Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mika Westerberg | 3484 | 48.89% | 48 | 62.34% |
Andreas Noever | 3131 | 43.94% | 4 | 5.19% |
Robin Murphy | 124 | 1.74% | 1 | 1.30% |
Mario Limonciello | 124 | 1.74% | 3 | 3.90% |
Sanjay R Mehta | 121 | 1.70% | 2 | 2.60% |
Andy Shevchenko | 45 | 0.63% | 2 | 2.60% |
Jing Xiangfeng | 37 | 0.52% | 1 | 1.30% |
Himangi Saraogi | 12 | 0.17% | 2 | 2.60% |
Tom Rix | 9 | 0.13% | 1 | 1.30% |
Lukas Wunner | 8 | 0.11% | 2 | 2.60% |
Radion Mirchevsky | 6 | 0.08% | 1 | 1.30% |
Maxim Levitsky | 5 | 0.07% | 1 | 1.30% |
Lee Jones | 5 | 0.07% | 1 | 1.30% |
Knuth Posern | 4 | 0.06% | 1 | 1.30% |
Christophe Jaillet | 3 | 0.04% | 1 | 1.30% |
George D Sworo | 2 | 0.03% | 1 | 1.30% |
Azhar Shaikh | 2 | 0.03% | 1 | 1.30% |
Sachin Kamat | 2 | 0.03% | 2 | 2.60% |
Xavier Gnata | 1 | 0.01% | 1 | 1.30% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.30% |
Total | 7126 | 77 |
// SPDX-License-Identifier: GPL-2.0-only /* * Thunderbolt driver - NHI driver * * The NHI (native host interface) is the pci device that allows us to send and * receive frames from the thunderbolt bus. * * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> * Copyright (C) 2018, Intel Corporation */ #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/iommu.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/property.h> #include <linux/string_helpers.h> #include "nhi.h" #include "nhi_regs.h" #include "tb.h" #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") #define RING_FIRST_USABLE_HOPID 1 /* * Used with QUIRK_E2E to specify an unused HopID the Rx credits are * transferred. */ #define RING_E2E_RESERVED_HOPID RING_FIRST_USABLE_HOPID /* * Minimal number of vectors when we use MSI-X. Two for control channel * Rx/Tx and the rest four are for cross domain DMA paths. */ #define MSIX_MIN_VECS 6 #define MSIX_MAX_VECS 16 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ /* Host interface quirks */ #define QUIRK_AUTO_CLEAR_INT BIT(0) #define QUIRK_E2E BIT(1) static bool host_reset = true; module_param(host_reset, bool, 0444); MODULE_PARM_DESC(host_reset, "reset USBv2 host router (default: true)"); static int ring_interrupt_index(const struct tb_ring *ring) { int bit = ring->hop; if (!ring->is_tx) bit += ring->nhi->hop_count; return bit; } static void nhi_mask_interrupt(struct tb_nhi *nhi, int mask, int ring) { if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) { u32 val; val = ioread32(nhi->iobase + REG_RING_INTERRUPT_BASE + ring); iowrite32(val & ~mask, nhi->iobase + REG_RING_INTERRUPT_BASE + ring); } else { iowrite32(mask, nhi->iobase + REG_RING_INTERRUPT_MASK_CLEAR_BASE + ring); } } static void nhi_clear_interrupt(struct tb_nhi *nhi, int ring) { if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + ring); else iowrite32(~0, nhi->iobase + REG_RING_INT_CLEAR + ring); } /* * ring_interrupt_active() - activate/deactivate interrupts for a single ring * * ring->nhi->lock must be held. */ static void ring_interrupt_active(struct tb_ring *ring, bool active) { int index = ring_interrupt_index(ring) / 32 * 4; int reg = REG_RING_INTERRUPT_BASE + index; int interrupt_bit = ring_interrupt_index(ring) & 31; int mask = 1 << interrupt_bit; u32 old, new; if (ring->irq > 0) { u32 step, shift, ivr, misc; void __iomem *ivr_base; int auto_clear_bit; int index; if (ring->is_tx) index = ring->hop; else index = ring->hop + ring->nhi->hop_count; /* * Intel routers support a bit that isn't part of * the USB4 spec to ask the hardware to clear * interrupt status bits automatically since * we already know which interrupt was triggered. * * Other routers explicitly disable auto-clear * to prevent conditions that may occur where two * MSIX interrupts are simultaneously active and * reading the register clears both of them. */ misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR; else auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR; if (!(misc & auto_clear_bit)) iowrite32(misc | auto_clear_bit, ring->nhi->iobase + REG_DMA_MISC); ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; ivr = ioread32(ivr_base + step); ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); if (active) ivr |= ring->vector << shift; iowrite32(ivr, ivr_base + step); } old = ioread32(ring->nhi->iobase + reg); if (active) new = old | mask; else new = old & ~mask; dev_dbg(&ring->nhi->pdev->dev, "%s interrupt at register %#x bit %d (%#x -> %#x)\n", active ? "enabling" : "disabling", reg, interrupt_bit, old, new); if (new == old) dev_WARN(&ring->nhi->pdev->dev, "interrupt for %s %d is already %s\n", RING_TYPE(ring), ring->hop, active ? "enabled" : "disabled"); if (active) iowrite32(new, ring->nhi->iobase + reg); else nhi_mask_interrupt(ring->nhi, mask, index); } /* * nhi_disable_interrupts() - disable interrupts for all rings * * Use only during init and shutdown. */ static void nhi_disable_interrupts(struct tb_nhi *nhi) { int i = 0; /* disable interrupts */ for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) nhi_mask_interrupt(nhi, ~0, 4 * i); /* clear interrupt status bits */ for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) nhi_clear_interrupt(nhi, 4 * i); } /* ring helper methods */ static void __iomem *ring_desc_base(struct tb_ring *ring) { void __iomem *io = ring->nhi->iobase; io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; io += ring->hop * 16; return io; } static void __iomem *ring_options_base(struct tb_ring *ring) { void __iomem *io = ring->nhi->iobase; io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; io += ring->hop * 32; return io; } static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) { /* * The other 16-bits in the register is read-only and writes to it * are ignored by the hardware so we can save one ioread32() by * filling the read-only bits with zeroes. */ iowrite32(cons, ring_desc_base(ring) + 8); } static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) { /* See ring_iowrite_cons() above for explanation */ iowrite32(prod << 16, ring_desc_base(ring) + 8); } static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) { iowrite32(value, ring_desc_base(ring) + offset); } static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) { iowrite32(value, ring_desc_base(ring) + offset); iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); } static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) { iowrite32(value, ring_options_base(ring) + offset); } static bool ring_full(struct tb_ring *ring) { return ((ring->head + 1) % ring->size) == ring->tail; } static bool ring_empty(struct tb_ring *ring) { return ring->head == ring->tail; } /* * ring_write_descriptors() - post frames from ring->queue to the controller * * ring->lock is held. */ static void ring_write_descriptors(struct tb_ring *ring) { struct ring_frame *frame, *n; struct ring_desc *descriptor; list_for_each_entry_safe(frame, n, &ring->queue, list) { if (ring_full(ring)) break; list_move_tail(&frame->list, &ring->in_flight); descriptor = &ring->descriptors[ring->head]; descriptor->phys = frame->buffer_phy; descriptor->time = 0; descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; if (ring->is_tx) { descriptor->length = frame->size; descriptor->eof = frame->eof; descriptor->sof = frame->sof; } ring->head = (ring->head + 1) % ring->size; if (ring->is_tx) ring_iowrite_prod(ring, ring->head); else ring_iowrite_cons(ring, ring->head); } } /* * ring_work() - progress completed frames * * If the ring is shutting down then all frames are marked as canceled and * their callbacks are invoked. * * Otherwise we collect all completed frame from the ring buffer, write new * frame to the ring buffer and invoke the callbacks for the completed frames. */ static void ring_work(struct work_struct *work) { struct tb_ring *ring = container_of(work, typeof(*ring), work); struct ring_frame *frame; bool canceled = false; unsigned long flags; LIST_HEAD(done); spin_lock_irqsave(&ring->lock, flags); if (!ring->running) { /* Move all frames to done and mark them as canceled. */ list_splice_tail_init(&ring->in_flight, &done); list_splice_tail_init(&ring->queue, &done); canceled = true; goto invoke_callback; } while (!ring_empty(ring)) { if (!(ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED)) break; frame = list_first_entry(&ring->in_flight, typeof(*frame), list); list_move_tail(&frame->list, &done); if (!ring->is_tx) { frame->size = ring->descriptors[ring->tail].length; frame->eof = ring->descriptors[ring->tail].eof; frame->sof = ring->descriptors[ring->tail].sof; frame->flags = ring->descriptors[ring->tail].flags; } ring->tail = (ring->tail + 1) % ring->size; } ring_write_descriptors(ring); invoke_callback: /* allow callbacks to schedule new work */ spin_unlock_irqrestore(&ring->lock, flags); while (!list_empty(&done)) { frame = list_first_entry(&done, typeof(*frame), list); /* * The callback may reenqueue or delete frame. * Do not hold on to it. */ list_del_init(&frame->list); if (frame->callback) frame->callback(ring, frame, canceled); } } int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) { unsigned long flags; int ret = 0; spin_lock_irqsave(&ring->lock, flags); if (ring->running) { list_add_tail(&frame->list, &ring->queue); ring_write_descriptors(ring); } else { ret = -ESHUTDOWN; } spin_unlock_irqrestore(&ring->lock, flags); return ret; } EXPORT_SYMBOL_GPL(__tb_ring_enqueue); /** * tb_ring_poll() - Poll one completed frame from the ring * @ring: Ring to poll * * This function can be called when @start_poll callback of the @ring * has been called. It will read one completed frame from the ring and * return it to the caller. Returns %NULL if there is no more completed * frames. */ struct ring_frame *tb_ring_poll(struct tb_ring *ring) { struct ring_frame *frame = NULL; unsigned long flags; spin_lock_irqsave(&ring->lock, flags); if (!ring->running) goto unlock; if (ring_empty(ring)) goto unlock; if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { frame = list_first_entry(&ring->in_flight, typeof(*frame), list); list_del_init(&frame->list); if (!ring->is_tx) { frame->size = ring->descriptors[ring->tail].length; frame->eof = ring->descriptors[ring->tail].eof; frame->sof = ring->descriptors[ring->tail].sof; frame->flags = ring->descriptors[ring->tail].flags; } ring->tail = (ring->tail + 1) % ring->size; } unlock: spin_unlock_irqrestore(&ring->lock, flags); return frame; } EXPORT_SYMBOL_GPL(tb_ring_poll); static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) { int idx = ring_interrupt_index(ring); int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; int bit = idx % 32; u32 val; val = ioread32(ring->nhi->iobase + reg); if (mask) val &= ~BIT(bit); else val |= BIT(bit); iowrite32(val, ring->nhi->iobase + reg); } /* Both @nhi->lock and @ring->lock should be held */ static void __ring_interrupt(struct tb_ring *ring) { if (!ring->running) return; if (ring->start_poll) { __ring_interrupt_mask(ring, true); ring->start_poll(ring->poll_data); } else { schedule_work(&ring->work); } } /** * tb_ring_poll_complete() - Re-start interrupt for the ring * @ring: Ring to re-start the interrupt * * This will re-start (unmask) the ring interrupt once the user is done * with polling. */ void tb_ring_poll_complete(struct tb_ring *ring) { unsigned long flags; spin_lock_irqsave(&ring->nhi->lock, flags); spin_lock(&ring->lock); if (ring->start_poll) __ring_interrupt_mask(ring, false); spin_unlock(&ring->lock); spin_unlock_irqrestore(&ring->nhi->lock, flags); } EXPORT_SYMBOL_GPL(tb_ring_poll_complete); static void ring_clear_msix(const struct tb_ring *ring) { int bit; if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) return; bit = ring_interrupt_index(ring) & 31; if (ring->is_tx) iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR); else iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR + 4 * (ring->nhi->hop_count / 32)); } static irqreturn_t ring_msix(int irq, void *data) { struct tb_ring *ring = data; spin_lock(&ring->nhi->lock); ring_clear_msix(ring); spin_lock(&ring->lock); __ring_interrupt(ring); spin_unlock(&ring->lock); spin_unlock(&ring->nhi->lock); return IRQ_HANDLED; } static int ring_request_msix(struct tb_ring *ring, bool no_suspend) { struct tb_nhi *nhi = ring->nhi; unsigned long irqflags; int ret; if (!nhi->pdev->msix_enabled) return 0; ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); if (ret < 0) return ret; ring->vector = ret; ret = pci_irq_vector(ring->nhi->pdev, ring->vector); if (ret < 0) goto err_ida_remove; ring->irq = ret; irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); if (ret) goto err_ida_remove; return 0; err_ida_remove: ida_simple_remove(&nhi->msix_ida, ring->vector); return ret; } static void ring_release_msix(struct tb_ring *ring) { if (ring->irq <= 0) return; free_irq(ring->irq, ring); ida_simple_remove(&ring->nhi->msix_ida, ring->vector); ring->vector = 0; ring->irq = 0; } static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) { unsigned int start_hop = RING_FIRST_USABLE_HOPID; int ret = 0; if (nhi->quirks & QUIRK_E2E) { start_hop = RING_FIRST_USABLE_HOPID + 1; if (ring->flags & RING_FLAG_E2E && !ring->is_tx) { dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n", ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID); ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID; } } spin_lock_irq(&nhi->lock); if (ring->hop < 0) { unsigned int i; /* * Automatically allocate HopID from the non-reserved * range 1 .. hop_count - 1. */ for (i = start_hop; i < nhi->hop_count; i++) { if (ring->is_tx) { if (!nhi->tx_rings[i]) { ring->hop = i; break; } } else { if (!nhi->rx_rings[i]) { ring->hop = i; break; } } } } if (ring->hop > 0 && ring->hop < start_hop) { dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); ret = -EINVAL; goto err_unlock; } if (ring->hop < 0 || ring->hop >= nhi->hop_count) { dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); ret = -EINVAL; goto err_unlock; } if (ring->is_tx && nhi->tx_rings[ring->hop]) { dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", ring->hop); ret = -EBUSY; goto err_unlock; } if (!ring->is_tx && nhi->rx_rings[ring->hop]) { dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", ring->hop); ret = -EBUSY; goto err_unlock; } if (ring->is_tx) nhi->tx_rings[ring->hop] = ring; else nhi->rx_rings[ring->hop] = ring; err_unlock: spin_unlock_irq(&nhi->lock); return ret; } static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, bool transmit, unsigned int flags, int e2e_tx_hop, u16 sof_mask, u16 eof_mask, void (*start_poll)(void *), void *poll_data) { struct tb_ring *ring = NULL; dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", transmit ? "TX" : "RX", hop, size); ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) return NULL; spin_lock_init(&ring->lock); INIT_LIST_HEAD(&ring->queue); INIT_LIST_HEAD(&ring->in_flight); INIT_WORK(&ring->work, ring_work); ring->nhi = nhi; ring->hop = hop; ring->is_tx = transmit; ring->size = size; ring->flags = flags; ring->e2e_tx_hop = e2e_tx_hop; ring->sof_mask = sof_mask; ring->eof_mask = eof_mask; ring->head = 0; ring->tail = 0; ring->running = false; ring->start_poll = start_poll; ring->poll_data = poll_data; ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, size * sizeof(*ring->descriptors), &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); if (!ring->descriptors) goto err_free_ring; if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) goto err_free_descs; if (nhi_alloc_hop(nhi, ring)) goto err_release_msix; return ring; err_release_msix: ring_release_msix(ring); err_free_descs: dma_free_coherent(&ring->nhi->pdev->dev, ring->size * sizeof(*ring->descriptors), ring->descriptors, ring->descriptors_dma); err_free_ring: kfree(ring); return NULL; } /** * tb_ring_alloc_tx() - Allocate DMA ring for transmit * @nhi: Pointer to the NHI the ring is to be allocated * @hop: HopID (ring) to allocate * @size: Number of entries in the ring * @flags: Flags for the ring */ struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, unsigned int flags) { return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL); } EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); /** * tb_ring_alloc_rx() - Allocate DMA ring for receive * @nhi: Pointer to the NHI the ring is to be allocated * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. * @size: Number of entries in the ring * @flags: Flags for the ring * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags * @sof_mask: Mask of PDF values that start a frame * @eof_mask: Mask of PDF values that end a frame * @start_poll: If not %NULL the ring will call this function when an * interrupt is triggered and masked, instead of callback * in each Rx frame. * @poll_data: Optional data passed to @start_poll */ struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, unsigned int flags, int e2e_tx_hop, u16 sof_mask, u16 eof_mask, void (*start_poll)(void *), void *poll_data) { return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask, start_poll, poll_data); } EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); /** * tb_ring_start() - enable a ring * @ring: Ring to start * * Must not be invoked in parallel with tb_ring_stop(). */ void tb_ring_start(struct tb_ring *ring) { u16 frame_size; u32 flags; spin_lock_irq(&ring->nhi->lock); spin_lock(&ring->lock); if (ring->nhi->going_away) goto err; if (ring->running) { dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); goto err; } dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", RING_TYPE(ring), ring->hop); if (ring->flags & RING_FLAG_FRAME) { /* Means 4096 */ frame_size = 0; flags = RING_FLAG_ENABLE; } else { frame_size = TB_FRAME_SIZE; flags = RING_FLAG_ENABLE | RING_FLAG_RAW; } ring_iowrite64desc(ring, ring->descriptors_dma, 0); if (ring->is_tx) { ring_iowrite32desc(ring, ring->size, 12); ring_iowrite32options(ring, 0, 4); /* time releated ? */ ring_iowrite32options(ring, flags, 0); } else { u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); ring_iowrite32options(ring, sof_eof_mask, 4); ring_iowrite32options(ring, flags, 0); } /* * Now that the ring valid bit is set we can configure E2E if * enabled for the ring. */ if (ring->flags & RING_FLAG_E2E) { if (!ring->is_tx) { u32 hop; hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT; hop &= REG_RX_OPTIONS_E2E_HOP_MASK; flags |= hop; dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d with TX HopID %d\n", RING_TYPE(ring), ring->hop, ring->e2e_tx_hop); } else { dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n", RING_TYPE(ring), ring->hop); } flags |= RING_FLAG_E2E_FLOW_CONTROL; ring_iowrite32options(ring, flags, 0); } ring_interrupt_active(ring, true); ring->running = true; err: spin_unlock(&ring->lock); spin_unlock_irq(&ring->nhi->lock); } EXPORT_SYMBOL_GPL(tb_ring_start); /** * tb_ring_stop() - shutdown a ring * @ring: Ring to stop * * Must not be invoked from a callback. * * This method will disable the ring. Further calls to * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been * called. * * All enqueued frames will be canceled and their callbacks will be executed * with frame->canceled set to true (on the callback thread). This method * returns only after all callback invocations have finished. */ void tb_ring_stop(struct tb_ring *ring) { spin_lock_irq(&ring->nhi->lock); spin_lock(&ring->lock); dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", RING_TYPE(ring), ring->hop); if (ring->nhi->going_away) goto err; if (!ring->running) { dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", RING_TYPE(ring), ring->hop); goto err; } ring_interrupt_active(ring, false); ring_iowrite32options(ring, 0, 0); ring_iowrite64desc(ring, 0, 0); ring_iowrite32desc(ring, 0, 8); ring_iowrite32desc(ring, 0, 12); ring->head = 0; ring->tail = 0; ring->running = false; err: spin_unlock(&ring->lock); spin_unlock_irq(&ring->nhi->lock); /* * schedule ring->work to invoke callbacks on all remaining frames. */ schedule_work(&ring->work); flush_work(&ring->work); } EXPORT_SYMBOL_GPL(tb_ring_stop); /* * tb_ring_free() - free ring * * When this method returns all invocations of ring->callback will have * finished. * * Ring must be stopped. * * Must NOT be called from ring_frame->callback! */ void tb_ring_free(struct tb_ring *ring) { spin_lock_irq(&ring->nhi->lock); /* * Dissociate the ring from the NHI. This also ensures that * nhi_interrupt_work cannot reschedule ring->work. */ if (ring->is_tx) ring->nhi->tx_rings[ring->hop] = NULL; else ring->nhi->rx_rings[ring->hop] = NULL; if (ring->running) { dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", RING_TYPE(ring), ring->hop); } spin_unlock_irq(&ring->nhi->lock); ring_release_msix(ring); dma_free_coherent(&ring->nhi->pdev->dev, ring->size * sizeof(*ring->descriptors), ring->descriptors, ring->descriptors_dma); ring->descriptors = NULL; ring->descriptors_dma = 0; dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), ring->hop); /* * ring->work can no longer be scheduled (it is scheduled only * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it * to finish before freeing the ring. */ flush_work(&ring->work); kfree(ring); } EXPORT_SYMBOL_GPL(tb_ring_free); /** * nhi_mailbox_cmd() - Send a command through NHI mailbox * @nhi: Pointer to the NHI structure * @cmd: Command to send * @data: Data to be send with the command * * Sends mailbox command to the firmware running on NHI. Returns %0 in * case of success and negative errno in case of failure. */ int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) { ktime_t timeout; u32 val; iowrite32(data, nhi->iobase + REG_INMAIL_DATA); val = ioread32(nhi->iobase + REG_INMAIL_CMD); val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); val |= REG_INMAIL_OP_REQUEST | cmd; iowrite32(val, nhi->iobase + REG_INMAIL_CMD); timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); do { val = ioread32(nhi->iobase + REG_INMAIL_CMD); if (!(val & REG_INMAIL_OP_REQUEST)) break; usleep_range(10, 20); } while (ktime_before(ktime_get(), timeout)); if (val & REG_INMAIL_OP_REQUEST) return -ETIMEDOUT; if (val & REG_INMAIL_ERROR) return -EIO; return 0; } /** * nhi_mailbox_mode() - Return current firmware operation mode * @nhi: Pointer to the NHI structure * * The function reads current firmware operation mode using NHI mailbox * registers and returns it to the caller. */ enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) { u32 val; val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); val &= REG_OUTMAIL_CMD_OPMODE_MASK; val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; return (enum nhi_fw_mode)val; } static void nhi_interrupt_work(struct work_struct *work) { struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); int value = 0; /* Suppress uninitialized usage warning. */ int bit; int hop = -1; int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ struct tb_ring *ring; spin_lock_irq(&nhi->lock); /* * Starting at REG_RING_NOTIFY_BASE there are three status bitfields * (TX, RX, RX overflow). We iterate over the bits and read a new * dwords as required. The registers are cleared on read. */ for (bit = 0; bit < 3 * nhi->hop_count; bit++) { if (bit % 32 == 0) value = ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * (bit / 32)); if (++hop == nhi->hop_count) { hop = 0; type++; } if ((value & (1 << (bit % 32))) == 0) continue; if (type == 2) { dev_warn(&nhi->pdev->dev, "RX overflow for ring %d\n", hop); continue; } if (type == 0) ring = nhi->tx_rings[hop]; else ring = nhi->rx_rings[hop]; if (ring == NULL) { dev_warn(&nhi->pdev->dev, "got interrupt for inactive %s ring %d\n", type ? "RX" : "TX", hop); continue; } spin_lock(&ring->lock); __ring_interrupt(ring); spin_unlock(&ring->lock); } spin_unlock_irq(&nhi->lock); } static irqreturn_t nhi_msi(int irq, void *data) { struct tb_nhi *nhi = data; schedule_work(&nhi->interrupt_work); return IRQ_HANDLED; } static int __nhi_suspend_noirq(struct device *dev, bool wakeup) { struct pci_dev *pdev = to_pci_dev(dev); struct tb *tb = pci_get_drvdata(pdev); struct tb_nhi *nhi = tb->nhi; int ret; ret = tb_domain_suspend_noirq(tb); if (ret) return ret; if (nhi->ops && nhi->ops->suspend_noirq) { ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); if (ret) return ret; } return 0; } static int nhi_suspend_noirq(struct device *dev) { return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); } static int nhi_freeze_noirq(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct tb *tb = pci_get_drvdata(pdev); return tb_domain_freeze_noirq(tb); } static int nhi_thaw_noirq(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct tb *tb = pci_get_drvdata(pdev); return tb_domain_thaw_noirq(tb); } static bool nhi_wake_supported(struct pci_dev *pdev) { u8 val; /* * If power rails are sustainable for wakeup from S4 this * property is set by the BIOS. */ if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) return !!val; return true; } static int nhi_poweroff_noirq(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); bool wakeup; wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); return __nhi_suspend_noirq(dev, wakeup); } static void nhi_enable_int_throttling(struct tb_nhi *nhi) { /* Throttling is specified in 256ns increments */ u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); unsigned int i; /* * Configure interrupt throttling for all vectors even if we * only use few. */ for (i = 0; i < MSIX_MAX_VECS; i++) { u32 reg = REG_INT_THROTTLING_RATE + i * 4; iowrite32(throttle, nhi->iobase + reg); } } static int nhi_resume_noirq(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct tb *tb = pci_get_drvdata(pdev); struct tb_nhi *nhi = tb->nhi; int ret; /* * Check that the device is still there. It may be that the user * unplugged last device which causes the host controller to go * away on PCs. */ if (!pci_device_is_present(pdev)) { nhi->going_away = true; } else { if (nhi->ops && nhi->ops->resume_noirq) { ret = nhi->ops->resume_noirq(nhi); if (ret) return ret; } nhi_enable_int_throttling(tb->nhi); } return tb_domain_resume_noirq(tb); } static int nhi_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct tb *tb = pci_get_drvdata(pdev); return tb_domain_suspend(tb); } static void nhi_complete(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct tb *tb = pci_get_drvdata(pdev); /* * If we were runtime suspended when system suspend started, * schedule runtime resume now. It should bring the domain back * to functional state. */ if (pm_runtime_suspended(&pdev->dev)) pm_runtime_resume(&pdev->dev); else tb_domain_complete(tb); } static int nhi_runtime_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct tb *tb = pci_get_drvdata(pdev); struct tb_nhi *nhi = tb->nhi; int ret; ret = tb_domain_runtime_suspend(tb); if (ret) return ret; if (nhi->ops && nhi->ops->runtime_suspend) { ret = nhi->ops->runtime_suspend(tb->nhi); if (ret) return ret; } return 0; } static int nhi_runtime_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct tb *tb = pci_get_drvdata(pdev); struct tb_nhi *nhi = tb->nhi; int ret; if (nhi->ops && nhi->ops->runtime_resume) { ret = nhi->ops->runtime_resume(nhi); if (ret) return ret; } nhi_enable_int_throttling(nhi); return tb_domain_runtime_resume(tb); } static void nhi_shutdown(struct tb_nhi *nhi) { int i; dev_dbg(&nhi->pdev->dev, "shutdown\n"); for (i = 0; i < nhi->hop_count; i++) { if (nhi->tx_rings[i]) dev_WARN(&nhi->pdev->dev, "TX ring %d is still active\n", i); if (nhi->rx_rings[i]) dev_WARN(&nhi->pdev->dev, "RX ring %d is still active\n", i); } nhi_disable_interrupts(nhi); /* * We have to release the irq before calling flush_work. Otherwise an * already executing IRQ handler could call schedule_work again. */ if (!nhi->pdev->msix_enabled) { devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); flush_work(&nhi->interrupt_work); } ida_destroy(&nhi->msix_ida); if (nhi->ops && nhi->ops->shutdown) nhi->ops->shutdown(nhi); } static void nhi_check_quirks(struct tb_nhi *nhi) { if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) { /* * Intel hardware supports auto clear of the interrupt * status register right after interrupt is being * issued. */ nhi->quirks |= QUIRK_AUTO_CLEAR_INT; switch (nhi->pdev->device) { case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: /* * Falcon Ridge controller needs the end-to-end * flow control workaround to avoid losing Rx * packets when RING_FLAG_E2E is set. */ nhi->quirks |= QUIRK_E2E; break; } } } static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data) { if (!pdev->external_facing || !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION)) return 0; *(bool *)data = true; return 1; /* Stop walking */ } static void nhi_check_iommu(struct tb_nhi *nhi) { struct pci_bus *bus = nhi->pdev->bus; bool port_ok = false; /* * Ideally what we'd do here is grab every PCI device that * represents a tunnelling adapter for this NHI and check their * status directly, but unfortunately USB4 seems to make it * obnoxiously difficult to reliably make any correlation. * * So for now we'll have to bodge it... Hoping that the system * is at least sane enough that an adapter is in the same PCI * segment as its NHI, if we can find *something* on that segment * which meets the requirements for Kernel DMA Protection, we'll * take that to imply that firmware is aware and has (hopefully) * done the right thing in general. We need to know that the PCI * layer has seen the ExternalFacingPort property which will then * inform the IOMMU layer to enforce the complete "untrusted DMA" * flow, but also that the IOMMU driver itself can be trusted not * to have been subverted by a pre-boot DMA attack. */ while (bus->parent) bus = bus->parent; pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok); nhi->iommu_dma_protection = port_ok; dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n", str_enabled_disabled(port_ok)); } static void nhi_reset(struct tb_nhi *nhi) { ktime_t timeout; u32 val; val = ioread32(nhi->iobase + REG_CAPS); /* Reset only v2 and later routers */ if (FIELD_GET(REG_CAPS_VERSION_MASK, val) < REG_CAPS_VERSION_2) return; if (!host_reset) { dev_dbg(&nhi->pdev->dev, "skipping host router reset\n"); return; } iowrite32(REG_RESET_HRR, nhi->iobase + REG_RESET); msleep(100); timeout = ktime_add_ms(ktime_get(), 500); do { val = ioread32(nhi->iobase + REG_RESET); if (!(val & REG_RESET_HRR)) { dev_warn(&nhi->pdev->dev, "host router reset successful\n"); return; } usleep_range(10, 20); } while (ktime_before(ktime_get(), timeout)); dev_warn(&nhi->pdev->dev, "timeout resetting host router\n"); } static int nhi_init_msi(struct tb_nhi *nhi) { struct pci_dev *pdev = nhi->pdev; struct device *dev = &pdev->dev; int res, irq, nvec; /* In case someone left them on. */ nhi_disable_interrupts(nhi); nhi_enable_int_throttling(nhi); ida_init(&nhi->msix_ida); /* * The NHI has 16 MSI-X vectors or a single MSI. We first try to * get all MSI-X vectors and if we succeed, each ring will have * one MSI-X. If for some reason that does not work out, we * fallback to a single MSI. */ nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, PCI_IRQ_MSIX); if (nvec < 0) { nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); if (nvec < 0) return nvec; INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); irq = pci_irq_vector(nhi->pdev, 0); if (irq < 0) return irq; res = devm_request_irq(&pdev->dev, irq, nhi_msi, IRQF_NO_SUSPEND, "thunderbolt", nhi); if (res) return dev_err_probe(dev, res, "request_irq failed, aborting\n"); } return 0; } static bool nhi_imr_valid(struct pci_dev *pdev) { u8 val; if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) return !!val; return true; } static struct tb *nhi_select_cm(struct tb_nhi *nhi) { struct tb *tb; /* * USB4 case is simple. If we got control of any of the * capabilities, we use software CM. */ if (tb_acpi_is_native()) return tb_probe(nhi); /* * Either firmware based CM is running (we did not get control * from the firmware) or this is pre-USB4 PC so try first * firmware CM and then fallback to software CM. */ tb = icm_probe(nhi); if (!tb) tb = tb_probe(nhi); return tb; } static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct device *dev = &pdev->dev; struct tb_nhi *nhi; struct tb *tb; int res; if (!nhi_imr_valid(pdev)) return dev_err_probe(dev, -ENODEV, "firmware image not valid, aborting\n"); res = pcim_enable_device(pdev); if (res) return dev_err_probe(dev, res, "cannot enable PCI device, aborting\n"); res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); if (res) return dev_err_probe(dev, res, "cannot obtain PCI resources, aborting\n"); nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); if (!nhi) return -ENOMEM; nhi->pdev = pdev; nhi->ops = (const struct tb_nhi_ops *)id->driver_data; /* cannot fail - table is allocated in pcim_iomap_regions */ nhi->iobase = pcim_iomap_table(pdev)[0]; nhi->hop_count = ioread32(nhi->iobase + REG_CAPS) & 0x3ff; dev_dbg(dev, "total paths: %d\n", nhi->hop_count); nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, sizeof(*nhi->tx_rings), GFP_KERNEL); nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, sizeof(*nhi->rx_rings), GFP_KERNEL); if (!nhi->tx_rings || !nhi->rx_rings) return -ENOMEM; nhi_check_quirks(nhi); nhi_check_iommu(nhi); nhi_reset(nhi); res = nhi_init_msi(nhi); if (res) return dev_err_probe(dev, res, "cannot enable MSI, aborting\n"); spin_lock_init(&nhi->lock); res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (res) return dev_err_probe(dev, res, "failed to set DMA mask\n"); pci_set_master(pdev); if (nhi->ops && nhi->ops->init) { res = nhi->ops->init(nhi); if (res) return res; } tb = nhi_select_cm(nhi); if (!tb) return dev_err_probe(dev, -ENODEV, "failed to determine connection manager, aborting\n"); dev_dbg(dev, "NHI initialized, starting thunderbolt\n"); res = tb_domain_add(tb); if (res) { /* * At this point the RX/TX rings might already have been * activated. Do a proper shutdown. */ tb_domain_put(tb); nhi_shutdown(nhi); return res; } pci_set_drvdata(pdev, tb); device_wakeup_enable(&pdev->dev); pm_runtime_allow(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; } static void nhi_remove(struct pci_dev *pdev) { struct tb *tb = pci_get_drvdata(pdev); struct tb_nhi *nhi = tb->nhi; pm_runtime_get_sync(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); pm_runtime_forbid(&pdev->dev); tb_domain_remove(tb); nhi_shutdown(nhi); } /* * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable * the tunnels asap. A corresponding pci quirk blocks the downstream bridges * resume_noirq until we are done. */ static const struct dev_pm_ops nhi_pm_ops = { .suspend_noirq = nhi_suspend_noirq, .resume_noirq = nhi_resume_noirq, .freeze_noirq = nhi_freeze_noirq, /* * we just disable hotplug, the * pci-tunnels stay alive. */ .thaw_noirq = nhi_thaw_noirq, .restore_noirq = nhi_resume_noirq, .suspend = nhi_suspend, .poweroff_noirq = nhi_poweroff_noirq, .poweroff = nhi_suspend, .complete = nhi_complete, .runtime_suspend = nhi_runtime_suspend, .runtime_resume = nhi_runtime_resume, }; static struct pci_device_id nhi_ids[] = { /* * We have to specify class, the TB bridges use the same device and * vendor (sub)id on gen 1 and gen 2 controllers. */ { .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, .vendor = PCI_VENDOR_ID_INTEL, .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, .subvendor = 0x2222, .subdevice = 0x1111, }, { .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, .vendor = PCI_VENDOR_ID_INTEL, .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, .subvendor = 0x2222, .subdevice = 0x1111, }, { .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, .vendor = PCI_VENDOR_ID_INTEL, .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, .vendor = PCI_VENDOR_ID_INTEL, .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, /* Thunderbolt 3 */ { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, /* Thunderbolt 4 */ { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_M_NHI0), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI0), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI1), .driver_data = (kernel_ulong_t)&icl_nhi_ops }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_80G_NHI) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_40G_NHI) }, /* Any USB4 compliant host */ { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) }, { 0,} }; MODULE_DEVICE_TABLE(pci, nhi_ids); MODULE_DESCRIPTION("Thunderbolt/USB4 core driver"); MODULE_LICENSE("GPL"); static struct pci_driver nhi_driver = { .name = "thunderbolt", .id_table = nhi_ids, .probe = nhi_probe, .remove = nhi_remove, .shutdown = nhi_remove, .driver.pm = &nhi_pm_ops, }; static int __init nhi_init(void) { int ret; ret = tb_domain_init(); if (ret) return ret; ret = pci_register_driver(&nhi_driver); if (ret) tb_domain_exit(); return ret; } static void __exit nhi_unload(void) { pci_unregister_driver(&nhi_driver); tb_domain_exit(); } rootfs_initcall(nhi_init); module_exit(nhi_unload);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1