Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mika Westerberg | 994 | 43.71% | 16 | 47.06% |
Szuying Chen | 916 | 40.28% | 4 | 11.76% |
Kranthi Kuntala | 180 | 7.92% | 1 | 2.94% |
Andreas Noever | 105 | 4.62% | 6 | 17.65% |
Mathias Nyman | 39 | 1.72% | 1 | 2.94% |
Rajmohan Mani | 20 | 0.88% | 1 | 2.94% |
Gil Fine | 10 | 0.44% | 2 | 5.88% |
Mario Limonciello | 6 | 0.26% | 1 | 2.94% |
Sachin Kamat | 3 | 0.13% | 1 | 2.94% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 2.94% |
Total | 2274 | 34 |
// SPDX-License-Identifier: GPL-2.0 /* * NVM helpers * * Copyright (C) 2020, Intel Corporation * Author: Mika Westerberg <mika.westerberg@linux.intel.com> */ #include <linux/idr.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include "tb.h" #define NVM_MIN_SIZE SZ_32K #define NVM_MAX_SIZE SZ_1M #define NVM_DATA_DWORDS 16 /* Intel specific NVM offsets */ #define INTEL_NVM_DEVID 0x05 #define INTEL_NVM_VERSION 0x08 #define INTEL_NVM_CSS 0x10 #define INTEL_NVM_FLASH_SIZE 0x45 /* ASMedia specific NVM offsets */ #define ASMEDIA_NVM_DATE 0x1c #define ASMEDIA_NVM_VERSION 0x28 static DEFINE_IDA(nvm_ida); /** * struct tb_nvm_vendor_ops - Vendor specific NVM operations * @read_version: Reads out NVM version from the flash * @validate: Validates the NVM image before update (optional) * @write_headers: Writes headers before the rest of the image (optional) */ struct tb_nvm_vendor_ops { int (*read_version)(struct tb_nvm *nvm); int (*validate)(struct tb_nvm *nvm); int (*write_headers)(struct tb_nvm *nvm); }; /** * struct tb_nvm_vendor - Vendor to &struct tb_nvm_vendor_ops mapping * @vendor: Vendor ID * @vops: Vendor specific NVM operations * * Maps vendor ID to NVM vendor operations. If there is no mapping then * NVM firmware upgrade is disabled for the device. */ struct tb_nvm_vendor { u16 vendor; const struct tb_nvm_vendor_ops *vops; }; static int intel_switch_nvm_version(struct tb_nvm *nvm) { struct tb_switch *sw = tb_to_switch(nvm->dev); u32 val, nvm_size, hdr_size; int ret; /* * If the switch is in safe-mode the only accessible portion of * the NVM is the non-active one where userspace is expected to * write new functional NVM. */ if (sw->safe_mode) return 0; ret = tb_switch_nvm_read(sw, INTEL_NVM_FLASH_SIZE, &val, sizeof(val)); if (ret) return ret; hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; nvm_size = (SZ_1M << (val & 7)) / 8; nvm_size = (nvm_size - hdr_size) / 2; ret = tb_switch_nvm_read(sw, INTEL_NVM_VERSION, &val, sizeof(val)); if (ret) return ret; nvm->major = (val >> 16) & 0xff; nvm->minor = (val >> 8) & 0xff; nvm->active_size = nvm_size; return 0; } static int intel_switch_nvm_validate(struct tb_nvm *nvm) { struct tb_switch *sw = tb_to_switch(nvm->dev); unsigned int image_size, hdr_size; u16 ds_size, device_id; u8 *buf = nvm->buf; image_size = nvm->buf_data_size; /* * FARB pointer must point inside the image and must at least * contain parts of the digital section we will be reading here. */ hdr_size = (*(u32 *)buf) & 0xffffff; if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size) return -EINVAL; /* Digital section start should be aligned to 4k page */ if (!IS_ALIGNED(hdr_size, SZ_4K)) return -EINVAL; /* * Read digital section size and check that it also fits inside * the image. */ ds_size = *(u16 *)(buf + hdr_size); if (ds_size >= image_size) return -EINVAL; if (sw->safe_mode) return 0; /* * Make sure the device ID in the image matches the one * we read from the switch config space. */ device_id = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID); if (device_id != sw->config.device_id) return -EINVAL; /* Skip headers in the image */ nvm->buf_data_start = buf + hdr_size; nvm->buf_data_size = image_size - hdr_size; return 0; } static int intel_switch_nvm_write_headers(struct tb_nvm *nvm) { struct tb_switch *sw = tb_to_switch(nvm->dev); if (sw->generation < 3) { int ret; /* Write CSS headers first */ ret = dma_port_flash_write(sw->dma_port, DMA_PORT_CSS_ADDRESS, nvm->buf + INTEL_NVM_CSS, DMA_PORT_CSS_MAX_SIZE); if (ret) return ret; } return 0; } static const struct tb_nvm_vendor_ops intel_switch_nvm_ops = { .read_version = intel_switch_nvm_version, .validate = intel_switch_nvm_validate, .write_headers = intel_switch_nvm_write_headers, }; static int asmedia_switch_nvm_version(struct tb_nvm *nvm) { struct tb_switch *sw = tb_to_switch(nvm->dev); u32 val; int ret; ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_VERSION, &val, sizeof(val)); if (ret) return ret; nvm->major = (val << 16) & 0xff0000; nvm->major |= val & 0x00ff00; nvm->major |= (val >> 16) & 0x0000ff; ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_DATE, &val, sizeof(val)); if (ret) return ret; nvm->minor = (val << 16) & 0xff0000; nvm->minor |= val & 0x00ff00; nvm->minor |= (val >> 16) & 0x0000ff; /* ASMedia NVM size is fixed to 512k */ nvm->active_size = SZ_512K; return 0; } static const struct tb_nvm_vendor_ops asmedia_switch_nvm_ops = { .read_version = asmedia_switch_nvm_version, }; /* Router vendor NVM support table */ static const struct tb_nvm_vendor switch_nvm_vendors[] = { { 0x174c, &asmedia_switch_nvm_ops }, { PCI_VENDOR_ID_INTEL, &intel_switch_nvm_ops }, { 0x8087, &intel_switch_nvm_ops }, }; static int intel_retimer_nvm_version(struct tb_nvm *nvm) { struct tb_retimer *rt = tb_to_retimer(nvm->dev); u32 val, nvm_size; int ret; ret = tb_retimer_nvm_read(rt, INTEL_NVM_VERSION, &val, sizeof(val)); if (ret) return ret; nvm->major = (val >> 16) & 0xff; nvm->minor = (val >> 8) & 0xff; ret = tb_retimer_nvm_read(rt, INTEL_NVM_FLASH_SIZE, &val, sizeof(val)); if (ret) return ret; nvm_size = (SZ_1M << (val & 7)) / 8; nvm_size = (nvm_size - SZ_16K) / 2; nvm->active_size = nvm_size; return 0; } static int intel_retimer_nvm_validate(struct tb_nvm *nvm) { struct tb_retimer *rt = tb_to_retimer(nvm->dev); unsigned int image_size, hdr_size; u8 *buf = nvm->buf; u16 ds_size, device; image_size = nvm->buf_data_size; /* * FARB pointer must point inside the image and must at least * contain parts of the digital section we will be reading here. */ hdr_size = (*(u32 *)buf) & 0xffffff; if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size) return -EINVAL; /* Digital section start should be aligned to 4k page */ if (!IS_ALIGNED(hdr_size, SZ_4K)) return -EINVAL; /* * Read digital section size and check that it also fits inside * the image. */ ds_size = *(u16 *)(buf + hdr_size); if (ds_size >= image_size) return -EINVAL; /* * Make sure the device ID in the image matches the retimer * hardware. */ device = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID); if (device != rt->device) return -EINVAL; /* Skip headers in the image */ nvm->buf_data_start = buf + hdr_size; nvm->buf_data_size = image_size - hdr_size; return 0; } static const struct tb_nvm_vendor_ops intel_retimer_nvm_ops = { .read_version = intel_retimer_nvm_version, .validate = intel_retimer_nvm_validate, }; /* Retimer vendor NVM support table */ static const struct tb_nvm_vendor retimer_nvm_vendors[] = { { 0x8087, &intel_retimer_nvm_ops }, }; /** * tb_nvm_alloc() - Allocate new NVM structure * @dev: Device owning the NVM * * Allocates new NVM structure with unique @id and returns it. In case * of error returns ERR_PTR(). Specifically returns %-EOPNOTSUPP if the * NVM format of the @dev is not known by the kernel. */ struct tb_nvm *tb_nvm_alloc(struct device *dev) { const struct tb_nvm_vendor_ops *vops = NULL; struct tb_nvm *nvm; int ret, i; if (tb_is_switch(dev)) { const struct tb_switch *sw = tb_to_switch(dev); for (i = 0; i < ARRAY_SIZE(switch_nvm_vendors); i++) { const struct tb_nvm_vendor *v = &switch_nvm_vendors[i]; if (v->vendor == sw->config.vendor_id) { vops = v->vops; break; } } if (!vops) { tb_sw_dbg(sw, "router NVM format of vendor %#x unknown\n", sw->config.vendor_id); return ERR_PTR(-EOPNOTSUPP); } } else if (tb_is_retimer(dev)) { const struct tb_retimer *rt = tb_to_retimer(dev); for (i = 0; i < ARRAY_SIZE(retimer_nvm_vendors); i++) { const struct tb_nvm_vendor *v = &retimer_nvm_vendors[i]; if (v->vendor == rt->vendor) { vops = v->vops; break; } } if (!vops) { dev_dbg(dev, "retimer NVM format of vendor %#x unknown\n", rt->vendor); return ERR_PTR(-EOPNOTSUPP); } } else { return ERR_PTR(-EOPNOTSUPP); } nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); if (!nvm) return ERR_PTR(-ENOMEM); ret = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); if (ret < 0) { kfree(nvm); return ERR_PTR(ret); } nvm->id = ret; nvm->dev = dev; nvm->vops = vops; return nvm; } /** * tb_nvm_read_version() - Read and populate NVM version * @nvm: NVM structure * * Uses vendor specific means to read out and fill in the existing * active NVM version. Returns %0 in case of success and negative errno * otherwise. */ int tb_nvm_read_version(struct tb_nvm *nvm) { const struct tb_nvm_vendor_ops *vops = nvm->vops; if (vops && vops->read_version) return vops->read_version(nvm); return -EOPNOTSUPP; } /** * tb_nvm_validate() - Validate new NVM image * @nvm: NVM structure * * Runs vendor specific validation over the new NVM image and if all * checks pass returns %0. As side effect updates @nvm->buf_data_start * and @nvm->buf_data_size fields to match the actual data to be written * to the NVM. * * If the validation does not pass then returns negative errno. */ int tb_nvm_validate(struct tb_nvm *nvm) { const struct tb_nvm_vendor_ops *vops = nvm->vops; unsigned int image_size; u8 *buf = nvm->buf; if (!buf) return -EINVAL; if (!vops) return -EOPNOTSUPP; /* Just do basic image size checks */ image_size = nvm->buf_data_size; if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) return -EINVAL; /* * Set the default data start in the buffer. The validate method * below can change this if needed. */ nvm->buf_data_start = buf; return vops->validate ? vops->validate(nvm) : 0; } /** * tb_nvm_write_headers() - Write headers before the rest of the image * @nvm: NVM structure * * If the vendor NVM format requires writing headers before the rest of * the image, this function does that. Can be called even if the device * does not need this. * * Returns %0 in case of success and negative errno otherwise. */ int tb_nvm_write_headers(struct tb_nvm *nvm) { const struct tb_nvm_vendor_ops *vops = nvm->vops; return vops->write_headers ? vops->write_headers(nvm) : 0; } /** * tb_nvm_add_active() - Adds active NVMem device to NVM * @nvm: NVM structure * @reg_read: Pointer to the function to read the NVM (passed directly to the * NVMem device) * * Registers new active NVmem device for @nvm. The @reg_read is called * directly from NVMem so it must handle possible concurrent access if * needed. The first parameter passed to @reg_read is @nvm structure. * Returns %0 in success and negative errno otherwise. */ int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read) { struct nvmem_config config; struct nvmem_device *nvmem; memset(&config, 0, sizeof(config)); config.name = "nvm_active"; config.reg_read = reg_read; config.read_only = true; config.id = nvm->id; config.stride = 4; config.word_size = 4; config.size = nvm->active_size; config.dev = nvm->dev; config.owner = THIS_MODULE; config.priv = nvm; nvmem = nvmem_register(&config); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); nvm->active = nvmem; return 0; } /** * tb_nvm_write_buf() - Write data to @nvm buffer * @nvm: NVM structure * @offset: Offset where to write the data * @val: Data buffer to write * @bytes: Number of bytes to write * * Helper function to cache the new NVM image before it is actually * written to the flash. Copies @bytes from @val to @nvm->buf starting * from @offset. */ int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val, size_t bytes) { if (!nvm->buf) { nvm->buf = vmalloc(NVM_MAX_SIZE); if (!nvm->buf) return -ENOMEM; } nvm->flushed = false; nvm->buf_data_size = offset + bytes; memcpy(nvm->buf + offset, val, bytes); return 0; } /** * tb_nvm_add_non_active() - Adds non-active NVMem device to NVM * @nvm: NVM structure * @reg_write: Pointer to the function to write the NVM (passed directly * to the NVMem device) * * Registers new non-active NVmem device for @nvm. The @reg_write is called * directly from NVMem so it must handle possible concurrent access if * needed. The first parameter passed to @reg_write is @nvm structure. * The size of the NVMem device is set to %NVM_MAX_SIZE. * * Returns %0 in success and negative errno otherwise. */ int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write) { struct nvmem_config config; struct nvmem_device *nvmem; memset(&config, 0, sizeof(config)); config.name = "nvm_non_active"; config.reg_write = reg_write; config.root_only = true; config.id = nvm->id; config.stride = 4; config.word_size = 4; config.size = NVM_MAX_SIZE; config.dev = nvm->dev; config.owner = THIS_MODULE; config.priv = nvm; nvmem = nvmem_register(&config); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); nvm->non_active = nvmem; return 0; } /** * tb_nvm_free() - Release NVM and its resources * @nvm: NVM structure to release * * Releases NVM and the NVMem devices if they were registered. */ void tb_nvm_free(struct tb_nvm *nvm) { if (nvm) { nvmem_unregister(nvm->non_active); nvmem_unregister(nvm->active); vfree(nvm->buf); ida_simple_remove(&nvm_ida, nvm->id); } kfree(nvm); } /** * tb_nvm_read_data() - Read data from NVM * @address: Start address on the flash * @buf: Buffer where the read data is copied * @size: Size of the buffer in bytes * @retries: Number of retries if block read fails * @read_block: Function that reads block from the flash * @read_block_data: Data passsed to @read_block * * This is a generic function that reads data from NVM or NVM like * device. * * Returns %0 on success and negative errno otherwise. */ int tb_nvm_read_data(unsigned int address, void *buf, size_t size, unsigned int retries, read_block_fn read_block, void *read_block_data) { do { unsigned int dwaddress, dwords, offset; u8 data[NVM_DATA_DWORDS * 4]; size_t nbytes; int ret; offset = address & 3; nbytes = min_t(size_t, size + offset, NVM_DATA_DWORDS * 4); dwaddress = address / 4; dwords = ALIGN(nbytes, 4) / 4; ret = read_block(read_block_data, dwaddress, data, dwords); if (ret) { if (ret != -ENODEV && retries--) continue; return ret; } nbytes -= offset; memcpy(buf, data + offset, nbytes); size -= nbytes; address += nbytes; buf += nbytes; } while (size > 0); return 0; } /** * tb_nvm_write_data() - Write data to NVM * @address: Start address on the flash * @buf: Buffer where the data is copied from * @size: Size of the buffer in bytes * @retries: Number of retries if the block write fails * @write_block: Function that writes block to the flash * @write_block_data: Data passwd to @write_block * * This is generic function that writes data to NVM or NVM like device. * * Returns %0 on success and negative errno otherwise. */ int tb_nvm_write_data(unsigned int address, const void *buf, size_t size, unsigned int retries, write_block_fn write_block, void *write_block_data) { do { unsigned int offset, dwaddress; u8 data[NVM_DATA_DWORDS * 4]; size_t nbytes; int ret; offset = address & 3; nbytes = min_t(u32, size + offset, NVM_DATA_DWORDS * 4); memcpy(data + offset, buf, nbytes); dwaddress = address / 4; ret = write_block(write_block_data, dwaddress, data, nbytes / 4); if (ret) { if (ret == -ETIMEDOUT) { if (retries--) continue; ret = -EIO; } return ret; } size -= nbytes; address += nbytes; buf += nbytes; } while (size > 0); return 0; } void tb_nvm_exit(void) { ida_destroy(&nvm_ida); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1