Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Shiyan | 5623 | 98.22% | 15 | 48.39% |
Greg Kroah-Hartman | 22 | 0.38% | 3 | 9.68% |
Thomas Bogendoerfer | 19 | 0.33% | 1 | 3.23% |
Kees Cook | 14 | 0.24% | 1 | 3.23% |
Dmitry Safonov | 14 | 0.24% | 1 | 3.23% |
Jiri Slaby | 8 | 0.14% | 2 | 6.45% |
Stephen Rothwell | 6 | 0.10% | 1 | 3.23% |
Ilpo Järvinen | 6 | 0.10% | 2 | 6.45% |
Thierry Reding | 6 | 0.10% | 1 | 3.23% |
Eric Miao | 3 | 0.05% | 1 | 3.23% |
Peter Hurley | 2 | 0.03% | 1 | 3.23% |
Alexey Khoroshilov | 1 | 0.02% | 1 | 3.23% |
Christophe Jaillet | 1 | 0.02% | 1 | 3.23% |
Total | 5725 | 31 |
// SPDX-License-Identifier: GPL-2.0+ /* * NXP (Philips) SCC+++(SCN+++) serial driver * * Copyright (C) 2012 Alexander Shiyan <shc_work@mail.ru> * * Based on sc26xx.c, by Thomas Bogendörfer (tsbogend@alpha.franken.de) */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/device.h> #include <linux/console.h> #include <linux/serial_core.h> #include <linux/serial.h> #include <linux/io.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/spinlock.h> #include <linux/platform_device.h> #include <linux/platform_data/serial-sccnxp.h> #include <linux/regulator/consumer.h> #define SCCNXP_NAME "uart-sccnxp" #define SCCNXP_MAJOR 204 #define SCCNXP_MINOR 205 #define SCCNXP_MR_REG (0x00) # define MR0_BAUD_NORMAL (0 << 0) # define MR0_BAUD_EXT1 (1 << 0) # define MR0_BAUD_EXT2 (5 << 0) # define MR0_FIFO (1 << 3) # define MR0_TXLVL (1 << 4) # define MR1_BITS_5 (0 << 0) # define MR1_BITS_6 (1 << 0) # define MR1_BITS_7 (2 << 0) # define MR1_BITS_8 (3 << 0) # define MR1_PAR_EVN (0 << 2) # define MR1_PAR_ODD (1 << 2) # define MR1_PAR_NO (4 << 2) # define MR2_STOP1 (7 << 0) # define MR2_STOP2 (0xf << 0) #define SCCNXP_SR_REG (0x01) # define SR_RXRDY (1 << 0) # define SR_FULL (1 << 1) # define SR_TXRDY (1 << 2) # define SR_TXEMT (1 << 3) # define SR_OVR (1 << 4) # define SR_PE (1 << 5) # define SR_FE (1 << 6) # define SR_BRK (1 << 7) #define SCCNXP_CSR_REG (SCCNXP_SR_REG) # define CSR_TIMER_MODE (0x0d) #define SCCNXP_CR_REG (0x02) # define CR_RX_ENABLE (1 << 0) # define CR_RX_DISABLE (1 << 1) # define CR_TX_ENABLE (1 << 2) # define CR_TX_DISABLE (1 << 3) # define CR_CMD_MRPTR1 (0x01 << 4) # define CR_CMD_RX_RESET (0x02 << 4) # define CR_CMD_TX_RESET (0x03 << 4) # define CR_CMD_STATUS_RESET (0x04 << 4) # define CR_CMD_BREAK_RESET (0x05 << 4) # define CR_CMD_START_BREAK (0x06 << 4) # define CR_CMD_STOP_BREAK (0x07 << 4) # define CR_CMD_MRPTR0 (0x0b << 4) #define SCCNXP_RHR_REG (0x03) #define SCCNXP_THR_REG SCCNXP_RHR_REG #define SCCNXP_IPCR_REG (0x04) #define SCCNXP_ACR_REG SCCNXP_IPCR_REG # define ACR_BAUD0 (0 << 7) # define ACR_BAUD1 (1 << 7) # define ACR_TIMER_MODE (6 << 4) #define SCCNXP_ISR_REG (0x05) #define SCCNXP_IMR_REG SCCNXP_ISR_REG # define IMR_TXRDY (1 << 0) # define IMR_RXRDY (1 << 1) # define ISR_TXRDY(x) (1 << ((x * 4) + 0)) # define ISR_RXRDY(x) (1 << ((x * 4) + 1)) #define SCCNXP_CTPU_REG (0x06) #define SCCNXP_CTPL_REG (0x07) #define SCCNXP_IPR_REG (0x0d) #define SCCNXP_OPCR_REG SCCNXP_IPR_REG #define SCCNXP_SOP_REG (0x0e) #define SCCNXP_START_COUNTER_REG SCCNXP_SOP_REG #define SCCNXP_ROP_REG (0x0f) /* Route helpers */ #define MCTRL_MASK(sig) (0xf << (sig)) #define MCTRL_IBIT(cfg, sig) ((((cfg) >> (sig)) & 0xf) - LINE_IP0) #define MCTRL_OBIT(cfg, sig) ((((cfg) >> (sig)) & 0xf) - LINE_OP0) #define SCCNXP_HAVE_IO 0x00000001 #define SCCNXP_HAVE_MR0 0x00000002 struct sccnxp_chip { const char *name; unsigned int nr; unsigned long freq_min; unsigned long freq_std; unsigned long freq_max; unsigned int flags; unsigned int fifosize; /* Time between read/write cycles */ unsigned int trwd; }; struct sccnxp_port { struct uart_driver uart; struct uart_port port[SCCNXP_MAX_UARTS]; bool opened[SCCNXP_MAX_UARTS]; int irq; u8 imr; struct sccnxp_chip *chip; #ifdef CONFIG_SERIAL_SCCNXP_CONSOLE struct console console; #endif spinlock_t lock; bool poll; struct timer_list timer; struct sccnxp_pdata pdata; struct regulator *regulator; }; static const struct sccnxp_chip sc2681 = { .name = "SC2681", .nr = 2, .freq_min = 1000000, .freq_std = 3686400, .freq_max = 4000000, .flags = SCCNXP_HAVE_IO, .fifosize = 3, .trwd = 200, }; static const struct sccnxp_chip sc2691 = { .name = "SC2691", .nr = 1, .freq_min = 1000000, .freq_std = 3686400, .freq_max = 4000000, .flags = 0, .fifosize = 3, .trwd = 150, }; static const struct sccnxp_chip sc2692 = { .name = "SC2692", .nr = 2, .freq_min = 1000000, .freq_std = 3686400, .freq_max = 4000000, .flags = SCCNXP_HAVE_IO, .fifosize = 3, .trwd = 30, }; static const struct sccnxp_chip sc2891 = { .name = "SC2891", .nr = 1, .freq_min = 100000, .freq_std = 3686400, .freq_max = 8000000, .flags = SCCNXP_HAVE_IO | SCCNXP_HAVE_MR0, .fifosize = 16, .trwd = 27, }; static const struct sccnxp_chip sc2892 = { .name = "SC2892", .nr = 2, .freq_min = 100000, .freq_std = 3686400, .freq_max = 8000000, .flags = SCCNXP_HAVE_IO | SCCNXP_HAVE_MR0, .fifosize = 16, .trwd = 17, }; static const struct sccnxp_chip sc28202 = { .name = "SC28202", .nr = 2, .freq_min = 1000000, .freq_std = 14745600, .freq_max = 50000000, .flags = SCCNXP_HAVE_IO | SCCNXP_HAVE_MR0, .fifosize = 256, .trwd = 10, }; static const struct sccnxp_chip sc68681 = { .name = "SC68681", .nr = 2, .freq_min = 1000000, .freq_std = 3686400, .freq_max = 4000000, .flags = SCCNXP_HAVE_IO, .fifosize = 3, .trwd = 200, }; static const struct sccnxp_chip sc68692 = { .name = "SC68692", .nr = 2, .freq_min = 1000000, .freq_std = 3686400, .freq_max = 4000000, .flags = SCCNXP_HAVE_IO, .fifosize = 3, .trwd = 200, }; static u8 sccnxp_read(struct uart_port *port, u8 reg) { struct sccnxp_port *s = dev_get_drvdata(port->dev); u8 ret; ret = readb(port->membase + (reg << port->regshift)); ndelay(s->chip->trwd); return ret; } static void sccnxp_write(struct uart_port *port, u8 reg, u8 v) { struct sccnxp_port *s = dev_get_drvdata(port->dev); writeb(v, port->membase + (reg << port->regshift)); ndelay(s->chip->trwd); } static u8 sccnxp_port_read(struct uart_port *port, u8 reg) { return sccnxp_read(port, (port->line << 3) + reg); } static void sccnxp_port_write(struct uart_port *port, u8 reg, u8 v) { sccnxp_write(port, (port->line << 3) + reg, v); } static int sccnxp_update_best_err(int a, int b, int *besterr) { int err = abs(a - b); if (*besterr > err) { *besterr = err; return 0; } return 1; } static const struct { u8 csr; u8 acr; u8 mr0; int baud; } baud_std[] = { { 0, ACR_BAUD0, MR0_BAUD_NORMAL, 50, }, { 0, ACR_BAUD1, MR0_BAUD_NORMAL, 75, }, { 1, ACR_BAUD0, MR0_BAUD_NORMAL, 110, }, { 2, ACR_BAUD0, MR0_BAUD_NORMAL, 134, }, { 3, ACR_BAUD1, MR0_BAUD_NORMAL, 150, }, { 3, ACR_BAUD0, MR0_BAUD_NORMAL, 200, }, { 4, ACR_BAUD0, MR0_BAUD_NORMAL, 300, }, { 0, ACR_BAUD1, MR0_BAUD_EXT1, 450, }, { 1, ACR_BAUD0, MR0_BAUD_EXT2, 880, }, { 3, ACR_BAUD1, MR0_BAUD_EXT1, 900, }, { 5, ACR_BAUD0, MR0_BAUD_NORMAL, 600, }, { 7, ACR_BAUD0, MR0_BAUD_NORMAL, 1050, }, { 2, ACR_BAUD0, MR0_BAUD_EXT2, 1076, }, { 6, ACR_BAUD0, MR0_BAUD_NORMAL, 1200, }, { 10, ACR_BAUD1, MR0_BAUD_NORMAL, 1800, }, { 7, ACR_BAUD1, MR0_BAUD_NORMAL, 2000, }, { 8, ACR_BAUD0, MR0_BAUD_NORMAL, 2400, }, { 5, ACR_BAUD1, MR0_BAUD_EXT1, 3600, }, { 9, ACR_BAUD0, MR0_BAUD_NORMAL, 4800, }, { 10, ACR_BAUD0, MR0_BAUD_NORMAL, 7200, }, { 11, ACR_BAUD0, MR0_BAUD_NORMAL, 9600, }, { 8, ACR_BAUD0, MR0_BAUD_EXT1, 14400, }, { 12, ACR_BAUD1, MR0_BAUD_NORMAL, 19200, }, { 9, ACR_BAUD0, MR0_BAUD_EXT1, 28800, }, { 12, ACR_BAUD0, MR0_BAUD_NORMAL, 38400, }, { 11, ACR_BAUD0, MR0_BAUD_EXT1, 57600, }, { 12, ACR_BAUD1, MR0_BAUD_EXT1, 115200, }, { 12, ACR_BAUD0, MR0_BAUD_EXT1, 230400, }, { 0, 0, 0, 0 } }; static int sccnxp_set_baud(struct uart_port *port, int baud) { struct sccnxp_port *s = dev_get_drvdata(port->dev); int div_std, tmp_baud, bestbaud = INT_MAX, besterr = INT_MAX; struct sccnxp_chip *chip = s->chip; u8 i, acr = 0, csr = 0, mr0 = 0; /* Find divisor to load to the timer preset registers */ div_std = DIV_ROUND_CLOSEST(port->uartclk, 2 * 16 * baud); if ((div_std >= 2) && (div_std <= 0xffff)) { bestbaud = DIV_ROUND_CLOSEST(port->uartclk, 2 * 16 * div_std); sccnxp_update_best_err(baud, bestbaud, &besterr); csr = CSR_TIMER_MODE; sccnxp_port_write(port, SCCNXP_CTPU_REG, div_std >> 8); sccnxp_port_write(port, SCCNXP_CTPL_REG, div_std); /* Issue start timer/counter command */ sccnxp_port_read(port, SCCNXP_START_COUNTER_REG); } /* Find best baud from table */ for (i = 0; baud_std[i].baud && besterr; i++) { if (baud_std[i].mr0 && !(chip->flags & SCCNXP_HAVE_MR0)) continue; div_std = DIV_ROUND_CLOSEST(chip->freq_std, baud_std[i].baud); tmp_baud = DIV_ROUND_CLOSEST(port->uartclk, div_std); if (!sccnxp_update_best_err(baud, tmp_baud, &besterr)) { acr = baud_std[i].acr; csr = baud_std[i].csr; mr0 = baud_std[i].mr0; bestbaud = tmp_baud; } } if (chip->flags & SCCNXP_HAVE_MR0) { /* Enable FIFO, set half level for TX */ mr0 |= MR0_FIFO | MR0_TXLVL; /* Update MR0 */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_MRPTR0); sccnxp_port_write(port, SCCNXP_MR_REG, mr0); } sccnxp_port_write(port, SCCNXP_ACR_REG, acr | ACR_TIMER_MODE); sccnxp_port_write(port, SCCNXP_CSR_REG, (csr << 4) | csr); if (baud != bestbaud) dev_dbg(port->dev, "Baudrate desired: %i, calculated: %i\n", baud, bestbaud); return bestbaud; } static void sccnxp_enable_irq(struct uart_port *port, int mask) { struct sccnxp_port *s = dev_get_drvdata(port->dev); s->imr |= mask << (port->line * 4); sccnxp_write(port, SCCNXP_IMR_REG, s->imr); } static void sccnxp_disable_irq(struct uart_port *port, int mask) { struct sccnxp_port *s = dev_get_drvdata(port->dev); s->imr &= ~(mask << (port->line * 4)); sccnxp_write(port, SCCNXP_IMR_REG, s->imr); } static void sccnxp_set_bit(struct uart_port *port, int sig, int state) { u8 bitmask; struct sccnxp_port *s = dev_get_drvdata(port->dev); if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(sig)) { bitmask = 1 << MCTRL_OBIT(s->pdata.mctrl_cfg[port->line], sig); if (state) sccnxp_write(port, SCCNXP_SOP_REG, bitmask); else sccnxp_write(port, SCCNXP_ROP_REG, bitmask); } } static void sccnxp_handle_rx(struct uart_port *port) { u8 sr; unsigned int ch, flag; for (;;) { sr = sccnxp_port_read(port, SCCNXP_SR_REG); if (!(sr & SR_RXRDY)) break; sr &= SR_PE | SR_FE | SR_OVR | SR_BRK; ch = sccnxp_port_read(port, SCCNXP_RHR_REG); port->icount.rx++; flag = TTY_NORMAL; if (unlikely(sr)) { if (sr & SR_BRK) { port->icount.brk++; sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_BREAK_RESET); if (uart_handle_break(port)) continue; } else if (sr & SR_PE) port->icount.parity++; else if (sr & SR_FE) port->icount.frame++; else if (sr & SR_OVR) { port->icount.overrun++; sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_STATUS_RESET); } sr &= port->read_status_mask; if (sr & SR_BRK) flag = TTY_BREAK; else if (sr & SR_PE) flag = TTY_PARITY; else if (sr & SR_FE) flag = TTY_FRAME; else if (sr & SR_OVR) flag = TTY_OVERRUN; } if (uart_handle_sysrq_char(port, ch)) continue; if (sr & port->ignore_status_mask) continue; uart_insert_char(port, sr, SR_OVR, ch, flag); } tty_flip_buffer_push(&port->state->port); } static void sccnxp_handle_tx(struct uart_port *port) { u8 sr; struct circ_buf *xmit = &port->state->xmit; struct sccnxp_port *s = dev_get_drvdata(port->dev); if (unlikely(port->x_char)) { sccnxp_port_write(port, SCCNXP_THR_REG, port->x_char); port->icount.tx++; port->x_char = 0; return; } if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { /* Disable TX if FIFO is empty */ if (sccnxp_port_read(port, SCCNXP_SR_REG) & SR_TXEMT) { sccnxp_disable_irq(port, IMR_TXRDY); /* Set direction to input */ if (s->chip->flags & SCCNXP_HAVE_IO) sccnxp_set_bit(port, DIR_OP, 0); } return; } while (!uart_circ_empty(xmit)) { sr = sccnxp_port_read(port, SCCNXP_SR_REG); if (!(sr & SR_TXRDY)) break; sccnxp_port_write(port, SCCNXP_THR_REG, xmit->buf[xmit->tail]); uart_xmit_advance(port, 1); } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); } static void sccnxp_handle_events(struct sccnxp_port *s) { int i; u8 isr; do { isr = sccnxp_read(&s->port[0], SCCNXP_ISR_REG); isr &= s->imr; if (!isr) break; for (i = 0; i < s->uart.nr; i++) { if (s->opened[i] && (isr & ISR_RXRDY(i))) sccnxp_handle_rx(&s->port[i]); if (s->opened[i] && (isr & ISR_TXRDY(i))) sccnxp_handle_tx(&s->port[i]); } } while (1); } static void sccnxp_timer(struct timer_list *t) { struct sccnxp_port *s = from_timer(s, t, timer); unsigned long flags; spin_lock_irqsave(&s->lock, flags); sccnxp_handle_events(s); spin_unlock_irqrestore(&s->lock, flags); mod_timer(&s->timer, jiffies + usecs_to_jiffies(s->pdata.poll_time_us)); } static irqreturn_t sccnxp_ist(int irq, void *dev_id) { struct sccnxp_port *s = (struct sccnxp_port *)dev_id; unsigned long flags; spin_lock_irqsave(&s->lock, flags); sccnxp_handle_events(s); spin_unlock_irqrestore(&s->lock, flags); return IRQ_HANDLED; } static void sccnxp_start_tx(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned long flags; spin_lock_irqsave(&s->lock, flags); /* Set direction to output */ if (s->chip->flags & SCCNXP_HAVE_IO) sccnxp_set_bit(port, DIR_OP, 1); sccnxp_enable_irq(port, IMR_TXRDY); spin_unlock_irqrestore(&s->lock, flags); } static void sccnxp_stop_tx(struct uart_port *port) { /* Do nothing */ } static void sccnxp_stop_rx(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned long flags; spin_lock_irqsave(&s->lock, flags); sccnxp_port_write(port, SCCNXP_CR_REG, CR_RX_DISABLE); spin_unlock_irqrestore(&s->lock, flags); } static unsigned int sccnxp_tx_empty(struct uart_port *port) { u8 val; unsigned long flags; struct sccnxp_port *s = dev_get_drvdata(port->dev); spin_lock_irqsave(&s->lock, flags); val = sccnxp_port_read(port, SCCNXP_SR_REG); spin_unlock_irqrestore(&s->lock, flags); return (val & SR_TXEMT) ? TIOCSER_TEMT : 0; } static void sccnxp_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned long flags; if (!(s->chip->flags & SCCNXP_HAVE_IO)) return; spin_lock_irqsave(&s->lock, flags); sccnxp_set_bit(port, DTR_OP, mctrl & TIOCM_DTR); sccnxp_set_bit(port, RTS_OP, mctrl & TIOCM_RTS); spin_unlock_irqrestore(&s->lock, flags); } static unsigned int sccnxp_get_mctrl(struct uart_port *port) { u8 bitmask, ipr; unsigned long flags; struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned int mctrl = TIOCM_DSR | TIOCM_CTS | TIOCM_CAR; if (!(s->chip->flags & SCCNXP_HAVE_IO)) return mctrl; spin_lock_irqsave(&s->lock, flags); ipr = ~sccnxp_read(port, SCCNXP_IPCR_REG); if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(DSR_IP)) { bitmask = 1 << MCTRL_IBIT(s->pdata.mctrl_cfg[port->line], DSR_IP); mctrl &= ~TIOCM_DSR; mctrl |= (ipr & bitmask) ? TIOCM_DSR : 0; } if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(CTS_IP)) { bitmask = 1 << MCTRL_IBIT(s->pdata.mctrl_cfg[port->line], CTS_IP); mctrl &= ~TIOCM_CTS; mctrl |= (ipr & bitmask) ? TIOCM_CTS : 0; } if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(DCD_IP)) { bitmask = 1 << MCTRL_IBIT(s->pdata.mctrl_cfg[port->line], DCD_IP); mctrl &= ~TIOCM_CAR; mctrl |= (ipr & bitmask) ? TIOCM_CAR : 0; } if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(RNG_IP)) { bitmask = 1 << MCTRL_IBIT(s->pdata.mctrl_cfg[port->line], RNG_IP); mctrl &= ~TIOCM_RNG; mctrl |= (ipr & bitmask) ? TIOCM_RNG : 0; } spin_unlock_irqrestore(&s->lock, flags); return mctrl; } static void sccnxp_break_ctl(struct uart_port *port, int break_state) { struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned long flags; spin_lock_irqsave(&s->lock, flags); sccnxp_port_write(port, SCCNXP_CR_REG, break_state ? CR_CMD_START_BREAK : CR_CMD_STOP_BREAK); spin_unlock_irqrestore(&s->lock, flags); } static void sccnxp_set_termios(struct uart_port *port, struct ktermios *termios, const struct ktermios *old) { struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned long flags; u8 mr1, mr2; int baud; spin_lock_irqsave(&s->lock, flags); /* Mask termios capabilities we don't support */ termios->c_cflag &= ~CMSPAR; /* Disable RX & TX, reset break condition, status and FIFOs */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_RX_RESET | CR_RX_DISABLE | CR_TX_DISABLE); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_TX_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_STATUS_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_BREAK_RESET); /* Word size */ switch (termios->c_cflag & CSIZE) { case CS5: mr1 = MR1_BITS_5; break; case CS6: mr1 = MR1_BITS_6; break; case CS7: mr1 = MR1_BITS_7; break; case CS8: default: mr1 = MR1_BITS_8; break; } /* Parity */ if (termios->c_cflag & PARENB) { if (termios->c_cflag & PARODD) mr1 |= MR1_PAR_ODD; } else mr1 |= MR1_PAR_NO; /* Stop bits */ mr2 = (termios->c_cflag & CSTOPB) ? MR2_STOP2 : MR2_STOP1; /* Update desired format */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_MRPTR1); sccnxp_port_write(port, SCCNXP_MR_REG, mr1); sccnxp_port_write(port, SCCNXP_MR_REG, mr2); /* Set read status mask */ port->read_status_mask = SR_OVR; if (termios->c_iflag & INPCK) port->read_status_mask |= SR_PE | SR_FE; if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) port->read_status_mask |= SR_BRK; /* Set status ignore mask */ port->ignore_status_mask = 0; if (termios->c_iflag & IGNBRK) port->ignore_status_mask |= SR_BRK; if (termios->c_iflag & IGNPAR) port->ignore_status_mask |= SR_PE; if (!(termios->c_cflag & CREAD)) port->ignore_status_mask |= SR_PE | SR_OVR | SR_FE | SR_BRK; /* Setup baudrate */ baud = uart_get_baud_rate(port, termios, old, 50, (s->chip->flags & SCCNXP_HAVE_MR0) ? 230400 : 38400); baud = sccnxp_set_baud(port, baud); /* Update timeout according to new baud rate */ uart_update_timeout(port, termios->c_cflag, baud); /* Report actual baudrate back to core */ if (tty_termios_baud_rate(termios)) tty_termios_encode_baud_rate(termios, baud, baud); /* Enable RX & TX */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_RX_ENABLE | CR_TX_ENABLE); spin_unlock_irqrestore(&s->lock, flags); } static int sccnxp_startup(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned long flags; spin_lock_irqsave(&s->lock, flags); if (s->chip->flags & SCCNXP_HAVE_IO) { /* Outputs are controlled manually */ sccnxp_write(port, SCCNXP_OPCR_REG, 0); } /* Reset break condition, status and FIFOs */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_RX_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_TX_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_STATUS_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_BREAK_RESET); /* Enable RX & TX */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_RX_ENABLE | CR_TX_ENABLE); /* Enable RX interrupt */ sccnxp_enable_irq(port, IMR_RXRDY); s->opened[port->line] = 1; spin_unlock_irqrestore(&s->lock, flags); return 0; } static void sccnxp_shutdown(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned long flags; spin_lock_irqsave(&s->lock, flags); s->opened[port->line] = 0; /* Disable interrupts */ sccnxp_disable_irq(port, IMR_TXRDY | IMR_RXRDY); /* Disable TX & RX */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_RX_DISABLE | CR_TX_DISABLE); /* Leave direction to input */ if (s->chip->flags & SCCNXP_HAVE_IO) sccnxp_set_bit(port, DIR_OP, 0); spin_unlock_irqrestore(&s->lock, flags); } static const char *sccnxp_type(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); return (port->type == PORT_SC26XX) ? s->chip->name : NULL; } static void sccnxp_release_port(struct uart_port *port) { /* Do nothing */ } static int sccnxp_request_port(struct uart_port *port) { /* Do nothing */ return 0; } static void sccnxp_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) port->type = PORT_SC26XX; } static int sccnxp_verify_port(struct uart_port *port, struct serial_struct *s) { if ((s->type == PORT_UNKNOWN) || (s->type == PORT_SC26XX)) return 0; if (s->irq == port->irq) return 0; return -EINVAL; } static const struct uart_ops sccnxp_ops = { .tx_empty = sccnxp_tx_empty, .set_mctrl = sccnxp_set_mctrl, .get_mctrl = sccnxp_get_mctrl, .stop_tx = sccnxp_stop_tx, .start_tx = sccnxp_start_tx, .stop_rx = sccnxp_stop_rx, .break_ctl = sccnxp_break_ctl, .startup = sccnxp_startup, .shutdown = sccnxp_shutdown, .set_termios = sccnxp_set_termios, .type = sccnxp_type, .release_port = sccnxp_release_port, .request_port = sccnxp_request_port, .config_port = sccnxp_config_port, .verify_port = sccnxp_verify_port, }; #ifdef CONFIG_SERIAL_SCCNXP_CONSOLE static void sccnxp_console_putchar(struct uart_port *port, unsigned char c) { int tryes = 100000; while (tryes--) { if (sccnxp_port_read(port, SCCNXP_SR_REG) & SR_TXRDY) { sccnxp_port_write(port, SCCNXP_THR_REG, c); break; } barrier(); } } static void sccnxp_console_write(struct console *co, const char *c, unsigned n) { struct sccnxp_port *s = (struct sccnxp_port *)co->data; struct uart_port *port = &s->port[co->index]; unsigned long flags; spin_lock_irqsave(&s->lock, flags); uart_console_write(port, c, n, sccnxp_console_putchar); spin_unlock_irqrestore(&s->lock, flags); } static int sccnxp_console_setup(struct console *co, char *options) { struct sccnxp_port *s = (struct sccnxp_port *)co->data; struct uart_port *port = &s->port[(co->index > 0) ? co->index : 0]; int baud = 9600, bits = 8, parity = 'n', flow = 'n'; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(port, co, baud, parity, bits, flow); } #endif static const struct platform_device_id sccnxp_id_table[] = { { .name = "sc2681", .driver_data = (kernel_ulong_t)&sc2681, }, { .name = "sc2691", .driver_data = (kernel_ulong_t)&sc2691, }, { .name = "sc2692", .driver_data = (kernel_ulong_t)&sc2692, }, { .name = "sc2891", .driver_data = (kernel_ulong_t)&sc2891, }, { .name = "sc2892", .driver_data = (kernel_ulong_t)&sc2892, }, { .name = "sc28202", .driver_data = (kernel_ulong_t)&sc28202, }, { .name = "sc68681", .driver_data = (kernel_ulong_t)&sc68681, }, { .name = "sc68692", .driver_data = (kernel_ulong_t)&sc68692, }, { } }; MODULE_DEVICE_TABLE(platform, sccnxp_id_table); static int sccnxp_probe(struct platform_device *pdev) { struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct sccnxp_pdata *pdata = dev_get_platdata(&pdev->dev); int i, ret, uartclk; struct sccnxp_port *s; void __iomem *membase; struct clk *clk; membase = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(membase)) return PTR_ERR(membase); s = devm_kzalloc(&pdev->dev, sizeof(struct sccnxp_port), GFP_KERNEL); if (!s) { dev_err(&pdev->dev, "Error allocating port structure\n"); return -ENOMEM; } platform_set_drvdata(pdev, s); spin_lock_init(&s->lock); s->chip = (struct sccnxp_chip *)pdev->id_entry->driver_data; s->regulator = devm_regulator_get(&pdev->dev, "vcc"); if (!IS_ERR(s->regulator)) { ret = regulator_enable(s->regulator); if (ret) { dev_err(&pdev->dev, "Failed to enable regulator: %i\n", ret); return ret; } } else if (PTR_ERR(s->regulator) == -EPROBE_DEFER) return -EPROBE_DEFER; clk = devm_clk_get_enabled(&pdev->dev, NULL); if (IS_ERR(clk)) { ret = PTR_ERR(clk); if (ret == -EPROBE_DEFER) goto err_out; uartclk = 0; } else { uartclk = clk_get_rate(clk); } if (!uartclk) { dev_notice(&pdev->dev, "Using default clock frequency\n"); uartclk = s->chip->freq_std; } /* Check input frequency */ if ((uartclk < s->chip->freq_min) || (uartclk > s->chip->freq_max)) { dev_err(&pdev->dev, "Frequency out of bounds\n"); ret = -EINVAL; goto err_out; } if (pdata) memcpy(&s->pdata, pdata, sizeof(struct sccnxp_pdata)); if (s->pdata.poll_time_us) { dev_info(&pdev->dev, "Using poll mode, resolution %u usecs\n", s->pdata.poll_time_us); s->poll = 1; } if (!s->poll) { s->irq = platform_get_irq(pdev, 0); if (s->irq < 0) { ret = -ENXIO; goto err_out; } } s->uart.owner = THIS_MODULE; s->uart.dev_name = "ttySC"; s->uart.major = SCCNXP_MAJOR; s->uart.minor = SCCNXP_MINOR; s->uart.nr = s->chip->nr; #ifdef CONFIG_SERIAL_SCCNXP_CONSOLE s->uart.cons = &s->console; s->uart.cons->device = uart_console_device; s->uart.cons->write = sccnxp_console_write; s->uart.cons->setup = sccnxp_console_setup; s->uart.cons->flags = CON_PRINTBUFFER; s->uart.cons->index = -1; s->uart.cons->data = s; strcpy(s->uart.cons->name, "ttySC"); #endif ret = uart_register_driver(&s->uart); if (ret) { dev_err(&pdev->dev, "Registering UART driver failed\n"); goto err_out; } for (i = 0; i < s->uart.nr; i++) { s->port[i].line = i; s->port[i].dev = &pdev->dev; s->port[i].irq = s->irq; s->port[i].type = PORT_SC26XX; s->port[i].fifosize = s->chip->fifosize; s->port[i].flags = UPF_SKIP_TEST | UPF_FIXED_TYPE; s->port[i].iotype = UPIO_MEM; s->port[i].mapbase = res->start; s->port[i].membase = membase; s->port[i].regshift = s->pdata.reg_shift; s->port[i].uartclk = uartclk; s->port[i].ops = &sccnxp_ops; s->port[i].has_sysrq = IS_ENABLED(CONFIG_SERIAL_SCCNXP_CONSOLE); uart_add_one_port(&s->uart, &s->port[i]); /* Set direction to input */ if (s->chip->flags & SCCNXP_HAVE_IO) sccnxp_set_bit(&s->port[i], DIR_OP, 0); } /* Disable interrupts */ s->imr = 0; sccnxp_write(&s->port[0], SCCNXP_IMR_REG, 0); if (!s->poll) { ret = devm_request_threaded_irq(&pdev->dev, s->irq, NULL, sccnxp_ist, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, dev_name(&pdev->dev), s); if (!ret) return 0; dev_err(&pdev->dev, "Unable to reguest IRQ %i\n", s->irq); } else { timer_setup(&s->timer, sccnxp_timer, 0); mod_timer(&s->timer, jiffies + usecs_to_jiffies(s->pdata.poll_time_us)); return 0; } uart_unregister_driver(&s->uart); err_out: if (!IS_ERR(s->regulator)) regulator_disable(s->regulator); return ret; } static int sccnxp_remove(struct platform_device *pdev) { int i; struct sccnxp_port *s = platform_get_drvdata(pdev); if (!s->poll) devm_free_irq(&pdev->dev, s->irq, s); else del_timer_sync(&s->timer); for (i = 0; i < s->uart.nr; i++) uart_remove_one_port(&s->uart, &s->port[i]); uart_unregister_driver(&s->uart); if (!IS_ERR(s->regulator)) return regulator_disable(s->regulator); return 0; } static struct platform_driver sccnxp_uart_driver = { .driver = { .name = SCCNXP_NAME, }, .probe = sccnxp_probe, .remove = sccnxp_remove, .id_table = sccnxp_id_table, }; module_platform_driver(sccnxp_uart_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Alexander Shiyan <shc_work@mail.ru>"); MODULE_DESCRIPTION("SCCNXP serial driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1