ENODEV; } res = tb_sw_read(sw, &cap, TB_CFG_SWITCH, sw->cap_plug_events, sizeof(cap) / 4); if (res) return res; if (!cap.eeprom_ctl.present || cap.eeprom_ctl.not_present) { tb_sw_warn(sw, "no NVM\n"); return -ENODEV; } if (cap.drom_offset > 0xffff) { tb_sw_warn(sw, "drom offset is larger than 0xffff: %#x\n", cap.drom_offset); return -ENXIO; } *offset = cap.drom_offset; return 0; } /* * tb_eeprom_read_n - read count bytes from offset into val */ static int tb_eeprom_read_n(struct tb_switch *sw, u16 offset, u8 *val, size_t count) { u16 drom_offset; int i, res; res = tb_eeprom_get_drom_offset(sw, &drom_offset); if (res) return res; offset += drom_offset; res = tb_eeprom_active(sw, true); if (res) return res; res = tb_eeprom_out(sw, 3); if (res) return res; res = tb_eeprom_out(sw, offset >> 8); if (res) return res; res = tb_eeprom_out(sw, offset); if (res) return res; for (i = 0; i < count; i++) { res = tb_eeprom_in(sw, val + i); if (res) return res; } return tb_eeprom_active(sw, false); } static u8 tb_crc8(u8 *data, int len) { int i, j; u8 val = 0xff; for (i = 0; i < len; i++) { val ^= data[i]; for (j = 0; j < 8; j++) val = (val << 1) ^ ((val & 0x80) ? 7 : 0); } return val; } static u32 tb_crc32(void *data, size_t len) { return ~__crc32c_le(~0, data, len); } #define TB_DROM_DATA_START 13 #define TB_DROM_HEADER_SIZE 22 #define USB4_DROM_HEADER_SIZE 16 struct tb_drom_header { /* BYTE 0 */ u8 uid_crc8; /* checksum for uid */ /* BYTES 1-8 */ u64 uid; /* BYTES 9-12 */ u32 data_crc32; /* checksum for data_len bytes starting at byte 13 */ /* BYTE 13 */ u8 device_rom_revision; /* should be <= 1 */ u16 data_len:12; u8 reserved:4; /* BYTES 16-21 - Only for TBT DROM, nonexistent in USB4 DROM */ u16 vendor_id; u16 model_id; u8 model_rev; u8 eeprom_rev; } __packed; enum tb_drom_entry_type { /* force unsigned to prevent "one-bit signed bitfield" warning */ TB_DROM_ENTRY_GENERIC = 0U, TB_DROM_ENTRY_PORT, }; struct tb_drom_entry_header { u8 len; u8 index:6; bool port_disabled:1; /* only valid if type is TB_DROM_ENTRY_PORT */ enum tb_drom_entry_type type:1; } __packed; struct tb_drom_entry_generic { struct tb_drom_entry_header header; u8 data[]; } __packed; struct tb_drom_entry_port { /* BYTES 0-1 */ struct tb_drom_entry_header header; /* BYTE 2 */ u8 dual_link_port_rid:4; u8 link_nr:1; u8 unknown1:2; bool has_dual_link_port:1; /* BYTE 3 */ u8 dual_link_port_nr:6; u8 unknown2:2; /* BYTES 4 - 5 TODO decode */ u8 micro2:4; u8 micro1:4; u8 micro3; /* BYTES 6-7, TODO: verify (find hardware that has these set) */ u8 peer_port_rid:4; u8 unknown3:3; bool has_peer_port:1; u8 peer_port_nr:6; u8 unknown4:2; } __packed; /* USB4 product descriptor */ struct tb_drom_entry_desc { struct tb_drom_entry_header header; u16 bcdUSBSpec; u16 idVendor; u16 idProduct; u16 bcdProductFWRevision; u32 TID; u8 productHWRevision; }; /** * tb_drom_read_uid_only() - Read UID directly from DROM * @sw: Router whose UID to read * @uid: UID is placed here * * Does not use the cached copy in sw->drom. Used during resume to check switch * identity. */ int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid) { u8 data[9]; u8 crc; int res; /* read uid */ res = tb_eeprom_read_n(sw, 0, data, 9); if (res) return res; crc = tb_crc8(data + 1, 8); if (crc != data[0]) { tb_sw_warn(sw, "uid crc8 mismatch (expected: %#x, got: %#x)\n", data[0], crc); return -EIO; } *uid = *(u64 *)(data+1); return 0; } static int tb_drom_parse_entry_generic(struct tb_switch *sw, struct tb_drom_entry_header *header) { const struct tb_drom_entry_generic *entry = (const struct tb_drom_entry_generic *)header; switch (header->index) { case 1: /* Length includes 2 bytes header so remove it before copy */ sw->vendor_name = kstrndup(entry->data, header->len - sizeof(*header), GFP_KERNEL); if (!sw->vendor_name) return -ENOMEM; break; case 2: sw->device_name = kstrndup(entry->data, header->len - sizeof(*header), GFP_KERNEL); if (!sw->device_name) return -ENOMEM; break; case 9: { const struct tb_drom_entry_desc *desc = (const struct tb_drom_entry_desc *)entry; if (!sw->vendor && !sw->device) { sw->vendor = desc->idVendor; sw->device = desc->idProduct; } break; } } return 0; } static int tb_drom_parse_entry_port(struct tb_switch *sw, struct tb_drom_entry_header *header) { struct tb_port *port; int res; enum tb_port_type type; /* * Some DROMs list more ports than the controller actually has * so we skip those but allow the parser to continue. */ if (header->index > sw->config.max_port_number) { dev_info_once(&sw->dev, "ignoring unnecessary extra entries in DROM\n"); return 0; } port = &sw->ports[header->index]; port->disabled = header->port_disabled; if (port->disabled) return 0; res = tb_port_read(port, &type, TB_CFG_PORT, 2, 1); if (res) return res; type &= 0xffffff; if (type == TB_TYPE_PORT) { struct tb_drom_entry_port *entry = (void *) header; if (header->len != sizeof(*entry)) { tb_sw_warn(sw, "port entry has size %#x (expected %#zx)\n", header->len, sizeof(struct tb_drom_entry_port)); return -EIO; } port->link_nr = entry->link_nr; if (entry->has_dual_link_port) port->dual_link_port = &port->sw->ports[entry->dual_link_port_nr]; } return 0; } /* * tb_drom_parse_entries - parse the linked list of drom entries * * Drom must have been copied to sw->drom. */ static int tb_drom_parse_entries(struct tb_switch *sw, size_t header_size) { struct tb_drom_header *header = (void *) sw->drom; u16 pos = header_size; u16 drom_size = header->data_len + TB_DROM_DATA_START; int res; while (pos < drom_size) { struct tb_drom_entry_header *entry = (void *) (sw->drom + pos); if (pos + 1 == drom_size || pos + entry->len > drom_size || !entry->len) { tb_sw_warn(sw, "DROM buffer overrun\n"); return -EIO; } switch (entry->type) { case TB_DROM_ENTRY_GENERIC: res = tb_drom_parse_entry_generic(sw, entry); break; case TB_DROM_ENTRY_PORT: res = tb_drom_parse_entry_port(sw, entry); break; } if (res) return res; pos += entry->len; } return 0; } /* * tb_drom_copy_efi - copy drom supplied by EFI to sw->drom if present */ static int tb_drom_copy_efi(struct tb_switch *sw, u16 *size) { struct device *dev = &sw->tb->nhi->pdev->dev; int len, res; len = device_property_count_u8(dev, "ThunderboltDROM"); if (len < 0 || len < sizeof(struct tb_drom_header)) return -EINVAL; sw->drom = kmalloc(len, GFP_KERNEL); if (!sw->drom) return -ENOMEM; res = device_property_read_u8_array(dev, "ThunderboltDROM", sw->drom, len); if (res) goto err; *size = ((struct tb_drom_header *)sw->drom)->data_len + TB_DROM_DATA_START; if (*size > len) goto err; return 0; err: kfree(sw->drom); sw->drom = NULL; return -EINVAL; } static int tb_drom_copy_nvm(struct tb_switch *sw, u16 *size) { u16 drom_offset; int ret; if (!sw->dma_port) return -ENODEV; ret = tb_eeprom_get_drom_offset(sw, &drom_offset); if (ret) return ret; if (!drom_offset) return -ENODEV; ret = dma_port_flash_read(sw->dma_port, drom_offset + 14, size, sizeof(*size)); if (ret) return ret; /* Size includes CRC8 + UID + CRC32 */ *size += 1 + 8 + 4; sw->drom = kzalloc(*size, GFP_KERNEL); if (!sw->drom) return -ENOMEM; ret = dma_port_flash_read(sw->dma_port, drom_offset, sw->drom, *size); if (ret) goto err_free; /* * Read UID from the minimal DROM because the one in NVM is just * a placeholder. */ tb_drom_read_uid_only(sw, &sw->uid); return 0; err_free: kfree(sw->drom); sw->drom = NULL; return ret; } static int usb4_copy_drom(struct tb_switch *sw, u16 *size) { int ret; ret = usb4_switch_drom_read(sw, 14, size, sizeof(*size)); if (ret) return ret; /* Size includes CRC8 + UID + CRC32 */ *size += 1 + 8 + 4; sw->drom = kzalloc(*size, GFP_KERNEL); if (!sw->drom) return -ENOMEM; ret = usb4_switch_drom_read(sw, 0, sw->drom, *size); if (ret) { kfree(sw->drom); sw->drom = NULL; } return ret; } static int tb_drom_bit_bang(struct tb_switch *sw, u16 *size) { int ret; ret = tb_eeprom_read_n(sw, 14, (u8 *)size, 2); if (ret) return ret; *size &= 0x3ff; *size += TB_DROM_DATA_START; tb_sw_dbg(sw, "reading DROM (length: %#x)\n", *size); if (*size < sizeof(struct tb_drom_header)) { tb_sw_warn(sw, "DROM too small, aborting\n"); return -EIO; } sw->drom = kzalloc(*size, GFP_KERNEL); if (!sw->drom) return -ENOMEM; ret = tb_eeprom_read_n(sw, 0, sw->drom, *size); if (ret) goto err; return 0; err: kfree(sw->drom); sw->drom = NULL; return ret; } static int tb_drom_parse_v1(struct tb_switch *sw) { const struct tb_drom_header *header = (const struct tb_drom_header *)sw->drom; u32 crc; crc = tb_crc8((u8 *) &header->uid, 8); if (crc != header->uid_crc8) { tb_sw_warn(sw, "DROM UID CRC8 mismatch (expected: %#x, got: %#x)\n", header->uid_crc8, crc); return -EIO; } if (!sw->uid) sw->uid = header->uid; sw->vendor = header->vendor_id; sw->device = header->model_id; crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len); if (crc != header->data_crc32) { tb_sw_warn(sw, "DROM data CRC32 mismatch (expected: %#x, got: %#x), continuing\n", header->data_crc32, crc); } return tb_drom_parse_entries(sw, TB_DROM_HEADER_SIZE); } static int usb4_drom_parse(struct tb_switch *sw) { const struct tb_drom_header *header = (const struct tb_drom_header *)sw->drom; u32 crc; crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len); if (crc != header->data_crc32) { tb_sw_warn(sw, "DROM data CRC32 mismatch (expected: %#x, got: %#x), continuing\n", header->data_crc32, crc); } return tb_drom_parse_entries(sw, USB4_DROM_HEADER_SIZE); } static int tb_drom_parse(struct tb_switch *sw, u16 size) { const struct tb_drom_header *header = (const void *)sw->drom; int ret; if (header->data_len + TB_DROM_DATA_START != size) { tb_sw_warn(sw, "DROM size mismatch\n"); ret = -EIO; goto err; } tb_sw_dbg(sw, "DROM version: %d\n", header->device_rom_revision); switch (header->device_rom_revision) { case 3: ret = usb4_drom_parse(sw); break; default: tb_sw_warn(sw, "DROM device_rom_revision %#x unknown\n", header->device_rom_revision); fallthrough; case 1: ret = tb_drom_parse_v1(sw); break; } if (ret) { tb_sw_warn(sw, "parsing DROM failed\n"); goto err; } return 0; err: kfree(sw->drom); sw->drom = NULL; return ret; } static int tb_drom_host_read(struct tb_switch *sw) { u16 size; if (tb_switch_is_usb4(sw)) { usb4_switch_read_uid(sw, &sw->uid); if (!usb4_copy_drom(sw, &size)) return tb_drom_parse(sw, size); } else { if (!tb_drom_copy_efi(sw, &size)) return tb_drom_parse(sw, size); if (!tb_drom_copy_nvm(sw, &size)) return tb_drom_parse(sw, size); tb_drom_read_uid_only(sw, &sw->uid); } return 0; } static int tb_drom_device_read(struct tb_switch *sw) { u16 size; int ret; if (tb_switch_is_usb4(sw)) { usb4_switch_read_uid(sw, &sw->uid); ret = usb4_copy_drom(sw, &size); } else { ret = tb_drom_bit_bang(sw, &size); } if (ret) return ret; return tb_drom_parse(sw, size); } /** * tb_drom_read() - Copy DROM to sw->drom and parse it * @sw: Router whose DROM to read and parse * * This function reads router DROM and if successful parses the entries and * populates the fields in @sw accordingly. Can be called for any router * generation. * * Returns %0 in case of success and negative errno otherwise. */ int tb_drom_read(struct tb_switch *sw) { if (sw->drom) return 0; if (!tb_route(sw)) return tb_drom_host_read(sw); return tb_drom_device_read(sw); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1