Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
343 | 79.95% | 20 | 62.50% | |
61 | 14.22% | 6 | 18.75% | |
11 | 2.56% | 1 | 3.12% | |
5 | 1.17% | 1 | 3.12% | |
5 | 1.17% | 1 | 3.12% | |
2 | 0.47% | 1 | 3.12% | |
1 | 0.23% | 1 | 3.12% | |
1 | 0.23% | 1 | 3.12% | |
Total | 429 | 32 |
Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chunfeng Yun | 343 | 79.95% | 20 | 62.50% |
Sage Sharp | 61 | 14.22% | 6 | 18.75% |
Angelo G. Del Regno | 11 | 2.56% | 1 | 3.12% |
Ikjoon Jang | 5 | 1.17% | 1 | 3.12% |
Dong Nguyen | 5 | 1.17% | 1 | 3.12% |
Andiry Brienza | 2 | 0.47% | 1 | 3.12% |
Greg Kroah-Hartman | 1 | 0.23% | 1 | 3.12% |
Nishad Kamdar | 1 | 0.23% | 1 | 3.12% |
Total | 429 | 32 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2015 MediaTek Inc. * Author: * Zhigang.Wei <zhigang.wei@mediatek.com> * Chunfeng.Yun <chunfeng.yun@mediatek.com> */ #ifndef _XHCI_MTK_H_ #define _XHCI_MTK_H_ #include <linux/clk.h> #include <linux/hashtable.h> #include <linux/regulator/consumer.h> #include "xhci.h" #define BULK_CLKS_NUM 6 #define BULK_VREGS_NUM 2 /* support at most 64 ep, use 32 size hash table */ #define SCH_EP_HASH_BITS 5 /** * To simplify scheduler algorithm, set a upper limit for ESIT, * if a synchromous ep's ESIT is larger than @XHCI_MTK_MAX_ESIT, * round down to the limit value, that means allocating more * bandwidth to it. */ #define XHCI_MTK_MAX_ESIT (1 << 6) #define XHCI_MTK_BW_INDEX(x) ((x) & (XHCI_MTK_MAX_ESIT - 1)) /** * @fs_bus_bw: array to keep track of bandwidth already used for FS * @ep_list: Endpoints using this TT */ struct mu3h_sch_tt { u32 fs_bus_bw[XHCI_MTK_MAX_ESIT]; struct list_head ep_list; }; /** * struct mu3h_sch_bw_info: schedule information for bandwidth domain * * @bus_bw: array to keep track of bandwidth already used at each uframes * * treat a HS root port as a bandwidth domain, but treat a SS root port as * two bandwidth domains, one for IN eps and another for OUT eps. */ struct mu3h_sch_bw_info { u32 bus_bw[XHCI_MTK_MAX_ESIT]; }; /** * struct mu3h_sch_ep_info: schedule information for endpoint * * @esit: unit is 125us, equal to 2 << Interval field in ep-context * @num_esit: number of @esit in a period * @num_budget_microframes: number of continuous uframes * (@repeat==1) scheduled within the interval * @bw_cost_per_microframe: bandwidth cost per microframe * @hentry: hash table entry * @endpoint: linked into bandwidth domain which it belongs to * @tt_endpoint: linked into mu3h_sch_tt's list which it belongs to * @bw_info: bandwidth domain which this endpoint belongs * @sch_tt: mu3h_sch_tt linked into * @ep_type: endpoint type * @maxpkt: max packet size of endpoint * @ep: address of usb_host_endpoint struct * @allocated: the bandwidth is aready allocated from bus_bw * @offset: which uframe of the interval that transfer should be * scheduled first time within the interval * @repeat: the time gap between two uframes that transfers are * scheduled within a interval. in the simple algorithm, only * assign 0 or 1 to it; 0 means using only one uframe in a * interval, and 1 means using @num_budget_microframes * continuous uframes * @pkts: number of packets to be transferred in the scheduled uframes * @cs_count: number of CS that host will trigger * @burst_mode: burst mode for scheduling. 0: normal burst mode, * distribute the bMaxBurst+1 packets for a single burst * according to @pkts and @repeat, repeate the burst multiple * times; 1: distribute the (bMaxBurst+1)*(Mult+1) packets * according to @pkts and @repeat. normal mode is used by * default */ struct mu3h_sch_ep_info { u32 esit; u32 num_esit; u32 num_budget_microframes; u32 bw_cost_per_microframe; struct list_head endpoint; struct hlist_node hentry; struct list_head tt_endpoint; struct mu3h_sch_bw_info *bw_info; struct mu3h_sch_tt *sch_tt; u32 ep_type; u32 maxpkt; struct usb_host_endpoint *ep; enum usb_device_speed speed; bool allocated; /* * mtk xHCI scheduling information put into reserved DWs * in ep context */ u32 offset; u32 repeat; u32 pkts; u32 cs_count; u32 burst_mode; }; #define MU3C_U3_PORT_MAX 4 #define MU3C_U2_PORT_MAX 5 /** * struct mu3c_ippc_regs: MTK ssusb ip port control registers * @ip_pw_ctr0~3: ip power and clock control registers * @ip_pw_sts1~2: ip power and clock status registers * @ip_xhci_cap: ip xHCI capability register * @u3_ctrl_p[x]: ip usb3 port x control register, only low 4bytes are used * @u2_ctrl_p[x]: ip usb2 port x control register, only low 4bytes are used * @u2_phy_pll: usb2 phy pll control register */ struct mu3c_ippc_regs { __le32 ip_pw_ctr0; __le32 ip_pw_ctr1; __le32 ip_pw_ctr2; __le32 ip_pw_ctr3; __le32 ip_pw_sts1; __le32 ip_pw_sts2; __le32 reserved0[3]; __le32 ip_xhci_cap; __le32 reserved1[2]; __le64 u3_ctrl_p[MU3C_U3_PORT_MAX]; __le64 u2_ctrl_p[MU3C_U2_PORT_MAX]; __le32 reserved2; __le32 u2_phy_pll; __le32 reserved3[33]; /* 0x80 ~ 0xff */ }; struct xhci_hcd_mtk { struct device *dev; struct usb_hcd *hcd; struct mu3h_sch_bw_info *sch_array; struct list_head bw_ep_chk_list; DECLARE_HASHTABLE(sch_ep_hash, SCH_EP_HASH_BITS); struct mu3c_ippc_regs __iomem *ippc_regs; int num_u2_ports; int num_u3_ports; int u2p_dis_msk; int u3p_dis_msk; struct clk_bulk_data clks[BULK_CLKS_NUM]; struct regulator_bulk_data supplies[BULK_VREGS_NUM]; unsigned int has_ippc:1; unsigned int lpm_support:1; unsigned int u2_lpm_disable:1; /* usb remote wakeup */ unsigned int uwk_en:1; struct regmap *uwk; u32 uwk_reg_base; u32 uwk_vers; }; static inline struct xhci_hcd_mtk *hcd_to_mtk(struct usb_hcd *hcd) { return dev_get_drvdata(hcd->self.controller); } int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk); void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk); int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep); int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep); int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev); void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev); #endif /* _XHCI_MTK_H_ */