Contributors: 14
Author Tokens Token Proportion Commits Commit Proportion
Alim Akhtar 7161 83.93% 7 17.50%
Chanho Park 1247 14.62% 12 30.00%
Bart Van Assche 32 0.38% 7 17.50%
Wei Yongjun 27 0.32% 1 2.50%
Kiwoong Kim 21 0.25% 3 7.50%
Peter Wang 11 0.13% 1 2.50%
Asutosh Das 9 0.11% 1 2.50%
Bean Huo 9 0.11% 1 2.50%
Krzysztof Kozlowski 4 0.05% 1 2.50%
Stanley Chu 4 0.05% 1 2.50%
Santosh Yaraganavi 3 0.04% 1 2.50%
Colin Ian King 2 0.02% 2 5.00%
Lee Jones 1 0.01% 1 2.50%
Avri Altman 1 0.01% 1 2.50%
Total 8532 40


// SPDX-License-Identifier: GPL-2.0-only
/*
 * UFS Host Controller driver for Exynos specific extensions
 *
 * Copyright (C) 2014-2015 Samsung Electronics Co., Ltd.
 * Author: Seungwon Jeon  <essuuj@gmail.com>
 * Author: Alim Akhtar <alim.akhtar@samsung.com>
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/mfd/syscon.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>

#include <ufs/ufshcd.h>
#include "ufshcd-pltfrm.h"
#include <ufs/ufshci.h>
#include <ufs/unipro.h>

#include "ufs-exynos.h"

/*
 * Exynos's Vendor specific registers for UFSHCI
 */
#define HCI_TXPRDT_ENTRY_SIZE	0x00
#define PRDT_PREFECT_EN		BIT(31)
#define PRDT_SET_SIZE(x)	((x) & 0x1F)
#define HCI_RXPRDT_ENTRY_SIZE	0x04
#define HCI_1US_TO_CNT_VAL	0x0C
#define CNT_VAL_1US_MASK	0x3FF
#define HCI_UTRL_NEXUS_TYPE	0x40
#define HCI_UTMRL_NEXUS_TYPE	0x44
#define HCI_SW_RST		0x50
#define UFS_LINK_SW_RST		BIT(0)
#define UFS_UNIPRO_SW_RST	BIT(1)
#define UFS_SW_RST_MASK		(UFS_UNIPRO_SW_RST | UFS_LINK_SW_RST)
#define HCI_DATA_REORDER	0x60
#define HCI_UNIPRO_APB_CLK_CTRL	0x68
#define UNIPRO_APB_CLK(v, x)	(((v) & ~0xF) | ((x) & 0xF))
#define HCI_AXIDMA_RWDATA_BURST_LEN	0x6C
#define HCI_GPIO_OUT		0x70
#define HCI_ERR_EN_PA_LAYER	0x78
#define HCI_ERR_EN_DL_LAYER	0x7C
#define HCI_ERR_EN_N_LAYER	0x80
#define HCI_ERR_EN_T_LAYER	0x84
#define HCI_ERR_EN_DME_LAYER	0x88
#define HCI_CLKSTOP_CTRL	0xB0
#define REFCLKOUT_STOP		BIT(4)
#define MPHY_APBCLK_STOP	BIT(3)
#define REFCLK_STOP		BIT(2)
#define UNIPRO_MCLK_STOP	BIT(1)
#define UNIPRO_PCLK_STOP	BIT(0)
#define CLK_STOP_MASK		(REFCLKOUT_STOP | REFCLK_STOP |\
				 UNIPRO_MCLK_STOP | MPHY_APBCLK_STOP|\
				 UNIPRO_PCLK_STOP)
#define HCI_MISC		0xB4
#define REFCLK_CTRL_EN		BIT(7)
#define UNIPRO_PCLK_CTRL_EN	BIT(6)
#define UNIPRO_MCLK_CTRL_EN	BIT(5)
#define HCI_CORECLK_CTRL_EN	BIT(4)
#define CLK_CTRL_EN_MASK	(REFCLK_CTRL_EN |\
				 UNIPRO_PCLK_CTRL_EN |\
				 UNIPRO_MCLK_CTRL_EN)
/* Device fatal error */
#define DFES_ERR_EN		BIT(31)
#define DFES_DEF_L2_ERRS	(UIC_DATA_LINK_LAYER_ERROR_RX_BUF_OF |\
				 UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
#define DFES_DEF_L3_ERRS	(UIC_NETWORK_UNSUPPORTED_HEADER_TYPE |\
				 UIC_NETWORK_BAD_DEVICEID_ENC |\
				 UIC_NETWORK_LHDR_TRAP_PACKET_DROPPING)
#define DFES_DEF_L4_ERRS	(UIC_TRANSPORT_UNSUPPORTED_HEADER_TYPE |\
				 UIC_TRANSPORT_UNKNOWN_CPORTID |\
				 UIC_TRANSPORT_NO_CONNECTION_RX |\
				 UIC_TRANSPORT_BAD_TC)

/* FSYS UFS Shareability */
#define UFS_WR_SHARABLE		BIT(2)
#define UFS_RD_SHARABLE		BIT(1)
#define UFS_SHARABLE		(UFS_WR_SHARABLE | UFS_RD_SHARABLE)
#define UFS_SHAREABILITY_OFFSET	0x710

/* Multi-host registers */
#define MHCTRL			0xC4
#define MHCTRL_EN_VH_MASK	(0xE)
#define MHCTRL_EN_VH(vh)	(vh << 1)
#define PH2VH_MBOX		0xD8

#define MH_MSG_MASK		(0xFF)

#define MH_MSG(id, msg)		((id << 8) | (msg & 0xFF))
#define MH_MSG_PH_READY		0x1
#define MH_MSG_VH_READY		0x2

#define ALLOW_INQUIRY		BIT(25)
#define ALLOW_MODE_SELECT	BIT(24)
#define ALLOW_MODE_SENSE	BIT(23)
#define ALLOW_PRE_FETCH		GENMASK(22, 21)
#define ALLOW_READ_CMD_ALL	GENMASK(20, 18)	/* read_6/10/16 */
#define ALLOW_READ_BUFFER	BIT(17)
#define ALLOW_READ_CAPACITY	GENMASK(16, 15)
#define ALLOW_REPORT_LUNS	BIT(14)
#define ALLOW_REQUEST_SENSE	BIT(13)
#define ALLOW_SYNCHRONIZE_CACHE	GENMASK(8, 7)
#define ALLOW_TEST_UNIT_READY	BIT(6)
#define ALLOW_UNMAP		BIT(5)
#define ALLOW_VERIFY		BIT(4)
#define ALLOW_WRITE_CMD_ALL	GENMASK(3, 1)	/* write_6/10/16 */

#define ALLOW_TRANS_VH_DEFAULT	(ALLOW_INQUIRY | ALLOW_MODE_SELECT | \
				 ALLOW_MODE_SENSE | ALLOW_PRE_FETCH | \
				 ALLOW_READ_CMD_ALL | ALLOW_READ_BUFFER | \
				 ALLOW_READ_CAPACITY | ALLOW_REPORT_LUNS | \
				 ALLOW_REQUEST_SENSE | ALLOW_SYNCHRONIZE_CACHE | \
				 ALLOW_TEST_UNIT_READY | ALLOW_UNMAP | \
				 ALLOW_VERIFY | ALLOW_WRITE_CMD_ALL)

#define HCI_MH_ALLOWABLE_TRAN_OF_VH		0x30C
#define HCI_MH_IID_IN_TASK_TAG			0X308

#define PH_READY_TIMEOUT_MS			(5 * MSEC_PER_SEC)

enum {
	UNIPRO_L1_5 = 0,/* PHY Adapter */
	UNIPRO_L2,	/* Data Link */
	UNIPRO_L3,	/* Network */
	UNIPRO_L4,	/* Transport */
	UNIPRO_DME,	/* DME */
};

/*
 * UNIPRO registers
 */
#define UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER0	0x78B8
#define UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER1	0x78BC
#define UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER2	0x78C0

/*
 * UFS Protector registers
 */
#define UFSPRSECURITY	0x010
#define NSSMU		BIT(14)
#define UFSPSBEGIN0	0x200
#define UFSPSEND0	0x204
#define UFSPSLUN0	0x208
#define UFSPSCTRL0	0x20C

#define CNTR_DIV_VAL 40

static void exynos_ufs_auto_ctrl_hcc(struct exynos_ufs *ufs, bool en);
static void exynos_ufs_ctrl_clkstop(struct exynos_ufs *ufs, bool en);

static inline void exynos_ufs_enable_auto_ctrl_hcc(struct exynos_ufs *ufs)
{
	exynos_ufs_auto_ctrl_hcc(ufs, true);
}

static inline void exynos_ufs_disable_auto_ctrl_hcc(struct exynos_ufs *ufs)
{
	exynos_ufs_auto_ctrl_hcc(ufs, false);
}

static inline void exynos_ufs_disable_auto_ctrl_hcc_save(
					struct exynos_ufs *ufs, u32 *val)
{
	*val = hci_readl(ufs, HCI_MISC);
	exynos_ufs_auto_ctrl_hcc(ufs, false);
}

static inline void exynos_ufs_auto_ctrl_hcc_restore(
					struct exynos_ufs *ufs, u32 *val)
{
	hci_writel(ufs, *val, HCI_MISC);
}

static inline void exynos_ufs_gate_clks(struct exynos_ufs *ufs)
{
	exynos_ufs_ctrl_clkstop(ufs, true);
}

static inline void exynos_ufs_ungate_clks(struct exynos_ufs *ufs)
{
	exynos_ufs_ctrl_clkstop(ufs, false);
}

static int exynos7_ufs_drv_init(struct device *dev, struct exynos_ufs *ufs)
{
	return 0;
}

static int exynosauto_ufs_drv_init(struct device *dev, struct exynos_ufs *ufs)
{
	struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;

	/* IO Coherency setting */
	if (ufs->sysreg) {
		return regmap_update_bits(ufs->sysreg,
					  ufs->shareability_reg_offset,
					  UFS_SHARABLE, UFS_SHARABLE);
	}

	attr->tx_dif_p_nsec = 3200000;

	return 0;
}

static int exynosauto_ufs_post_hce_enable(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;

	/* Enable Virtual Host #1 */
	ufshcd_rmwl(hba, MHCTRL_EN_VH_MASK, MHCTRL_EN_VH(1), MHCTRL);
	/* Default VH Transfer permissions */
	hci_writel(ufs, ALLOW_TRANS_VH_DEFAULT, HCI_MH_ALLOWABLE_TRAN_OF_VH);
	/* IID information is replaced in TASKTAG[7:5] instead of IID in UCD */
	hci_writel(ufs, 0x1, HCI_MH_IID_IN_TASK_TAG);

	return 0;
}

static int exynosauto_ufs_pre_link(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	int i;
	u32 tx_line_reset_period, rx_line_reset_period;

	rx_line_reset_period = (RX_LINE_RESET_TIME * ufs->mclk_rate) / NSEC_PER_MSEC;
	tx_line_reset_period = (TX_LINE_RESET_TIME * ufs->mclk_rate) / NSEC_PER_MSEC;

	ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x40);
	for_each_ufs_rx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_CLK_PRD, i),
			       DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_CLK_PRD_EN, i), 0x0);

		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE2, i),
			       (rx_line_reset_period >> 16) & 0xFF);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE1, i),
			       (rx_line_reset_period >> 8) & 0xFF);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE0, i),
			       (rx_line_reset_period) & 0xFF);

		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x2f, i), 0x79);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x84, i), 0x1);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x25, i), 0xf6);
	}

	for_each_ufs_tx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_CLK_PRD, i),
			       DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate));
		/* Not to affect VND_TX_LINERESET_PVALUE to VND_TX_CLK_PRD */
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_CLK_PRD_EN, i),
			       0x02);

		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE2, i),
			       (tx_line_reset_period >> 16) & 0xFF);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE1, i),
			       (tx_line_reset_period >> 8) & 0xFF);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE0, i),
			       (tx_line_reset_period) & 0xFF);

		/* TX PWM Gear Capability / PWM_G1_ONLY */
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x04, i), 0x1);
	}

	ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x0);

	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0x0);

	ufshcd_dme_set(hba, UIC_ARG_MIB(0xa011), 0x8000);

	return 0;
}

static int exynosauto_ufs_pre_pwr_change(struct exynos_ufs *ufs,
					 struct ufs_pa_layer_attr *pwr)
{
	struct ufs_hba *hba = ufs->hba;

	/* PACP_PWR_req and delivered to the remote DME */
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 12000);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 32000);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 16000);

	return 0;
}

static int exynosauto_ufs_post_pwr_change(struct exynos_ufs *ufs,
					  struct ufs_pa_layer_attr *pwr)
{
	struct ufs_hba *hba = ufs->hba;
	u32 enabled_vh;

	enabled_vh = ufshcd_readl(hba, MHCTRL) & MHCTRL_EN_VH_MASK;

	/* Send physical host ready message to virtual hosts */
	ufshcd_writel(hba, MH_MSG(enabled_vh, MH_MSG_PH_READY), PH2VH_MBOX);

	return 0;
}

static int exynos7_ufs_pre_link(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	u32 val = ufs->drv_data->uic_attr->pa_dbg_option_suite;
	int i;

	exynos_ufs_enable_ov_tm(hba);
	for_each_ufs_tx_lane(ufs, i)
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x297, i), 0x17);
	for_each_ufs_rx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x362, i), 0xff);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x363, i), 0x00);
	}
	exynos_ufs_disable_ov_tm(hba);

	for_each_ufs_tx_lane(ufs, i)
		ufshcd_dme_set(hba,
			UIC_ARG_MIB_SEL(TX_HIBERN8_CONTROL, i), 0x0);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_TXPHY_CFGUPDT), 0x1);
	udelay(1);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE), val | (1 << 12));
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_SKIP_RESET_PHY), 0x1);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_SKIP_LINE_RESET), 0x1);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_LINE_RESET_REQ), 0x1);
	udelay(1600);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE), val);

	return 0;
}

static int exynos7_ufs_post_link(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	int i;

	exynos_ufs_enable_ov_tm(hba);
	for_each_ufs_tx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x28b, i), 0x83);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x29a, i), 0x07);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x277, i),
			TX_LINERESET_N(exynos_ufs_calc_time_cntr(ufs, 200000)));
	}
	exynos_ufs_disable_ov_tm(hba);

	exynos_ufs_enable_dbg_mode(hba);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SAVECONFIGTIME), 0xbb8);
	exynos_ufs_disable_dbg_mode(hba);

	return 0;
}

static int exynos7_ufs_pre_pwr_change(struct exynos_ufs *ufs,
						struct ufs_pa_layer_attr *pwr)
{
	unipro_writel(ufs, 0x22, UNIPRO_DBG_FORCE_DME_CTRL_STATE);

	return 0;
}

static int exynos7_ufs_post_pwr_change(struct exynos_ufs *ufs,
						struct ufs_pa_layer_attr *pwr)
{
	struct ufs_hba *hba = ufs->hba;
	int lanes = max_t(u32, pwr->lane_rx, pwr->lane_tx);

	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_RXPHY_CFGUPDT), 0x1);

	if (lanes == 1) {
		exynos_ufs_enable_dbg_mode(hba);
		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 0x1);
		exynos_ufs_disable_dbg_mode(hba);
	}

	return 0;
}

/*
 * exynos_ufs_auto_ctrl_hcc - HCI core clock control by h/w
 * Control should be disabled in the below cases
 * - Before host controller S/W reset
 * - Access to UFS protector's register
 */
static void exynos_ufs_auto_ctrl_hcc(struct exynos_ufs *ufs, bool en)
{
	u32 misc = hci_readl(ufs, HCI_MISC);

	if (en)
		hci_writel(ufs, misc | HCI_CORECLK_CTRL_EN, HCI_MISC);
	else
		hci_writel(ufs, misc & ~HCI_CORECLK_CTRL_EN, HCI_MISC);
}

static void exynos_ufs_ctrl_clkstop(struct exynos_ufs *ufs, bool en)
{
	u32 ctrl = hci_readl(ufs, HCI_CLKSTOP_CTRL);
	u32 misc = hci_readl(ufs, HCI_MISC);

	if (en) {
		hci_writel(ufs, misc | CLK_CTRL_EN_MASK, HCI_MISC);
		hci_writel(ufs, ctrl | CLK_STOP_MASK, HCI_CLKSTOP_CTRL);
	} else {
		hci_writel(ufs, ctrl & ~CLK_STOP_MASK, HCI_CLKSTOP_CTRL);
		hci_writel(ufs, misc & ~CLK_CTRL_EN_MASK, HCI_MISC);
	}
}

static int exynos_ufs_get_clk_info(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	struct list_head *head = &hba->clk_list_head;
	struct ufs_clk_info *clki;
	unsigned long pclk_rate;
	u32 f_min, f_max;
	u8 div = 0;
	int ret = 0;

	if (list_empty(head))
		goto out;

	list_for_each_entry(clki, head, list) {
		if (!IS_ERR(clki->clk)) {
			if (!strcmp(clki->name, "core_clk"))
				ufs->clk_hci_core = clki->clk;
			else if (!strcmp(clki->name, "sclk_unipro_main"))
				ufs->clk_unipro_main = clki->clk;
		}
	}

	if (!ufs->clk_hci_core || !ufs->clk_unipro_main) {
		dev_err(hba->dev, "failed to get clk info\n");
		ret = -EINVAL;
		goto out;
	}

	ufs->mclk_rate = clk_get_rate(ufs->clk_unipro_main);
	pclk_rate = clk_get_rate(ufs->clk_hci_core);
	f_min = ufs->pclk_avail_min;
	f_max = ufs->pclk_avail_max;

	if (ufs->opts & EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL) {
		do {
			pclk_rate /= (div + 1);

			if (pclk_rate <= f_max)
				break;
			div++;
		} while (pclk_rate >= f_min);
	}

	if (unlikely(pclk_rate < f_min || pclk_rate > f_max)) {
		dev_err(hba->dev, "not available pclk range %lu\n", pclk_rate);
		ret = -EINVAL;
		goto out;
	}

	ufs->pclk_rate = pclk_rate;
	ufs->pclk_div = div;

out:
	return ret;
}

static void exynos_ufs_set_unipro_pclk_div(struct exynos_ufs *ufs)
{
	if (ufs->opts & EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL) {
		u32 val;

		val = hci_readl(ufs, HCI_UNIPRO_APB_CLK_CTRL);
		hci_writel(ufs, UNIPRO_APB_CLK(val, ufs->pclk_div),
			   HCI_UNIPRO_APB_CLK_CTRL);
	}
}

static void exynos_ufs_set_pwm_clk_div(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;

	ufshcd_dme_set(hba,
		UIC_ARG_MIB(CMN_PWM_CLK_CTRL), attr->cmn_pwm_clk_ctrl);
}

static void exynos_ufs_calc_pwm_clk_div(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
	const unsigned int div = 30, mult = 20;
	const unsigned long pwm_min = 3 * 1000 * 1000;
	const unsigned long pwm_max = 9 * 1000 * 1000;
	const int divs[] = {32, 16, 8, 4};
	unsigned long clk = 0, _clk, clk_period;
	int i = 0, clk_idx = -1;

	clk_period = UNIPRO_PCLK_PERIOD(ufs);
	for (i = 0; i < ARRAY_SIZE(divs); i++) {
		_clk = NSEC_PER_SEC * mult / (clk_period * divs[i] * div);
		if (_clk >= pwm_min && _clk <= pwm_max) {
			if (_clk > clk) {
				clk_idx = i;
				clk = _clk;
			}
		}
	}

	if (clk_idx == -1) {
		ufshcd_dme_get(hba, UIC_ARG_MIB(CMN_PWM_CLK_CTRL), &clk_idx);
		dev_err(hba->dev,
			"failed to decide pwm clock divider, will not change\n");
	}

	attr->cmn_pwm_clk_ctrl = clk_idx & PWM_CLK_CTRL_MASK;
}

long exynos_ufs_calc_time_cntr(struct exynos_ufs *ufs, long period)
{
	const int precise = 10;
	long pclk_rate = ufs->pclk_rate;
	long clk_period, fraction;

	clk_period = UNIPRO_PCLK_PERIOD(ufs);
	fraction = ((NSEC_PER_SEC % pclk_rate) * precise) / pclk_rate;

	return (period * precise) / ((clk_period * precise) + fraction);
}

static void exynos_ufs_specify_phy_time_attr(struct exynos_ufs *ufs)
{
	struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
	struct ufs_phy_time_cfg *t_cfg = &ufs->t_cfg;

	t_cfg->tx_linereset_p =
		exynos_ufs_calc_time_cntr(ufs, attr->tx_dif_p_nsec);
	t_cfg->tx_linereset_n =
		exynos_ufs_calc_time_cntr(ufs, attr->tx_dif_n_nsec);
	t_cfg->tx_high_z_cnt =
		exynos_ufs_calc_time_cntr(ufs, attr->tx_high_z_cnt_nsec);
	t_cfg->tx_base_n_val =
		exynos_ufs_calc_time_cntr(ufs, attr->tx_base_unit_nsec);
	t_cfg->tx_gran_n_val =
		exynos_ufs_calc_time_cntr(ufs, attr->tx_gran_unit_nsec);
	t_cfg->tx_sleep_cnt =
		exynos_ufs_calc_time_cntr(ufs, attr->tx_sleep_cnt);

	t_cfg->rx_linereset =
		exynos_ufs_calc_time_cntr(ufs, attr->rx_dif_p_nsec);
	t_cfg->rx_hibern8_wait =
		exynos_ufs_calc_time_cntr(ufs, attr->rx_hibern8_wait_nsec);
	t_cfg->rx_base_n_val =
		exynos_ufs_calc_time_cntr(ufs, attr->rx_base_unit_nsec);
	t_cfg->rx_gran_n_val =
		exynos_ufs_calc_time_cntr(ufs, attr->rx_gran_unit_nsec);
	t_cfg->rx_sleep_cnt =
		exynos_ufs_calc_time_cntr(ufs, attr->rx_sleep_cnt);
	t_cfg->rx_stall_cnt =
		exynos_ufs_calc_time_cntr(ufs, attr->rx_stall_cnt);
}

static void exynos_ufs_config_phy_time_attr(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	struct ufs_phy_time_cfg *t_cfg = &ufs->t_cfg;
	int i;

	exynos_ufs_set_pwm_clk_div(ufs);

	exynos_ufs_enable_ov_tm(hba);

	for_each_ufs_rx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_FILLER_ENABLE, i),
				ufs->drv_data->uic_attr->rx_filler_enable);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_LINERESET_VAL, i),
				RX_LINERESET(t_cfg->rx_linereset));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_BASE_NVAL_07_00, i),
				RX_BASE_NVAL_L(t_cfg->rx_base_n_val));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_BASE_NVAL_15_08, i),
				RX_BASE_NVAL_H(t_cfg->rx_base_n_val));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_GRAN_NVAL_07_00, i),
				RX_GRAN_NVAL_L(t_cfg->rx_gran_n_val));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_GRAN_NVAL_10_08, i),
				RX_GRAN_NVAL_H(t_cfg->rx_gran_n_val));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_OV_SLEEP_CNT_TIMER, i),
				RX_OV_SLEEP_CNT(t_cfg->rx_sleep_cnt));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_OV_STALL_CNT_TIMER, i),
				RX_OV_STALL_CNT(t_cfg->rx_stall_cnt));
	}

	for_each_ufs_tx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_LINERESET_P_VAL, i),
				TX_LINERESET_P(t_cfg->tx_linereset_p));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIGH_Z_CNT_07_00, i),
				TX_HIGH_Z_CNT_L(t_cfg->tx_high_z_cnt));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIGH_Z_CNT_11_08, i),
				TX_HIGH_Z_CNT_H(t_cfg->tx_high_z_cnt));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_BASE_NVAL_07_00, i),
				TX_BASE_NVAL_L(t_cfg->tx_base_n_val));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_BASE_NVAL_15_08, i),
				TX_BASE_NVAL_H(t_cfg->tx_base_n_val));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_GRAN_NVAL_07_00, i),
				TX_GRAN_NVAL_L(t_cfg->tx_gran_n_val));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_GRAN_NVAL_10_08, i),
				TX_GRAN_NVAL_H(t_cfg->tx_gran_n_val));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_OV_SLEEP_CNT_TIMER, i),
				TX_OV_H8_ENTER_EN |
				TX_OV_SLEEP_CNT(t_cfg->tx_sleep_cnt));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_MIN_ACTIVATETIME, i),
				ufs->drv_data->uic_attr->tx_min_activatetime);
	}

	exynos_ufs_disable_ov_tm(hba);
}

static void exynos_ufs_config_phy_cap_attr(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
	int i;

	exynos_ufs_enable_ov_tm(hba);

	for_each_ufs_rx_lane(ufs, i) {
		ufshcd_dme_set(hba,
				UIC_ARG_MIB_SEL(RX_HS_G1_SYNC_LENGTH_CAP, i),
				attr->rx_hs_g1_sync_len_cap);
		ufshcd_dme_set(hba,
				UIC_ARG_MIB_SEL(RX_HS_G2_SYNC_LENGTH_CAP, i),
				attr->rx_hs_g2_sync_len_cap);
		ufshcd_dme_set(hba,
				UIC_ARG_MIB_SEL(RX_HS_G3_SYNC_LENGTH_CAP, i),
				attr->rx_hs_g3_sync_len_cap);
		ufshcd_dme_set(hba,
				UIC_ARG_MIB_SEL(RX_HS_G1_PREP_LENGTH_CAP, i),
				attr->rx_hs_g1_prep_sync_len_cap);
		ufshcd_dme_set(hba,
				UIC_ARG_MIB_SEL(RX_HS_G2_PREP_LENGTH_CAP, i),
				attr->rx_hs_g2_prep_sync_len_cap);
		ufshcd_dme_set(hba,
				UIC_ARG_MIB_SEL(RX_HS_G3_PREP_LENGTH_CAP, i),
				attr->rx_hs_g3_prep_sync_len_cap);
	}

	if (attr->rx_adv_fine_gran_sup_en == 0) {
		for_each_ufs_rx_lane(ufs, i) {
			ufshcd_dme_set(hba,
				UIC_ARG_MIB_SEL(RX_ADV_GRANULARITY_CAP, i), 0);

			if (attr->rx_min_actv_time_cap)
				ufshcd_dme_set(hba,
					UIC_ARG_MIB_SEL(
					RX_MIN_ACTIVATETIME_CAPABILITY, i),
					attr->rx_min_actv_time_cap);

			if (attr->rx_hibern8_time_cap)
				ufshcd_dme_set(hba,
					UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAP, i),
						attr->rx_hibern8_time_cap);
		}
	} else if (attr->rx_adv_fine_gran_sup_en == 1) {
		for_each_ufs_rx_lane(ufs, i) {
			if (attr->rx_adv_fine_gran_step)
				ufshcd_dme_set(hba,
					UIC_ARG_MIB_SEL(RX_ADV_GRANULARITY_CAP,
						i), RX_ADV_FINE_GRAN_STEP(
						attr->rx_adv_fine_gran_step));

			if (attr->rx_adv_min_actv_time_cap)
				ufshcd_dme_set(hba,
					UIC_ARG_MIB_SEL(
						RX_ADV_MIN_ACTIVATETIME_CAP, i),
						attr->rx_adv_min_actv_time_cap);

			if (attr->rx_adv_hibern8_time_cap)
				ufshcd_dme_set(hba,
					UIC_ARG_MIB_SEL(RX_ADV_HIBERN8TIME_CAP,
						i),
						attr->rx_adv_hibern8_time_cap);
		}
	}

	exynos_ufs_disable_ov_tm(hba);
}

static void exynos_ufs_establish_connt(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	enum {
		DEV_ID		= 0x00,
		PEER_DEV_ID	= 0x01,
		PEER_CPORT_ID	= 0x00,
		TRAFFIC_CLASS	= 0x00,
	};

	/* allow cport attributes to be set */
	ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_IDLE);

	/* local unipro attributes */
	ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID), DEV_ID);
	ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID_VALID), true);
	ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERDEVICEID), PEER_DEV_ID);
	ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERCPORTID), PEER_CPORT_ID);
	ufshcd_dme_set(hba, UIC_ARG_MIB(T_CPORTFLAGS), CPORT_DEF_FLAGS);
	ufshcd_dme_set(hba, UIC_ARG_MIB(T_TRAFFICCLASS), TRAFFIC_CLASS);
	ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_CONNECTED);
}

static void exynos_ufs_config_smu(struct exynos_ufs *ufs)
{
	u32 reg, val;

	exynos_ufs_disable_auto_ctrl_hcc_save(ufs, &val);

	/* make encryption disabled by default */
	reg = ufsp_readl(ufs, UFSPRSECURITY);
	ufsp_writel(ufs, reg | NSSMU, UFSPRSECURITY);
	ufsp_writel(ufs, 0x0, UFSPSBEGIN0);
	ufsp_writel(ufs, 0xffffffff, UFSPSEND0);
	ufsp_writel(ufs, 0xff, UFSPSLUN0);
	ufsp_writel(ufs, 0xf1, UFSPSCTRL0);

	exynos_ufs_auto_ctrl_hcc_restore(ufs, &val);
}

static void exynos_ufs_config_sync_pattern_mask(struct exynos_ufs *ufs,
					struct ufs_pa_layer_attr *pwr)
{
	struct ufs_hba *hba = ufs->hba;
	u8 g = max_t(u32, pwr->gear_rx, pwr->gear_tx);
	u32 mask, sync_len;
	enum {
		SYNC_LEN_G1 = 80 * 1000, /* 80us */
		SYNC_LEN_G2 = 40 * 1000, /* 44us */
		SYNC_LEN_G3 = 20 * 1000, /* 20us */
	};
	int i;

	if (g == 1)
		sync_len = SYNC_LEN_G1;
	else if (g == 2)
		sync_len = SYNC_LEN_G2;
	else if (g == 3)
		sync_len = SYNC_LEN_G3;
	else
		return;

	mask = exynos_ufs_calc_time_cntr(ufs, sync_len);
	mask = (mask >> 8) & 0xff;

	exynos_ufs_enable_ov_tm(hba);

	for_each_ufs_rx_lane(ufs, i)
		ufshcd_dme_set(hba,
			UIC_ARG_MIB_SEL(RX_SYNC_MASK_LENGTH, i), mask);

	exynos_ufs_disable_ov_tm(hba);
}

static int exynos_ufs_pre_pwr_mode(struct ufs_hba *hba,
				struct ufs_pa_layer_attr *dev_max_params,
				struct ufs_pa_layer_attr *dev_req_params)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);
	struct phy *generic_phy = ufs->phy;
	struct ufs_dev_params ufs_exynos_cap;
	int ret;

	if (!dev_req_params) {
		pr_err("%s: incoming dev_req_params is NULL\n", __func__);
		ret = -EINVAL;
		goto out;
	}

	ufshcd_init_pwr_dev_param(&ufs_exynos_cap);

	ret = ufshcd_get_pwr_dev_param(&ufs_exynos_cap,
				       dev_max_params, dev_req_params);
	if (ret) {
		pr_err("%s: failed to determine capabilities\n", __func__);
		goto out;
	}

	if (ufs->drv_data->pre_pwr_change)
		ufs->drv_data->pre_pwr_change(ufs, dev_req_params);

	if (ufshcd_is_hs_mode(dev_req_params)) {
		exynos_ufs_config_sync_pattern_mask(ufs, dev_req_params);

		switch (dev_req_params->hs_rate) {
		case PA_HS_MODE_A:
		case PA_HS_MODE_B:
			phy_calibrate(generic_phy);
			break;
		}
	}

	/* setting for three timeout values for traffic class #0 */
	ufshcd_dme_set(hba, UIC_ARG_MIB(DL_FC0PROTTIMEOUTVAL), 8064);
	ufshcd_dme_set(hba, UIC_ARG_MIB(DL_TC0REPLAYTIMEOUTVAL), 28224);
	ufshcd_dme_set(hba, UIC_ARG_MIB(DL_AFC0REQTIMEOUTVAL), 20160);

	return 0;
out:
	return ret;
}

#define PWR_MODE_STR_LEN	64
static int exynos_ufs_post_pwr_mode(struct ufs_hba *hba,
				struct ufs_pa_layer_attr *pwr_req)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);
	struct phy *generic_phy = ufs->phy;
	int gear = max_t(u32, pwr_req->gear_rx, pwr_req->gear_tx);
	int lanes = max_t(u32, pwr_req->lane_rx, pwr_req->lane_tx);
	char pwr_str[PWR_MODE_STR_LEN] = "";

	/* let default be PWM Gear 1, Lane 1 */
	if (!gear)
		gear = 1;

	if (!lanes)
		lanes = 1;

	if (ufs->drv_data->post_pwr_change)
		ufs->drv_data->post_pwr_change(ufs, pwr_req);

	if ((ufshcd_is_hs_mode(pwr_req))) {
		switch (pwr_req->hs_rate) {
		case PA_HS_MODE_A:
		case PA_HS_MODE_B:
			phy_calibrate(generic_phy);
			break;
		}

		snprintf(pwr_str, PWR_MODE_STR_LEN, "%s series_%s G_%d L_%d",
			"FAST",	pwr_req->hs_rate == PA_HS_MODE_A ? "A" : "B",
			gear, lanes);
	} else {
		snprintf(pwr_str, PWR_MODE_STR_LEN, "%s G_%d L_%d",
			"SLOW", gear, lanes);
	}

	dev_info(hba->dev, "Power mode changed to : %s\n", pwr_str);

	return 0;
}

static void exynos_ufs_specify_nexus_t_xfer_req(struct ufs_hba *hba,
						int tag, bool is_scsi_cmd)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);
	u32 type;

	type =  hci_readl(ufs, HCI_UTRL_NEXUS_TYPE);

	if (is_scsi_cmd)
		hci_writel(ufs, type | (1 << tag), HCI_UTRL_NEXUS_TYPE);
	else
		hci_writel(ufs, type & ~(1 << tag), HCI_UTRL_NEXUS_TYPE);
}

static void exynos_ufs_specify_nexus_t_tm_req(struct ufs_hba *hba,
						int tag, u8 func)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);
	u32 type;

	type =  hci_readl(ufs, HCI_UTMRL_NEXUS_TYPE);

	switch (func) {
	case UFS_ABORT_TASK:
	case UFS_QUERY_TASK:
		hci_writel(ufs, type | (1 << tag), HCI_UTMRL_NEXUS_TYPE);
		break;
	case UFS_ABORT_TASK_SET:
	case UFS_CLEAR_TASK_SET:
	case UFS_LOGICAL_RESET:
	case UFS_QUERY_TASK_SET:
		hci_writel(ufs, type & ~(1 << tag), HCI_UTMRL_NEXUS_TYPE);
		break;
	}
}

static int exynos_ufs_phy_init(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;
	struct phy *generic_phy = ufs->phy;
	int ret = 0;

	if (ufs->avail_ln_rx == 0 || ufs->avail_ln_tx == 0) {
		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_AVAILRXDATALANES),
			&ufs->avail_ln_rx);
		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_AVAILTXDATALANES),
			&ufs->avail_ln_tx);
		WARN(ufs->avail_ln_rx != ufs->avail_ln_tx,
			"available data lane is not equal(rx:%d, tx:%d)\n",
			ufs->avail_ln_rx, ufs->avail_ln_tx);
	}

	phy_set_bus_width(generic_phy, ufs->avail_ln_rx);
	ret = phy_init(generic_phy);
	if (ret) {
		dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
			__func__, ret);
		return ret;
	}

	ret = phy_power_on(generic_phy);
	if (ret)
		goto out_exit_phy;

	return 0;

out_exit_phy:
	phy_exit(generic_phy);

	return ret;
}

static void exynos_ufs_config_unipro(struct exynos_ufs *ufs)
{
	struct ufs_hba *hba = ufs->hba;

	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_CLK_PERIOD),
		DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate));
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTRAILINGCLOCKS),
			ufs->drv_data->uic_attr->tx_trailingclks);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE),
			ufs->drv_data->uic_attr->pa_dbg_option_suite);
}

static void exynos_ufs_config_intr(struct exynos_ufs *ufs, u32 errs, u8 index)
{
	switch (index) {
	case UNIPRO_L1_5:
		hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_PA_LAYER);
		break;
	case UNIPRO_L2:
		hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_DL_LAYER);
		break;
	case UNIPRO_L3:
		hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_N_LAYER);
		break;
	case UNIPRO_L4:
		hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_T_LAYER);
		break;
	case UNIPRO_DME:
		hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_DME_LAYER);
		break;
	}
}

static int exynos_ufs_setup_clocks(struct ufs_hba *hba, bool on,
				   enum ufs_notify_change_status status)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);

	if (!ufs)
		return 0;

	if (on && status == PRE_CHANGE) {
		if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)
			exynos_ufs_disable_auto_ctrl_hcc(ufs);
		exynos_ufs_ungate_clks(ufs);
	} else if (!on && status == POST_CHANGE) {
		exynos_ufs_gate_clks(ufs);
		if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)
			exynos_ufs_enable_auto_ctrl_hcc(ufs);
	}

	return 0;
}

static int exynos_ufs_pre_link(struct ufs_hba *hba)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);

	/* hci */
	exynos_ufs_config_intr(ufs, DFES_DEF_L2_ERRS, UNIPRO_L2);
	exynos_ufs_config_intr(ufs, DFES_DEF_L3_ERRS, UNIPRO_L3);
	exynos_ufs_config_intr(ufs, DFES_DEF_L4_ERRS, UNIPRO_L4);
	exynos_ufs_set_unipro_pclk_div(ufs);

	/* unipro */
	exynos_ufs_config_unipro(ufs);

	/* m-phy */
	exynos_ufs_phy_init(ufs);
	if (!(ufs->opts & EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR)) {
		exynos_ufs_config_phy_time_attr(ufs);
		exynos_ufs_config_phy_cap_attr(ufs);
	}

	exynos_ufs_setup_clocks(hba, true, PRE_CHANGE);

	if (ufs->drv_data->pre_link)
		ufs->drv_data->pre_link(ufs);

	return 0;
}

static void exynos_ufs_fit_aggr_timeout(struct exynos_ufs *ufs)
{
	u32 val;

	val = exynos_ufs_calc_time_cntr(ufs, IATOVAL_NSEC / CNTR_DIV_VAL);
	hci_writel(ufs, val & CNT_VAL_1US_MASK, HCI_1US_TO_CNT_VAL);
}

static int exynos_ufs_post_link(struct ufs_hba *hba)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);
	struct phy *generic_phy = ufs->phy;
	struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;

	exynos_ufs_establish_connt(ufs);
	exynos_ufs_fit_aggr_timeout(ufs);

	hci_writel(ufs, 0xa, HCI_DATA_REORDER);
	hci_writel(ufs, PRDT_SET_SIZE(12), HCI_TXPRDT_ENTRY_SIZE);
	hci_writel(ufs, PRDT_SET_SIZE(12), HCI_RXPRDT_ENTRY_SIZE);
	hci_writel(ufs, (1 << hba->nutrs) - 1, HCI_UTRL_NEXUS_TYPE);
	hci_writel(ufs, (1 << hba->nutmrs) - 1, HCI_UTMRL_NEXUS_TYPE);
	hci_writel(ufs, 0xf, HCI_AXIDMA_RWDATA_BURST_LEN);

	if (ufs->opts & EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB)
		ufshcd_dme_set(hba,
			UIC_ARG_MIB(T_DBG_SKIP_INIT_HIBERN8_EXIT), true);

	if (attr->pa_granularity) {
		exynos_ufs_enable_dbg_mode(hba);
		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_GRANULARITY),
				attr->pa_granularity);
		exynos_ufs_disable_dbg_mode(hba);

		if (attr->pa_tactivate)
			ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
					attr->pa_tactivate);
		if (attr->pa_hibern8time &&
		    !(ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER))
			ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
					attr->pa_hibern8time);
	}

	if (ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER) {
		if (!attr->pa_granularity)
			ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
					&attr->pa_granularity);
		if (!attr->pa_hibern8time)
			ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
					&attr->pa_hibern8time);
		/*
		 * not wait for HIBERN8 time to exit hibernation
		 */
		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 0);

		if (attr->pa_granularity < 1 || attr->pa_granularity > 6) {
			/* Valid range for granularity: 1 ~ 6 */
			dev_warn(hba->dev,
				"%s: pa_granularity %d is invalid, assuming backwards compatibility\n",
				__func__,
				attr->pa_granularity);
			attr->pa_granularity = 6;
		}
	}

	phy_calibrate(generic_phy);

	if (ufs->drv_data->post_link)
		ufs->drv_data->post_link(ufs);

	return 0;
}

static int exynos_ufs_parse_dt(struct device *dev, struct exynos_ufs *ufs)
{
	struct device_node *np = dev->of_node;
	struct exynos_ufs_uic_attr *attr;
	int ret = 0;

	ufs->drv_data = device_get_match_data(dev);

	if (ufs->drv_data && ufs->drv_data->uic_attr) {
		attr = ufs->drv_data->uic_attr;
	} else {
		dev_err(dev, "failed to get uic attributes\n");
		ret = -EINVAL;
		goto out;
	}

	ufs->sysreg = syscon_regmap_lookup_by_phandle(np, "samsung,sysreg");
	if (IS_ERR(ufs->sysreg))
		ufs->sysreg = NULL;
	else {
		if (of_property_read_u32_index(np, "samsung,sysreg", 1,
					       &ufs->shareability_reg_offset)) {
			dev_warn(dev, "can't get an offset from sysreg. Set to default value\n");
			ufs->shareability_reg_offset = UFS_SHAREABILITY_OFFSET;
		}
	}

	ufs->pclk_avail_min = PCLK_AVAIL_MIN;
	ufs->pclk_avail_max = PCLK_AVAIL_MAX;

	attr->rx_adv_fine_gran_sup_en = RX_ADV_FINE_GRAN_SUP_EN;
	attr->rx_adv_fine_gran_step = RX_ADV_FINE_GRAN_STEP_VAL;
	attr->rx_adv_min_actv_time_cap = RX_ADV_MIN_ACTV_TIME_CAP;
	attr->pa_granularity = PA_GRANULARITY_VAL;
	attr->pa_tactivate = PA_TACTIVATE_VAL;
	attr->pa_hibern8time = PA_HIBERN8TIME_VAL;

out:
	return ret;
}

static inline void exynos_ufs_priv_init(struct ufs_hba *hba,
					struct exynos_ufs *ufs)
{
	ufs->hba = hba;
	ufs->opts = ufs->drv_data->opts;
	ufs->rx_sel_idx = PA_MAXDATALANES;
	if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX)
		ufs->rx_sel_idx = 0;
	hba->priv = (void *)ufs;
	hba->quirks = ufs->drv_data->quirks;
}

static int exynos_ufs_init(struct ufs_hba *hba)
{
	struct device *dev = hba->dev;
	struct platform_device *pdev = to_platform_device(dev);
	struct exynos_ufs *ufs;
	int ret;

	ufs = devm_kzalloc(dev, sizeof(*ufs), GFP_KERNEL);
	if (!ufs)
		return -ENOMEM;

	/* exynos-specific hci */
	ufs->reg_hci = devm_platform_ioremap_resource_byname(pdev, "vs_hci");
	if (IS_ERR(ufs->reg_hci)) {
		dev_err(dev, "cannot ioremap for hci vendor register\n");
		return PTR_ERR(ufs->reg_hci);
	}

	/* unipro */
	ufs->reg_unipro = devm_platform_ioremap_resource_byname(pdev, "unipro");
	if (IS_ERR(ufs->reg_unipro)) {
		dev_err(dev, "cannot ioremap for unipro register\n");
		return PTR_ERR(ufs->reg_unipro);
	}

	/* ufs protector */
	ufs->reg_ufsp = devm_platform_ioremap_resource_byname(pdev, "ufsp");
	if (IS_ERR(ufs->reg_ufsp)) {
		dev_err(dev, "cannot ioremap for ufs protector register\n");
		return PTR_ERR(ufs->reg_ufsp);
	}

	ret = exynos_ufs_parse_dt(dev, ufs);
	if (ret) {
		dev_err(dev, "failed to get dt info.\n");
		goto out;
	}

	ufs->phy = devm_phy_get(dev, "ufs-phy");
	if (IS_ERR(ufs->phy)) {
		ret = PTR_ERR(ufs->phy);
		dev_err(dev, "failed to get ufs-phy\n");
		goto out;
	}

	exynos_ufs_priv_init(hba, ufs);

	if (ufs->drv_data->drv_init) {
		ret = ufs->drv_data->drv_init(dev, ufs);
		if (ret) {
			dev_err(dev, "failed to init drv-data\n");
			goto out;
		}
	}

	ret = exynos_ufs_get_clk_info(ufs);
	if (ret)
		goto out;
	exynos_ufs_specify_phy_time_attr(ufs);
	exynos_ufs_config_smu(ufs);
	return 0;

out:
	hba->priv = NULL;
	return ret;
}

static int exynos_ufs_host_reset(struct ufs_hba *hba)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);
	unsigned long timeout = jiffies + msecs_to_jiffies(1);
	u32 val;
	int ret = 0;

	exynos_ufs_disable_auto_ctrl_hcc_save(ufs, &val);

	hci_writel(ufs, UFS_SW_RST_MASK, HCI_SW_RST);

	do {
		if (!(hci_readl(ufs, HCI_SW_RST) & UFS_SW_RST_MASK))
			goto out;
	} while (time_before(jiffies, timeout));

	dev_err(hba->dev, "timeout host sw-reset\n");
	ret = -ETIMEDOUT;

out:
	exynos_ufs_auto_ctrl_hcc_restore(ufs, &val);
	return ret;
}

static void exynos_ufs_dev_hw_reset(struct ufs_hba *hba)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);

	hci_writel(ufs, 0 << 0, HCI_GPIO_OUT);
	udelay(5);
	hci_writel(ufs, 1 << 0, HCI_GPIO_OUT);
}

static void exynos_ufs_pre_hibern8(struct ufs_hba *hba, u8 enter)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);
	struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;

	if (!enter) {
		if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)
			exynos_ufs_disable_auto_ctrl_hcc(ufs);
		exynos_ufs_ungate_clks(ufs);

		if (ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER) {
			static const unsigned int granularity_tbl[] = {
				1, 4, 8, 16, 32, 100
			};
			int h8_time = attr->pa_hibern8time *
				granularity_tbl[attr->pa_granularity - 1];
			unsigned long us;
			s64 delta;

			do {
				delta = h8_time - ktime_us_delta(ktime_get(),
							ufs->entry_hibern8_t);
				if (delta <= 0)
					break;

				us = min_t(s64, delta, USEC_PER_MSEC);
				if (us >= 10)
					usleep_range(us, us + 10);
			} while (1);
		}
	}
}

static void exynos_ufs_post_hibern8(struct ufs_hba *hba, u8 enter)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);

	if (!enter) {
		u32 cur_mode = 0;
		u32 pwrmode;

		if (ufshcd_is_hs_mode(&ufs->dev_req_params))
			pwrmode = FAST_MODE;
		else
			pwrmode = SLOW_MODE;

		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &cur_mode);
		if (cur_mode != (pwrmode << 4 | pwrmode)) {
			dev_warn(hba->dev, "%s: power mode change\n", __func__);
			hba->pwr_info.pwr_rx = (cur_mode >> 4) & 0xf;
			hba->pwr_info.pwr_tx = cur_mode & 0xf;
			ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
		}

		if (!(ufs->opts & EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB))
			exynos_ufs_establish_connt(ufs);
	} else {
		ufs->entry_hibern8_t = ktime_get();
		exynos_ufs_gate_clks(ufs);
		if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)
			exynos_ufs_enable_auto_ctrl_hcc(ufs);
	}
}

static int exynos_ufs_hce_enable_notify(struct ufs_hba *hba,
					enum ufs_notify_change_status status)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);
	int ret = 0;

	switch (status) {
	case PRE_CHANGE:
		/*
		 * The maximum segment size must be set after scsi_host_alloc()
		 * has been called and before LUN scanning starts
		 * (ufshcd_async_scan()). Note: this callback may also be called
		 * from other functions than ufshcd_init().
		 */
		hba->host->max_segment_size = SZ_4K;

		if (ufs->drv_data->pre_hce_enable) {
			ret = ufs->drv_data->pre_hce_enable(ufs);
			if (ret)
				return ret;
		}

		ret = exynos_ufs_host_reset(hba);
		if (ret)
			return ret;
		exynos_ufs_dev_hw_reset(hba);
		break;
	case POST_CHANGE:
		exynos_ufs_calc_pwm_clk_div(ufs);
		if (!(ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL))
			exynos_ufs_enable_auto_ctrl_hcc(ufs);

		if (ufs->drv_data->post_hce_enable)
			ret = ufs->drv_data->post_hce_enable(ufs);

		break;
	}

	return ret;
}

static int exynos_ufs_link_startup_notify(struct ufs_hba *hba,
					  enum ufs_notify_change_status status)
{
	int ret = 0;

	switch (status) {
	case PRE_CHANGE:
		ret = exynos_ufs_pre_link(hba);
		break;
	case POST_CHANGE:
		ret = exynos_ufs_post_link(hba);
		break;
	}

	return ret;
}

static int exynos_ufs_pwr_change_notify(struct ufs_hba *hba,
				enum ufs_notify_change_status status,
				struct ufs_pa_layer_attr *dev_max_params,
				struct ufs_pa_layer_attr *dev_req_params)
{
	int ret = 0;

	switch (status) {
	case PRE_CHANGE:
		ret = exynos_ufs_pre_pwr_mode(hba, dev_max_params,
					      dev_req_params);
		break;
	case POST_CHANGE:
		ret = exynos_ufs_post_pwr_mode(hba, dev_req_params);
		break;
	}

	return ret;
}

static void exynos_ufs_hibern8_notify(struct ufs_hba *hba,
				     enum uic_cmd_dme enter,
				     enum ufs_notify_change_status notify)
{
	switch ((u8)notify) {
	case PRE_CHANGE:
		exynos_ufs_pre_hibern8(hba, enter);
		break;
	case POST_CHANGE:
		exynos_ufs_post_hibern8(hba, enter);
		break;
	}
}

static int exynos_ufs_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
	enum ufs_notify_change_status status)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);

	if (status == PRE_CHANGE)
		return 0;

	if (!ufshcd_is_link_active(hba))
		phy_power_off(ufs->phy);

	return 0;
}

static int exynos_ufs_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);

	if (!ufshcd_is_link_active(hba))
		phy_power_on(ufs->phy);

	exynos_ufs_config_smu(ufs);

	return 0;
}

static int exynosauto_ufs_vh_link_startup_notify(struct ufs_hba *hba,
						 enum ufs_notify_change_status status)
{
	if (status == POST_CHANGE) {
		ufshcd_set_link_active(hba);
		ufshcd_set_ufs_dev_active(hba);
	}

	return 0;
}

static int exynosauto_ufs_vh_wait_ph_ready(struct ufs_hba *hba)
{
	u32 mbox;
	ktime_t start, stop;

	start = ktime_get();
	stop = ktime_add(start, ms_to_ktime(PH_READY_TIMEOUT_MS));

	do {
		mbox = ufshcd_readl(hba, PH2VH_MBOX);
		/* TODO: Mailbox message protocols between the PH and VHs are
		 * not implemented yet. This will be supported later
		 */
		if ((mbox & MH_MSG_MASK) == MH_MSG_PH_READY)
			return 0;

		usleep_range(40, 50);
	} while (ktime_before(ktime_get(), stop));

	return -ETIME;
}

static int exynosauto_ufs_vh_init(struct ufs_hba *hba)
{
	struct device *dev = hba->dev;
	struct platform_device *pdev = to_platform_device(dev);
	struct exynos_ufs *ufs;
	int ret;

	ufs = devm_kzalloc(dev, sizeof(*ufs), GFP_KERNEL);
	if (!ufs)
		return -ENOMEM;

	/* exynos-specific hci */
	ufs->reg_hci = devm_platform_ioremap_resource_byname(pdev, "vs_hci");
	if (IS_ERR(ufs->reg_hci)) {
		dev_err(dev, "cannot ioremap for hci vendor register\n");
		return PTR_ERR(ufs->reg_hci);
	}

	ret = exynosauto_ufs_vh_wait_ph_ready(hba);
	if (ret)
		return ret;

	ufs->drv_data = device_get_match_data(dev);
	if (!ufs->drv_data)
		return -ENODEV;

	exynos_ufs_priv_init(hba, ufs);

	return 0;
}

static int fsd_ufs_pre_link(struct exynos_ufs *ufs)
{
	int i;
	struct ufs_hba *hba = ufs->hba;

	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_CLK_PERIOD),
		       DIV_ROUND_UP(NSEC_PER_SEC,  ufs->mclk_rate));
	ufshcd_dme_set(hba, UIC_ARG_MIB(0x201), 0x12);
	ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x40);

	for_each_ufs_tx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xAA, i),
			       DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8F, i), 0x3F);
	}

	for_each_ufs_rx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x12, i),
			       DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate));
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x5C, i), 0x38);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x0F, i), 0x0);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x65, i), 0x1);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x69, i), 0x1);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x21, i), 0x0);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x22, i), 0x0);
	}

	ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x0);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_AUTOMODE_THLD), 0x4E20);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE), 0x2e820183);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0x0);

	exynos_ufs_establish_connt(ufs);

	return 0;
}

static int fsd_ufs_post_link(struct exynos_ufs *ufs)
{
	int i;
	struct ufs_hba *hba = ufs->hba;
	u32 hw_cap_min_tactivate;
	u32 peer_rx_min_actv_time_cap;
	u32 max_rx_hibern8_time_cap;

	ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(0x8F, 4),
			&hw_cap_min_tactivate); /* HW Capability of MIN_TACTIVATE */
	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
			&peer_rx_min_actv_time_cap);    /* PA_TActivate */
	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
			&max_rx_hibern8_time_cap);      /* PA_Hibern8Time */

	if (peer_rx_min_actv_time_cap >= hw_cap_min_tactivate)
		ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
					peer_rx_min_actv_time_cap + 1);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), max_rx_hibern8_time_cap + 1);

	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_MODE), 0x01);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SAVECONFIGTIME), 0xFA);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_MODE), 0x00);

	ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x40);

	for_each_ufs_rx_lane(ufs, i) {
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x35, i), 0x05);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x73, i), 0x01);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x41, i), 0x02);
		ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x42, i), 0xAC);
	}

	ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x0);

	return 0;
}

static int fsd_ufs_pre_pwr_change(struct exynos_ufs *ufs,
					struct ufs_pa_layer_attr *pwr)
{
	struct ufs_hba *hba = ufs->hba;

	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), 0x1);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), 0x1);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 12000);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 32000);
	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 16000);

	unipro_writel(ufs, 12000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER0);
	unipro_writel(ufs, 32000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER1);
	unipro_writel(ufs, 16000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER2);

	return 0;
}

static const struct ufs_hba_variant_ops ufs_hba_exynos_ops = {
	.name				= "exynos_ufs",
	.init				= exynos_ufs_init,
	.hce_enable_notify		= exynos_ufs_hce_enable_notify,
	.link_startup_notify		= exynos_ufs_link_startup_notify,
	.pwr_change_notify		= exynos_ufs_pwr_change_notify,
	.setup_clocks			= exynos_ufs_setup_clocks,
	.setup_xfer_req			= exynos_ufs_specify_nexus_t_xfer_req,
	.setup_task_mgmt		= exynos_ufs_specify_nexus_t_tm_req,
	.hibern8_notify			= exynos_ufs_hibern8_notify,
	.suspend			= exynos_ufs_suspend,
	.resume				= exynos_ufs_resume,
};

static struct ufs_hba_variant_ops ufs_hba_exynosauto_vh_ops = {
	.name				= "exynosauto_ufs_vh",
	.init				= exynosauto_ufs_vh_init,
	.link_startup_notify		= exynosauto_ufs_vh_link_startup_notify,
};

static int exynos_ufs_probe(struct platform_device *pdev)
{
	int err;
	struct device *dev = &pdev->dev;
	const struct ufs_hba_variant_ops *vops = &ufs_hba_exynos_ops;
	const struct exynos_ufs_drv_data *drv_data =
		device_get_match_data(dev);

	if (drv_data && drv_data->vops)
		vops = drv_data->vops;

	err = ufshcd_pltfrm_init(pdev, vops);
	if (err)
		dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err);

	return err;
}

static int exynos_ufs_remove(struct platform_device *pdev)
{
	struct ufs_hba *hba =  platform_get_drvdata(pdev);
	struct exynos_ufs *ufs = ufshcd_get_variant(hba);

	pm_runtime_get_sync(&(pdev)->dev);
	ufshcd_remove(hba);

	phy_power_off(ufs->phy);
	phy_exit(ufs->phy);

	return 0;
}

static struct exynos_ufs_uic_attr exynos7_uic_attr = {
	.tx_trailingclks		= 0x10,
	.tx_dif_p_nsec			= 3000000,	/* unit: ns */
	.tx_dif_n_nsec			= 1000000,	/* unit: ns */
	.tx_high_z_cnt_nsec		= 20000,	/* unit: ns */
	.tx_base_unit_nsec		= 100000,	/* unit: ns */
	.tx_gran_unit_nsec		= 4000,		/* unit: ns */
	.tx_sleep_cnt			= 1000,		/* unit: ns */
	.tx_min_activatetime		= 0xa,
	.rx_filler_enable		= 0x2,
	.rx_dif_p_nsec			= 1000000,	/* unit: ns */
	.rx_hibern8_wait_nsec		= 4000000,	/* unit: ns */
	.rx_base_unit_nsec		= 100000,	/* unit: ns */
	.rx_gran_unit_nsec		= 4000,		/* unit: ns */
	.rx_sleep_cnt			= 1280,		/* unit: ns */
	.rx_stall_cnt			= 320,		/* unit: ns */
	.rx_hs_g1_sync_len_cap		= SYNC_LEN_COARSE(0xf),
	.rx_hs_g2_sync_len_cap		= SYNC_LEN_COARSE(0xf),
	.rx_hs_g3_sync_len_cap		= SYNC_LEN_COARSE(0xf),
	.rx_hs_g1_prep_sync_len_cap	= PREP_LEN(0xf),
	.rx_hs_g2_prep_sync_len_cap	= PREP_LEN(0xf),
	.rx_hs_g3_prep_sync_len_cap	= PREP_LEN(0xf),
	.pa_dbg_option_suite		= 0x30103,
};

static const struct exynos_ufs_drv_data exynosauto_ufs_drvs = {
	.uic_attr		= &exynos7_uic_attr,
	.quirks			= UFSHCD_QUIRK_PRDT_BYTE_GRAN |
				  UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR |
				  UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR |
				  UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING,
	.opts			= EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL |
				  EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR |
				  EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX,
	.drv_init		= exynosauto_ufs_drv_init,
	.post_hce_enable	= exynosauto_ufs_post_hce_enable,
	.pre_link		= exynosauto_ufs_pre_link,
	.pre_pwr_change		= exynosauto_ufs_pre_pwr_change,
	.post_pwr_change	= exynosauto_ufs_post_pwr_change,
};

static const struct exynos_ufs_drv_data exynosauto_ufs_vh_drvs = {
	.vops			= &ufs_hba_exynosauto_vh_ops,
	.quirks			= UFSHCD_QUIRK_PRDT_BYTE_GRAN |
				  UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR |
				  UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR |
				  UFSHCI_QUIRK_BROKEN_HCE |
				  UFSHCD_QUIRK_BROKEN_UIC_CMD |
				  UFSHCD_QUIRK_SKIP_PH_CONFIGURATION |
				  UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING,
	.opts			= EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX,
};

static const struct exynos_ufs_drv_data exynos_ufs_drvs = {
	.uic_attr		= &exynos7_uic_attr,
	.quirks			= UFSHCD_QUIRK_PRDT_BYTE_GRAN |
				  UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR |
				  UFSHCI_QUIRK_BROKEN_HCE |
				  UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR |
				  UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR |
				  UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL |
				  UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING |
				  UFSHCD_QUIRK_4KB_DMA_ALIGNMENT,
	.opts			= EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL |
				  EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL |
				  EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX |
				  EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB |
				  EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER,
	.drv_init		= exynos7_ufs_drv_init,
	.pre_link		= exynos7_ufs_pre_link,
	.post_link		= exynos7_ufs_post_link,
	.pre_pwr_change		= exynos7_ufs_pre_pwr_change,
	.post_pwr_change	= exynos7_ufs_post_pwr_change,
};

static struct exynos_ufs_uic_attr fsd_uic_attr = {
	.tx_trailingclks		= 0x10,
	.tx_dif_p_nsec			= 3000000,	/* unit: ns */
	.tx_dif_n_nsec			= 1000000,	/* unit: ns */
	.tx_high_z_cnt_nsec		= 20000,	/* unit: ns */
	.tx_base_unit_nsec		= 100000,	/* unit: ns */
	.tx_gran_unit_nsec		= 4000,		/* unit: ns */
	.tx_sleep_cnt			= 1000,		/* unit: ns */
	.tx_min_activatetime		= 0xa,
	.rx_filler_enable		= 0x2,
	.rx_dif_p_nsec			= 1000000,	/* unit: ns */
	.rx_hibern8_wait_nsec		= 4000000,	/* unit: ns */
	.rx_base_unit_nsec		= 100000,	/* unit: ns */
	.rx_gran_unit_nsec		= 4000,		/* unit: ns */
	.rx_sleep_cnt			= 1280,		/* unit: ns */
	.rx_stall_cnt			= 320,		/* unit: ns */
	.rx_hs_g1_sync_len_cap		= SYNC_LEN_COARSE(0xf),
	.rx_hs_g2_sync_len_cap		= SYNC_LEN_COARSE(0xf),
	.rx_hs_g3_sync_len_cap		= SYNC_LEN_COARSE(0xf),
	.rx_hs_g1_prep_sync_len_cap	= PREP_LEN(0xf),
	.rx_hs_g2_prep_sync_len_cap	= PREP_LEN(0xf),
	.rx_hs_g3_prep_sync_len_cap	= PREP_LEN(0xf),
	.pa_dbg_option_suite		= 0x2E820183,
};

static const struct exynos_ufs_drv_data fsd_ufs_drvs = {
	.uic_attr               = &fsd_uic_attr,
	.quirks                 = UFSHCD_QUIRK_PRDT_BYTE_GRAN |
				  UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR |
				  UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR |
				  UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING |
				  UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR,
	.opts                   = EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL |
				  EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL |
				  EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR |
				  EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX,
	.pre_link               = fsd_ufs_pre_link,
	.post_link              = fsd_ufs_post_link,
	.pre_pwr_change         = fsd_ufs_pre_pwr_change,
};

static const struct of_device_id exynos_ufs_of_match[] = {
	{ .compatible = "samsung,exynos7-ufs",
	  .data	      = &exynos_ufs_drvs },
	{ .compatible = "samsung,exynosautov9-ufs",
	  .data	      = &exynosauto_ufs_drvs },
	{ .compatible = "samsung,exynosautov9-ufs-vh",
	  .data	      = &exynosauto_ufs_vh_drvs },
	{ .compatible = "tesla,fsd-ufs",
	  .data       = &fsd_ufs_drvs },
	{},
};

static const struct dev_pm_ops exynos_ufs_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(ufshcd_system_suspend, ufshcd_system_resume)
	SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
	.prepare	 = ufshcd_suspend_prepare,
	.complete	 = ufshcd_resume_complete,
};

static struct platform_driver exynos_ufs_pltform = {
	.probe	= exynos_ufs_probe,
	.remove	= exynos_ufs_remove,
	.driver	= {
		.name	= "exynos-ufshc",
		.pm	= &exynos_ufs_pm_ops,
		.of_match_table = exynos_ufs_of_match,
	},
};
module_platform_driver(exynos_ufs_pltform);

MODULE_AUTHOR("Alim Akhtar <alim.akhtar@samsung.com>");
MODULE_AUTHOR("Seungwon Jeon  <essuuj@gmail.com>");
MODULE_DESCRIPTION("Exynos UFS HCI Driver");
MODULE_LICENSE("GPL v2");