Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alan Stern | 975 | 26.78% | 34 | 15.89% |
Johan Hovold | 470 | 12.91% | 7 | 3.27% |
Linus Torvalds (pre-git) | 335 | 9.20% | 37 | 17.29% |
Greg Kroah-Hartman | 326 | 8.95% | 33 | 15.42% |
David Brownell | 292 | 8.02% | 14 | 6.54% |
Sage Sharp | 245 | 6.73% | 7 | 3.27% |
Patrick Mochel | 160 | 4.39% | 6 | 2.80% |
Julius Werner | 99 | 2.72% | 1 | 0.47% |
Kay Sievers | 95 | 2.61% | 10 | 4.67% |
Dmitry Torokhov | 90 | 2.47% | 2 | 0.93% |
Thomas Zimmermann | 67 | 1.84% | 2 | 0.93% |
Iñaky Pérez-González | 63 | 1.73% | 1 | 0.47% |
Ari Juhani Hämeenaho | 57 | 1.57% | 1 | 0.47% |
Daniele Bellucci | 53 | 1.46% | 1 | 0.47% |
Linus Torvalds | 48 | 1.32% | 6 | 2.80% |
Russ Dill | 41 | 1.13% | 2 | 0.93% |
Peter Chen | 32 | 0.88% | 1 | 0.47% |
Randy Dunlap | 27 | 0.74% | 2 | 0.93% |
Mathias Payer | 15 | 0.41% | 1 | 0.47% |
Yinghai Lu | 14 | 0.38% | 1 | 0.47% |
Matthew Garrett | 11 | 0.30% | 1 | 0.47% |
Brian Murphy | 10 | 0.27% | 1 | 0.47% |
Luiz Fernando N. Capitulino | 10 | 0.27% | 2 | 0.93% |
Nicolai Stange | 7 | 0.19% | 1 | 0.47% |
Yacine Belkadi | 7 | 0.19% | 1 | 0.47% |
Heiner Kallweit | 6 | 0.16% | 1 | 0.47% |
Rusty Russell | 6 | 0.16% | 2 | 0.93% |
Andrew Morton | 6 | 0.16% | 1 | 0.47% |
Oliver Neukum | 6 | 0.16% | 2 | 0.93% |
Dave Airlie | 5 | 0.14% | 1 | 0.47% |
Andiry Brienza | 5 | 0.14% | 1 | 0.47% |
Pratyush Anand | 5 | 0.14% | 1 | 0.47% |
Daniel Mack | 5 | 0.14% | 1 | 0.47% |
Rafael J. Wysocki | 4 | 0.11% | 3 | 1.40% |
Viresh Kumar | 4 | 0.11% | 1 | 0.47% |
Kai-Heng Feng | 3 | 0.08% | 1 | 0.47% |
Pete Zaitcev | 3 | 0.08% | 1 | 0.47% |
Eric Lescouet | 3 | 0.08% | 1 | 0.47% |
Arjan van de Ven | 3 | 0.08% | 1 | 0.47% |
Sebastian Andrzej Siewior | 3 | 0.08% | 1 | 0.47% |
Kuninori Morimoto | 2 | 0.05% | 1 | 0.47% |
Adrian Bunk | 2 | 0.05% | 2 | 0.93% |
Stefan Koch | 2 | 0.05% | 1 | 0.47% |
Al Viro | 2 | 0.05% | 2 | 0.93% |
Måns Rullgård | 2 | 0.05% | 1 | 0.47% |
Suzuki K. Poulose | 2 | 0.05% | 1 | 0.47% |
Yuanhan Liu | 2 | 0.05% | 1 | 0.47% |
Geliang Tang | 2 | 0.05% | 2 | 0.93% |
Ahmed S. Darwish | 1 | 0.03% | 1 | 0.47% |
Mika Kukkonen | 1 | 0.03% | 1 | 0.47% |
Arnd Bergmann | 1 | 0.03% | 1 | 0.47% |
Jesse Barnes | 1 | 0.03% | 1 | 0.47% |
David Vrabel | 1 | 0.03% | 1 | 0.47% |
Jilin Yuan | 1 | 0.03% | 1 | 0.47% |
Kai Germaschewski | 1 | 0.03% | 1 | 0.47% |
Thomas Gleixner | 1 | 0.03% | 1 | 0.47% |
Alexey Dobriyan | 1 | 0.03% | 1 | 0.47% |
Total | 3641 | 214 |
// SPDX-License-Identifier: GPL-2.0 /* * drivers/usb/core/usb.c * * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 (new USB architecture) * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000-2004 * (C) Copyright Yggdrasil Computing, Inc. 2000 * (usb_device_id matching changes by Adam J. Richter) * (C) Copyright Greg Kroah-Hartman 2002-2003 * * Released under the GPLv2 only. * * NOTE! This is not actually a driver at all, rather this is * just a collection of helper routines that implement the * generic USB things that the real drivers can use.. * * Think of this as a "USB library" rather than anything else, * with no callbacks. Callbacks are evil. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/string.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/mutex.h> #include <linux/workqueue.h> #include <linux/debugfs.h> #include <linux/usb/of.h> #include <asm/io.h> #include <linux/scatterlist.h> #include <linux/mm.h> #include <linux/dma-mapping.h> #include "hub.h" const char *usbcore_name = "usbcore"; static bool nousb; /* Disable USB when built into kernel image */ module_param(nousb, bool, 0444); /* * for external read access to <nousb> */ int usb_disabled(void) { return nousb; } EXPORT_SYMBOL_GPL(usb_disabled); #ifdef CONFIG_PM /* Default delay value, in seconds */ static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY; module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); #else #define usb_autosuspend_delay 0 #endif static bool match_endpoint(struct usb_endpoint_descriptor *epd, struct usb_endpoint_descriptor **bulk_in, struct usb_endpoint_descriptor **bulk_out, struct usb_endpoint_descriptor **int_in, struct usb_endpoint_descriptor **int_out) { switch (usb_endpoint_type(epd)) { case USB_ENDPOINT_XFER_BULK: if (usb_endpoint_dir_in(epd)) { if (bulk_in && !*bulk_in) { *bulk_in = epd; break; } } else { if (bulk_out && !*bulk_out) { *bulk_out = epd; break; } } return false; case USB_ENDPOINT_XFER_INT: if (usb_endpoint_dir_in(epd)) { if (int_in && !*int_in) { *int_in = epd; break; } } else { if (int_out && !*int_out) { *int_out = epd; break; } } return false; default: return false; } return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) && (!int_in || *int_in) && (!int_out || *int_out); } /** * usb_find_common_endpoints() -- look up common endpoint descriptors * @alt: alternate setting to search * @bulk_in: pointer to descriptor pointer, or NULL * @bulk_out: pointer to descriptor pointer, or NULL * @int_in: pointer to descriptor pointer, or NULL * @int_out: pointer to descriptor pointer, or NULL * * Search the alternate setting's endpoint descriptors for the first bulk-in, * bulk-out, interrupt-in and interrupt-out endpoints and return them in the * provided pointers (unless they are NULL). * * If a requested endpoint is not found, the corresponding pointer is set to * NULL. * * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. */ int usb_find_common_endpoints(struct usb_host_interface *alt, struct usb_endpoint_descriptor **bulk_in, struct usb_endpoint_descriptor **bulk_out, struct usb_endpoint_descriptor **int_in, struct usb_endpoint_descriptor **int_out) { struct usb_endpoint_descriptor *epd; int i; if (bulk_in) *bulk_in = NULL; if (bulk_out) *bulk_out = NULL; if (int_in) *int_in = NULL; if (int_out) *int_out = NULL; for (i = 0; i < alt->desc.bNumEndpoints; ++i) { epd = &alt->endpoint[i].desc; if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) return 0; } return -ENXIO; } EXPORT_SYMBOL_GPL(usb_find_common_endpoints); /** * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors * @alt: alternate setting to search * @bulk_in: pointer to descriptor pointer, or NULL * @bulk_out: pointer to descriptor pointer, or NULL * @int_in: pointer to descriptor pointer, or NULL * @int_out: pointer to descriptor pointer, or NULL * * Search the alternate setting's endpoint descriptors for the last bulk-in, * bulk-out, interrupt-in and interrupt-out endpoints and return them in the * provided pointers (unless they are NULL). * * If a requested endpoint is not found, the corresponding pointer is set to * NULL. * * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. */ int usb_find_common_endpoints_reverse(struct usb_host_interface *alt, struct usb_endpoint_descriptor **bulk_in, struct usb_endpoint_descriptor **bulk_out, struct usb_endpoint_descriptor **int_in, struct usb_endpoint_descriptor **int_out) { struct usb_endpoint_descriptor *epd; int i; if (bulk_in) *bulk_in = NULL; if (bulk_out) *bulk_out = NULL; if (int_in) *int_in = NULL; if (int_out) *int_out = NULL; for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) { epd = &alt->endpoint[i].desc; if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) return 0; } return -ENXIO; } EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse); /** * usb_find_endpoint() - Given an endpoint address, search for the endpoint's * usb_host_endpoint structure in an interface's current altsetting. * @intf: the interface whose current altsetting should be searched * @ep_addr: the endpoint address (number and direction) to find * * Search the altsetting's list of endpoints for one with the specified address. * * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise. */ static const struct usb_host_endpoint *usb_find_endpoint( const struct usb_interface *intf, unsigned int ep_addr) { int n; const struct usb_host_endpoint *ep; n = intf->cur_altsetting->desc.bNumEndpoints; ep = intf->cur_altsetting->endpoint; for (; n > 0; (--n, ++ep)) { if (ep->desc.bEndpointAddress == ep_addr) return ep; } return NULL; } /** * usb_check_bulk_endpoints - Check whether an interface's current altsetting * contains a set of bulk endpoints with the given addresses. * @intf: the interface whose current altsetting should be searched * @ep_addrs: 0-terminated array of the endpoint addresses (number and * direction) to look for * * Search for endpoints with the specified addresses and check their types. * * Return: %true if all the endpoints are found and are bulk, %false otherwise. */ bool usb_check_bulk_endpoints( const struct usb_interface *intf, const u8 *ep_addrs) { const struct usb_host_endpoint *ep; for (; *ep_addrs; ++ep_addrs) { ep = usb_find_endpoint(intf, *ep_addrs); if (!ep || !usb_endpoint_xfer_bulk(&ep->desc)) return false; } return true; } EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints); /** * usb_check_int_endpoints - Check whether an interface's current altsetting * contains a set of interrupt endpoints with the given addresses. * @intf: the interface whose current altsetting should be searched * @ep_addrs: 0-terminated array of the endpoint addresses (number and * direction) to look for * * Search for endpoints with the specified addresses and check their types. * * Return: %true if all the endpoints are found and are interrupt, * %false otherwise. */ bool usb_check_int_endpoints( const struct usb_interface *intf, const u8 *ep_addrs) { const struct usb_host_endpoint *ep; for (; *ep_addrs; ++ep_addrs) { ep = usb_find_endpoint(intf, *ep_addrs); if (!ep || !usb_endpoint_xfer_int(&ep->desc)) return false; } return true; } EXPORT_SYMBOL_GPL(usb_check_int_endpoints); /** * usb_find_alt_setting() - Given a configuration, find the alternate setting * for the given interface. * @config: the configuration to search (not necessarily the current config). * @iface_num: interface number to search in * @alt_num: alternate interface setting number to search for. * * Search the configuration's interface cache for the given alt setting. * * Return: The alternate setting, if found. %NULL otherwise. */ struct usb_host_interface *usb_find_alt_setting( struct usb_host_config *config, unsigned int iface_num, unsigned int alt_num) { struct usb_interface_cache *intf_cache = NULL; int i; if (!config) return NULL; for (i = 0; i < config->desc.bNumInterfaces; i++) { if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber == iface_num) { intf_cache = config->intf_cache[i]; break; } } if (!intf_cache) return NULL; for (i = 0; i < intf_cache->num_altsetting; i++) if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) return &intf_cache->altsetting[i]; printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " "config %u\n", alt_num, iface_num, config->desc.bConfigurationValue); return NULL; } EXPORT_SYMBOL_GPL(usb_find_alt_setting); /** * usb_ifnum_to_if - get the interface object with a given interface number * @dev: the device whose current configuration is considered * @ifnum: the desired interface * * This walks the device descriptor for the currently active configuration * to find the interface object with the particular interface number. * * Note that configuration descriptors are not required to assign interface * numbers sequentially, so that it would be incorrect to assume that * the first interface in that descriptor corresponds to interface zero. * This routine helps device drivers avoid such mistakes. * However, you should make sure that you do the right thing with any * alternate settings available for this interfaces. * * Don't call this function unless you are bound to one of the interfaces * on this device or you have locked the device! * * Return: A pointer to the interface that has @ifnum as interface number, * if found. %NULL otherwise. */ struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, unsigned ifnum) { struct usb_host_config *config = dev->actconfig; int i; if (!config) return NULL; for (i = 0; i < config->desc.bNumInterfaces; i++) if (config->interface[i]->altsetting[0] .desc.bInterfaceNumber == ifnum) return config->interface[i]; return NULL; } EXPORT_SYMBOL_GPL(usb_ifnum_to_if); /** * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. * @intf: the interface containing the altsetting in question * @altnum: the desired alternate setting number * * This searches the altsetting array of the specified interface for * an entry with the correct bAlternateSetting value. * * Note that altsettings need not be stored sequentially by number, so * it would be incorrect to assume that the first altsetting entry in * the array corresponds to altsetting zero. This routine helps device * drivers avoid such mistakes. * * Don't call this function unless you are bound to the intf interface * or you have locked the device! * * Return: A pointer to the entry of the altsetting array of @intf that * has @altnum as the alternate setting number. %NULL if not found. */ struct usb_host_interface *usb_altnum_to_altsetting( const struct usb_interface *intf, unsigned int altnum) { int i; for (i = 0; i < intf->num_altsetting; i++) { if (intf->altsetting[i].desc.bAlternateSetting == altnum) return &intf->altsetting[i]; } return NULL; } EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); struct find_interface_arg { int minor; struct device_driver *drv; }; static int __find_interface(struct device *dev, const void *data) { const struct find_interface_arg *arg = data; struct usb_interface *intf; if (!is_usb_interface(dev)) return 0; if (dev->driver != arg->drv) return 0; intf = to_usb_interface(dev); return intf->minor == arg->minor; } /** * usb_find_interface - find usb_interface pointer for driver and device * @drv: the driver whose current configuration is considered * @minor: the minor number of the desired device * * This walks the bus device list and returns a pointer to the interface * with the matching minor and driver. Note, this only works for devices * that share the USB major number. * * Return: A pointer to the interface with the matching major and @minor. */ struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) { struct find_interface_arg argb; struct device *dev; argb.minor = minor; argb.drv = &drv->drvwrap.driver; dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); /* Drop reference count from bus_find_device */ put_device(dev); return dev ? to_usb_interface(dev) : NULL; } EXPORT_SYMBOL_GPL(usb_find_interface); struct each_dev_arg { void *data; int (*fn)(struct usb_device *, void *); }; static int __each_dev(struct device *dev, void *data) { struct each_dev_arg *arg = (struct each_dev_arg *)data; /* There are struct usb_interface on the same bus, filter them out */ if (!is_usb_device(dev)) return 0; return arg->fn(to_usb_device(dev), arg->data); } /** * usb_for_each_dev - iterate over all USB devices in the system * @data: data pointer that will be handed to the callback function * @fn: callback function to be called for each USB device * * Iterate over all USB devices and call @fn for each, passing it @data. If it * returns anything other than 0, we break the iteration prematurely and return * that value. */ int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) { struct each_dev_arg arg = {data, fn}; return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); } EXPORT_SYMBOL_GPL(usb_for_each_dev); /** * usb_release_dev - free a usb device structure when all users of it are finished. * @dev: device that's been disconnected * * Will be called only by the device core when all users of this usb device are * done. */ static void usb_release_dev(struct device *dev) { struct usb_device *udev; struct usb_hcd *hcd; udev = to_usb_device(dev); hcd = bus_to_hcd(udev->bus); usb_destroy_configuration(udev); usb_release_bos_descriptor(udev); of_node_put(dev->of_node); usb_put_hcd(hcd); kfree(udev->product); kfree(udev->manufacturer); kfree(udev->serial); kfree(udev); } static int usb_dev_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct usb_device *usb_dev; usb_dev = to_usb_device(dev); if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) return -ENOMEM; if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) return -ENOMEM; return 0; } #ifdef CONFIG_PM /* USB device Power-Management thunks. * There's no need to distinguish here between quiescing a USB device * and powering it down; the generic_suspend() routine takes care of * it by skipping the usb_port_suspend() call for a quiesce. And for * USB interfaces there's no difference at all. */ static int usb_dev_prepare(struct device *dev) { return 0; /* Implement eventually? */ } static void usb_dev_complete(struct device *dev) { /* Currently used only for rebinding interfaces */ usb_resume_complete(dev); } static int usb_dev_suspend(struct device *dev) { return usb_suspend(dev, PMSG_SUSPEND); } static int usb_dev_resume(struct device *dev) { return usb_resume(dev, PMSG_RESUME); } static int usb_dev_freeze(struct device *dev) { return usb_suspend(dev, PMSG_FREEZE); } static int usb_dev_thaw(struct device *dev) { return usb_resume(dev, PMSG_THAW); } static int usb_dev_poweroff(struct device *dev) { return usb_suspend(dev, PMSG_HIBERNATE); } static int usb_dev_restore(struct device *dev) { return usb_resume(dev, PMSG_RESTORE); } static const struct dev_pm_ops usb_device_pm_ops = { .prepare = usb_dev_prepare, .complete = usb_dev_complete, .suspend = usb_dev_suspend, .resume = usb_dev_resume, .freeze = usb_dev_freeze, .thaw = usb_dev_thaw, .poweroff = usb_dev_poweroff, .restore = usb_dev_restore, .runtime_suspend = usb_runtime_suspend, .runtime_resume = usb_runtime_resume, .runtime_idle = usb_runtime_idle, }; #endif /* CONFIG_PM */ static char *usb_devnode(const struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid) { const struct usb_device *usb_dev; usb_dev = to_usb_device(dev); return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", usb_dev->bus->busnum, usb_dev->devnum); } struct device_type usb_device_type = { .name = "usb_device", .release = usb_release_dev, .uevent = usb_dev_uevent, .devnode = usb_devnode, #ifdef CONFIG_PM .pm = &usb_device_pm_ops, #endif }; /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ static unsigned usb_bus_is_wusb(struct usb_bus *bus) { struct usb_hcd *hcd = bus_to_hcd(bus); return hcd->wireless; } static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd) { struct usb_hub *hub; if (!dev->parent) return true; /* Root hub always ok [and always wired] */ switch (hcd->dev_policy) { case USB_DEVICE_AUTHORIZE_NONE: default: return false; case USB_DEVICE_AUTHORIZE_ALL: return true; case USB_DEVICE_AUTHORIZE_INTERNAL: hub = usb_hub_to_struct_hub(dev->parent); return hub->ports[dev->portnum - 1]->connect_type == USB_PORT_CONNECT_TYPE_HARD_WIRED; } } /** * usb_alloc_dev - usb device constructor (usbcore-internal) * @parent: hub to which device is connected; null to allocate a root hub * @bus: bus used to access the device * @port1: one-based index of port; ignored for root hubs * * Context: task context, might sleep. * * Only hub drivers (including virtual root hub drivers for host * controllers) should ever call this. * * This call may not be used in a non-sleeping context. * * Return: On success, a pointer to the allocated usb device. %NULL on * failure. */ struct usb_device *usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1) { struct usb_device *dev; struct usb_hcd *usb_hcd = bus_to_hcd(bus); unsigned root_hub = 0; unsigned raw_port = port1; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; if (!usb_get_hcd(usb_hcd)) { kfree(dev); return NULL; } /* Root hubs aren't true devices, so don't allocate HCD resources */ if (usb_hcd->driver->alloc_dev && parent && !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { usb_put_hcd(bus_to_hcd(bus)); kfree(dev); return NULL; } device_initialize(&dev->dev); dev->dev.bus = &usb_bus_type; dev->dev.type = &usb_device_type; dev->dev.groups = usb_device_groups; set_dev_node(&dev->dev, dev_to_node(bus->sysdev)); dev->state = USB_STATE_ATTACHED; dev->lpm_disable_count = 1; atomic_set(&dev->urbnum, 0); INIT_LIST_HEAD(&dev->ep0.urb_list); dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; /* ep0 maxpacket comes later, from device descriptor */ usb_enable_endpoint(dev, &dev->ep0, false); dev->can_submit = 1; /* Save readable and stable topology id, distinguishing devices * by location for diagnostics, tools, driver model, etc. The * string is a path along hub ports, from the root. Each device's * dev->devpath will be stable until USB is re-cabled, and hubs * are often labeled with these port numbers. The name isn't * as stable: bus->busnum changes easily from modprobe order, * cardbus or pci hotplugging, and so on. */ if (unlikely(!parent)) { dev->devpath[0] = '0'; dev->route = 0; dev->dev.parent = bus->controller; device_set_of_node_from_dev(&dev->dev, bus->sysdev); dev_set_name(&dev->dev, "usb%d", bus->busnum); root_hub = 1; } else { /* match any labeling on the hubs; it's one-based */ if (parent->devpath[0] == '0') { snprintf(dev->devpath, sizeof dev->devpath, "%d", port1); /* Root ports are not counted in route string */ dev->route = 0; } else { snprintf(dev->devpath, sizeof dev->devpath, "%s.%d", parent->devpath, port1); /* Route string assumes hubs have less than 16 ports */ if (port1 < 15) dev->route = parent->route + (port1 << ((parent->level - 1)*4)); else dev->route = parent->route + (15 << ((parent->level - 1)*4)); } dev->dev.parent = &parent->dev; dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); if (!parent->parent) { /* device under root hub's port */ raw_port = usb_hcd_find_raw_port_number(usb_hcd, port1); } dev->dev.of_node = usb_of_get_device_node(parent, raw_port); /* hub driver sets up TT records */ } dev->portnum = port1; dev->bus = bus; dev->parent = parent; INIT_LIST_HEAD(&dev->filelist); #ifdef CONFIG_PM pm_runtime_set_autosuspend_delay(&dev->dev, usb_autosuspend_delay * 1000); dev->connect_time = jiffies; dev->active_duration = -jiffies; #endif dev->authorized = usb_dev_authorized(dev, usb_hcd); if (!root_hub) dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0; return dev; } EXPORT_SYMBOL_GPL(usb_alloc_dev); /** * usb_get_dev - increments the reference count of the usb device structure * @dev: the device being referenced * * Each live reference to a device should be refcounted. * * Drivers for USB interfaces should normally record such references in * their probe() methods, when they bind to an interface, and release * them by calling usb_put_dev(), in their disconnect() methods. * However, if a driver does not access the usb_device structure after * its disconnect() method returns then refcounting is not necessary, * because the USB core guarantees that a usb_device will not be * deallocated until after all of its interface drivers have been unbound. * * Return: A pointer to the device with the incremented reference counter. */ struct usb_device *usb_get_dev(struct usb_device *dev) { if (dev) get_device(&dev->dev); return dev; } EXPORT_SYMBOL_GPL(usb_get_dev); /** * usb_put_dev - release a use of the usb device structure * @dev: device that's been disconnected * * Must be called when a user of a device is finished with it. When the last * user of the device calls this function, the memory of the device is freed. */ void usb_put_dev(struct usb_device *dev) { if (dev) put_device(&dev->dev); } EXPORT_SYMBOL_GPL(usb_put_dev); /** * usb_get_intf - increments the reference count of the usb interface structure * @intf: the interface being referenced * * Each live reference to a interface must be refcounted. * * Drivers for USB interfaces should normally record such references in * their probe() methods, when they bind to an interface, and release * them by calling usb_put_intf(), in their disconnect() methods. * However, if a driver does not access the usb_interface structure after * its disconnect() method returns then refcounting is not necessary, * because the USB core guarantees that a usb_interface will not be * deallocated until after its driver has been unbound. * * Return: A pointer to the interface with the incremented reference counter. */ struct usb_interface *usb_get_intf(struct usb_interface *intf) { if (intf) get_device(&intf->dev); return intf; } EXPORT_SYMBOL_GPL(usb_get_intf); /** * usb_put_intf - release a use of the usb interface structure * @intf: interface that's been decremented * * Must be called when a user of an interface is finished with it. When the * last user of the interface calls this function, the memory of the interface * is freed. */ void usb_put_intf(struct usb_interface *intf) { if (intf) put_device(&intf->dev); } EXPORT_SYMBOL_GPL(usb_put_intf); /** * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint * @intf: the usb interface * * While a USB device cannot perform DMA operations by itself, many USB * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint * for the given USB interface, if any. The returned device structure must be * released with put_device(). * * See also usb_get_dma_device(). * * Returns: A reference to the usb interface's DMA endpoint; or NULL if none * exists. */ struct device *usb_intf_get_dma_device(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct device *dmadev; if (!udev->bus) return NULL; dmadev = get_device(udev->bus->sysdev); if (!dmadev || !dmadev->dma_mask) { put_device(dmadev); return NULL; } return dmadev; } EXPORT_SYMBOL_GPL(usb_intf_get_dma_device); /* USB device locking * * USB devices and interfaces are locked using the semaphore in their * embedded struct device. The hub driver guarantees that whenever a * device is connected or disconnected, drivers are called with the * USB device locked as well as their particular interface. * * Complications arise when several devices are to be locked at the same * time. Only hub-aware drivers that are part of usbcore ever have to * do this; nobody else needs to worry about it. The rule for locking * is simple: * * When locking both a device and its parent, always lock the * parent first. */ /** * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure * @udev: device that's being locked * @iface: interface bound to the driver making the request (optional) * * Attempts to acquire the device lock, but fails if the device is * NOTATTACHED or SUSPENDED, or if iface is specified and the interface * is neither BINDING nor BOUND. Rather than sleeping to wait for the * lock, the routine polls repeatedly. This is to prevent deadlock with * disconnect; in some drivers (such as usb-storage) the disconnect() * or suspend() method will block waiting for a device reset to complete. * * Return: A negative error code for failure, otherwise 0. */ int usb_lock_device_for_reset(struct usb_device *udev, const struct usb_interface *iface) { unsigned long jiffies_expire = jiffies + HZ; if (udev->state == USB_STATE_NOTATTACHED) return -ENODEV; if (udev->state == USB_STATE_SUSPENDED) return -EHOSTUNREACH; if (iface && (iface->condition == USB_INTERFACE_UNBINDING || iface->condition == USB_INTERFACE_UNBOUND)) return -EINTR; while (!usb_trylock_device(udev)) { /* If we can't acquire the lock after waiting one second, * we're probably deadlocked */ if (time_after(jiffies, jiffies_expire)) return -EBUSY; msleep(15); if (udev->state == USB_STATE_NOTATTACHED) return -ENODEV; if (udev->state == USB_STATE_SUSPENDED) return -EHOSTUNREACH; if (iface && (iface->condition == USB_INTERFACE_UNBINDING || iface->condition == USB_INTERFACE_UNBOUND)) return -EINTR; } return 0; } EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); /** * usb_get_current_frame_number - return current bus frame number * @dev: the device whose bus is being queried * * Return: The current frame number for the USB host controller used * with the given USB device. This can be used when scheduling * isochronous requests. * * Note: Different kinds of host controller have different "scheduling * horizons". While one type might support scheduling only 32 frames * into the future, others could support scheduling up to 1024 frames * into the future. * */ int usb_get_current_frame_number(struct usb_device *dev) { return usb_hcd_get_frame_number(dev); } EXPORT_SYMBOL_GPL(usb_get_current_frame_number); /*-------------------------------------------------------------------*/ /* * __usb_get_extra_descriptor() finds a descriptor of specific type in the * extra field of the interface and endpoint descriptor structs. */ int __usb_get_extra_descriptor(char *buffer, unsigned size, unsigned char type, void **ptr, size_t minsize) { struct usb_descriptor_header *header; while (size >= sizeof(struct usb_descriptor_header)) { header = (struct usb_descriptor_header *)buffer; if (header->bLength < 2 || header->bLength > size) { printk(KERN_ERR "%s: bogus descriptor, type %d length %d\n", usbcore_name, header->bDescriptorType, header->bLength); return -1; } if (header->bDescriptorType == type && header->bLength >= minsize) { *ptr = header; return 0; } buffer += header->bLength; size -= header->bLength; } return -1; } EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); /** * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP * @dev: device the buffer will be used with * @size: requested buffer size * @mem_flags: affect whether allocation may block * @dma: used to return DMA address of buffer * * Return: Either null (indicating no buffer could be allocated), or the * cpu-space pointer to a buffer that may be used to perform DMA to the * specified device. Such cpu-space buffers are returned along with the DMA * address (through the pointer provided). * * Note: * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU * hardware during URB completion/resubmit. The implementation varies between * platforms, depending on details of how DMA will work to this device. * Using these buffers also eliminates cacheline sharing problems on * architectures where CPU caches are not DMA-coherent. On systems without * bus-snooping caches, these buffers are uncached. * * When the buffer is no longer used, free it with usb_free_coherent(). */ void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, dma_addr_t *dma) { if (!dev || !dev->bus) return NULL; return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); } EXPORT_SYMBOL_GPL(usb_alloc_coherent); /** * usb_free_coherent - free memory allocated with usb_alloc_coherent() * @dev: device the buffer was used with * @size: requested buffer size * @addr: CPU address of buffer * @dma: DMA address of buffer * * This reclaims an I/O buffer, letting it be reused. The memory must have * been allocated using usb_alloc_coherent(), and the parameters must match * those provided in that allocation request. */ void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma) { if (!dev || !dev->bus) return; if (!addr) return; hcd_buffer_free(dev->bus, size, addr, dma); } EXPORT_SYMBOL_GPL(usb_free_coherent); /* * Notifications of device and interface registration */ static int usb_bus_notify(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; switch (action) { case BUS_NOTIFY_ADD_DEVICE: if (dev->type == &usb_device_type) (void) usb_create_sysfs_dev_files(to_usb_device(dev)); else if (dev->type == &usb_if_device_type) usb_create_sysfs_intf_files(to_usb_interface(dev)); break; case BUS_NOTIFY_DEL_DEVICE: if (dev->type == &usb_device_type) usb_remove_sysfs_dev_files(to_usb_device(dev)); else if (dev->type == &usb_if_device_type) usb_remove_sysfs_intf_files(to_usb_interface(dev)); break; } return 0; } static struct notifier_block usb_bus_nb = { .notifier_call = usb_bus_notify, }; static void usb_debugfs_init(void) { debugfs_create_file("devices", 0444, usb_debug_root, NULL, &usbfs_devices_fops); } static void usb_debugfs_cleanup(void) { debugfs_lookup_and_remove("devices", usb_debug_root); } /* * Init */ static int __init usb_init(void) { int retval; if (usb_disabled()) { pr_info("%s: USB support disabled\n", usbcore_name); return 0; } usb_init_pool_max(); usb_debugfs_init(); usb_acpi_register(); retval = bus_register(&usb_bus_type); if (retval) goto bus_register_failed; retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); if (retval) goto bus_notifier_failed; retval = usb_major_init(); if (retval) goto major_init_failed; retval = usb_register(&usbfs_driver); if (retval) goto driver_register_failed; retval = usb_devio_init(); if (retval) goto usb_devio_init_failed; retval = usb_hub_init(); if (retval) goto hub_init_failed; retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); if (!retval) goto out; usb_hub_cleanup(); hub_init_failed: usb_devio_cleanup(); usb_devio_init_failed: usb_deregister(&usbfs_driver); driver_register_failed: usb_major_cleanup(); major_init_failed: bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); bus_notifier_failed: bus_unregister(&usb_bus_type); bus_register_failed: usb_acpi_unregister(); usb_debugfs_cleanup(); out: return retval; } /* * Cleanup */ static void __exit usb_exit(void) { /* This will matter if shutdown/reboot does exitcalls. */ if (usb_disabled()) return; usb_release_quirk_list(); usb_deregister_device_driver(&usb_generic_driver); usb_major_cleanup(); usb_deregister(&usbfs_driver); usb_devio_cleanup(); usb_hub_cleanup(); bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); bus_unregister(&usb_bus_type); usb_acpi_unregister(); usb_debugfs_cleanup(); idr_destroy(&usb_bus_idr); } subsys_initcall(usb_init); module_exit(usb_exit); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1