Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 3652 | 36.69% | 8 | 5.76% |
James Simmons | 3137 | 31.51% | 12 | 8.63% |
Antonino A. Daplas | 1545 | 15.52% | 15 | 10.79% |
Andrew Morton | 679 | 6.82% | 3 | 2.16% |
Linus Torvalds (pre-git) | 560 | 5.63% | 72 | 51.80% |
Krzysztof Helt | 191 | 1.92% | 4 | 2.88% |
Christian Trefzer | 77 | 0.77% | 4 | 2.88% |
Thomas Zimmermann | 29 | 0.29% | 3 | 2.16% |
Jiri Slaby | 19 | 0.19% | 1 | 0.72% |
Wei Yongjun | 11 | 0.11% | 1 | 0.72% |
Luis R. Rodriguez | 10 | 0.10% | 1 | 0.72% |
Kai Germaschewski | 8 | 0.08% | 1 | 0.72% |
Laurent Pinchart | 6 | 0.06% | 1 | 0.72% |
Rusty Russell | 5 | 0.05% | 1 | 0.72% |
Zheyu Ma | 5 | 0.05% | 2 | 1.44% |
Tobias Klauser | 4 | 0.04% | 1 | 0.72% |
Hannes Eder | 4 | 0.04% | 1 | 0.72% |
Joe Perches | 3 | 0.03% | 1 | 0.72% |
Denis Oliver Kropp | 2 | 0.02% | 1 | 0.72% |
Greg Kroah-Hartman | 2 | 0.02% | 1 | 0.72% |
David S. Miller | 1 | 0.01% | 1 | 0.72% |
Jani Nikula | 1 | 0.01% | 1 | 0.72% |
Mariusz Kozlowski | 1 | 0.01% | 1 | 0.72% |
Evgeny Novikov | 1 | 0.01% | 1 | 0.72% |
Arvind Yadav | 1 | 0.01% | 1 | 0.72% |
Total | 9954 | 139 |
/* * linux/drivers/video/neofb.c -- NeoMagic Framebuffer Driver * * Copyright (c) 2001-2002 Denis Oliver Kropp <dok@directfb.org> * * * Card specific code is based on XFree86's neomagic driver. * Framebuffer framework code is based on code of cyber2000fb. * * This file is subject to the terms and conditions of the GNU General * Public License. See the file COPYING in the main directory of this * archive for more details. * * * 0.4.1 * - Cosmetic changes (dok) * * 0.4 * - Toshiba Libretto support, allow modes larger than LCD size if * LCD is disabled, keep BIOS settings if internal/external display * haven't been enabled explicitly * (Thomas J. Moore <dark@mama.indstate.edu>) * * 0.3.3 * - Porting over to new fbdev api. (jsimmons) * * 0.3.2 * - got rid of all floating point (dok) * * 0.3.1 * - added module license (dok) * * 0.3 * - hardware accelerated clear and move for 2200 and above (dok) * - maximum allowed dotclock is handled now (dok) * * 0.2.1 * - correct panning after X usage (dok) * - added module and kernel parameters (dok) * - no stretching if external display is enabled (dok) * * 0.2 * - initial version (dok) * * * TODO * - ioctl for internal/external switching * - blanking * - 32bit depth support, maybe impossible * - disable pan-on-sync, need specs * * BUGS * - white margin on bootup like with tdfxfb (colormap problem?) * */ #include <linux/aperture.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/fb.h> #include <linux/pci.h> #include <linux/init.h> #ifdef CONFIG_TOSHIBA #include <linux/toshiba.h> #endif #include <asm/io.h> #include <asm/irq.h> #include <video/vga.h> #include <video/neomagic.h> #define NEOFB_VERSION "0.4.2" /* --------------------------------------------------------------------- */ static bool internal; static bool external; static bool libretto; static bool nostretch; static bool nopciburst; static char *mode_option = NULL; #ifdef MODULE MODULE_AUTHOR("(c) 2001-2002 Denis Oliver Kropp <dok@convergence.de>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("FBDev driver for NeoMagic PCI Chips"); module_param(internal, bool, 0); MODULE_PARM_DESC(internal, "Enable output on internal LCD Display."); module_param(external, bool, 0); MODULE_PARM_DESC(external, "Enable output on external CRT."); module_param(libretto, bool, 0); MODULE_PARM_DESC(libretto, "Force Libretto 100/110 800x480 LCD."); module_param(nostretch, bool, 0); MODULE_PARM_DESC(nostretch, "Disable stretching of modes smaller than LCD."); module_param(nopciburst, bool, 0); MODULE_PARM_DESC(nopciburst, "Disable PCI burst mode."); module_param(mode_option, charp, 0); MODULE_PARM_DESC(mode_option, "Preferred video mode ('640x480-8@60', etc)"); #endif /* --------------------------------------------------------------------- */ static biosMode bios8[] = { {320, 240, 0x40}, {300, 400, 0x42}, {640, 400, 0x20}, {640, 480, 0x21}, {800, 600, 0x23}, {1024, 768, 0x25}, }; static biosMode bios16[] = { {320, 200, 0x2e}, {320, 240, 0x41}, {300, 400, 0x43}, {640, 480, 0x31}, {800, 600, 0x34}, {1024, 768, 0x37}, }; static biosMode bios24[] = { {640, 480, 0x32}, {800, 600, 0x35}, {1024, 768, 0x38} }; #ifdef NO_32BIT_SUPPORT_YET /* FIXME: guessed values, wrong */ static biosMode bios32[] = { {640, 480, 0x33}, {800, 600, 0x36}, {1024, 768, 0x39} }; #endif static inline void write_le32(int regindex, u32 val, const struct neofb_par *par) { writel(val, par->neo2200 + par->cursorOff + regindex); } static int neoFindMode(int xres, int yres, int depth) { int xres_s; int i, size; biosMode *mode; switch (depth) { case 8: size = ARRAY_SIZE(bios8); mode = bios8; break; case 16: size = ARRAY_SIZE(bios16); mode = bios16; break; case 24: size = ARRAY_SIZE(bios24); mode = bios24; break; #ifdef NO_32BIT_SUPPORT_YET case 32: size = ARRAY_SIZE(bios32); mode = bios32; break; #endif default: return 0; } for (i = 0; i < size; i++) { if (xres <= mode[i].x_res) { xres_s = mode[i].x_res; for (; i < size; i++) { if (mode[i].x_res != xres_s) return mode[i - 1].mode; if (yres <= mode[i].y_res) return mode[i].mode; } } } return mode[size - 1].mode; } /* * neoCalcVCLK -- * * Determine the closest clock frequency to the one requested. */ #define MAX_N 127 #define MAX_D 31 #define MAX_F 1 static void neoCalcVCLK(const struct fb_info *info, struct neofb_par *par, long freq) { int n, d, f; int n_best = 0, d_best = 0, f_best = 0; long f_best_diff = 0x7ffff; for (f = 0; f <= MAX_F; f++) for (d = 0; d <= MAX_D; d++) for (n = 0; n <= MAX_N; n++) { long f_out; long f_diff; f_out = ((14318 * (n + 1)) / (d + 1)) >> f; f_diff = abs(f_out - freq); if (f_diff <= f_best_diff) { f_best_diff = f_diff; n_best = n; d_best = d; f_best = f; } if (f_out > freq) break; } if (info->fix.accel == FB_ACCEL_NEOMAGIC_NM2200 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2230 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2360 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2380) { /* NOT_DONE: We are trying the full range of the 2200 clock. We should be able to try n up to 2047 */ par->VCLK3NumeratorLow = n_best; par->VCLK3NumeratorHigh = (f_best << 7); } else par->VCLK3NumeratorLow = n_best | (f_best << 7); par->VCLK3Denominator = d_best; #ifdef NEOFB_DEBUG printk(KERN_DEBUG "neoVCLK: f:%ld NumLow=%d NumHi=%d Den=%d Df=%ld\n", freq, par->VCLK3NumeratorLow, par->VCLK3NumeratorHigh, par->VCLK3Denominator, f_best_diff); #endif } /* * vgaHWInit -- * Handle the initialization, etc. of a screen. * Return FALSE on failure. */ static int vgaHWInit(const struct fb_var_screeninfo *var, struct neofb_par *par) { int hsync_end = var->xres + var->right_margin + var->hsync_len; int htotal = (hsync_end + var->left_margin) >> 3; int vsync_start = var->yres + var->lower_margin; int vsync_end = vsync_start + var->vsync_len; int vtotal = vsync_end + var->upper_margin; par->MiscOutReg = 0x23; if (!(var->sync & FB_SYNC_HOR_HIGH_ACT)) par->MiscOutReg |= 0x40; if (!(var->sync & FB_SYNC_VERT_HIGH_ACT)) par->MiscOutReg |= 0x80; /* * Time Sequencer */ par->Sequencer[0] = 0x00; par->Sequencer[1] = 0x01; par->Sequencer[2] = 0x0F; par->Sequencer[3] = 0x00; /* Font select */ par->Sequencer[4] = 0x0E; /* Misc */ /* * CRTC Controller */ par->CRTC[0] = htotal - 5; par->CRTC[1] = (var->xres >> 3) - 1; par->CRTC[2] = (var->xres >> 3) - 1; par->CRTC[3] = ((htotal - 1) & 0x1F) | 0x80; par->CRTC[4] = ((var->xres + var->right_margin) >> 3); par->CRTC[5] = (((htotal - 1) & 0x20) << 2) | (((hsync_end >> 3)) & 0x1F); par->CRTC[6] = (vtotal - 2) & 0xFF; par->CRTC[7] = (((vtotal - 2) & 0x100) >> 8) | (((var->yres - 1) & 0x100) >> 7) | ((vsync_start & 0x100) >> 6) | (((var->yres - 1) & 0x100) >> 5) | 0x10 | (((vtotal - 2) & 0x200) >> 4) | (((var->yres - 1) & 0x200) >> 3) | ((vsync_start & 0x200) >> 2); par->CRTC[8] = 0x00; par->CRTC[9] = (((var->yres - 1) & 0x200) >> 4) | 0x40; if (var->vmode & FB_VMODE_DOUBLE) par->CRTC[9] |= 0x80; par->CRTC[10] = 0x00; par->CRTC[11] = 0x00; par->CRTC[12] = 0x00; par->CRTC[13] = 0x00; par->CRTC[14] = 0x00; par->CRTC[15] = 0x00; par->CRTC[16] = vsync_start & 0xFF; par->CRTC[17] = (vsync_end & 0x0F) | 0x20; par->CRTC[18] = (var->yres - 1) & 0xFF; par->CRTC[19] = var->xres_virtual >> 4; par->CRTC[20] = 0x00; par->CRTC[21] = (var->yres - 1) & 0xFF; par->CRTC[22] = (vtotal - 1) & 0xFF; par->CRTC[23] = 0xC3; par->CRTC[24] = 0xFF; /* * are these unnecessary? * vgaHWHBlankKGA(mode, regp, 0, KGA_FIX_OVERSCAN | KGA_ENABLE_ON_ZERO); * vgaHWVBlankKGA(mode, regp, 0, KGA_FIX_OVERSCAN | KGA_ENABLE_ON_ZERO); */ /* * Graphics Display Controller */ par->Graphics[0] = 0x00; par->Graphics[1] = 0x00; par->Graphics[2] = 0x00; par->Graphics[3] = 0x00; par->Graphics[4] = 0x00; par->Graphics[5] = 0x40; par->Graphics[6] = 0x05; /* only map 64k VGA memory !!!! */ par->Graphics[7] = 0x0F; par->Graphics[8] = 0xFF; par->Attribute[0] = 0x00; /* standard colormap translation */ par->Attribute[1] = 0x01; par->Attribute[2] = 0x02; par->Attribute[3] = 0x03; par->Attribute[4] = 0x04; par->Attribute[5] = 0x05; par->Attribute[6] = 0x06; par->Attribute[7] = 0x07; par->Attribute[8] = 0x08; par->Attribute[9] = 0x09; par->Attribute[10] = 0x0A; par->Attribute[11] = 0x0B; par->Attribute[12] = 0x0C; par->Attribute[13] = 0x0D; par->Attribute[14] = 0x0E; par->Attribute[15] = 0x0F; par->Attribute[16] = 0x41; par->Attribute[17] = 0xFF; par->Attribute[18] = 0x0F; par->Attribute[19] = 0x00; par->Attribute[20] = 0x00; return 0; } static void vgaHWLock(struct vgastate *state) { /* Protect CRTC[0-7] */ vga_wcrt(state->vgabase, 0x11, vga_rcrt(state->vgabase, 0x11) | 0x80); } static void vgaHWUnlock(void) { /* Unprotect CRTC[0-7] */ vga_wcrt(NULL, 0x11, vga_rcrt(NULL, 0x11) & ~0x80); } static void neoLock(struct vgastate *state) { vga_wgfx(state->vgabase, 0x09, 0x00); vgaHWLock(state); } static void neoUnlock(void) { vgaHWUnlock(); vga_wgfx(NULL, 0x09, 0x26); } /* * VGA Palette management */ static int paletteEnabled = 0; static inline void VGAenablePalette(void) { vga_r(NULL, VGA_IS1_RC); vga_w(NULL, VGA_ATT_W, 0x00); paletteEnabled = 1; } static inline void VGAdisablePalette(void) { vga_r(NULL, VGA_IS1_RC); vga_w(NULL, VGA_ATT_W, 0x20); paletteEnabled = 0; } static inline void VGAwATTR(u8 index, u8 value) { if (paletteEnabled) index &= ~0x20; else index |= 0x20; vga_r(NULL, VGA_IS1_RC); vga_wattr(NULL, index, value); } static void vgaHWProtect(int on) { unsigned char tmp; tmp = vga_rseq(NULL, 0x01); if (on) { /* * Turn off screen and disable sequencer. */ vga_wseq(NULL, 0x00, 0x01); /* Synchronous Reset */ vga_wseq(NULL, 0x01, tmp | 0x20); /* disable the display */ VGAenablePalette(); } else { /* * Reenable sequencer, then turn on screen. */ vga_wseq(NULL, 0x01, tmp & ~0x20); /* reenable display */ vga_wseq(NULL, 0x00, 0x03); /* clear synchronousreset */ VGAdisablePalette(); } } static void vgaHWRestore(const struct fb_info *info, const struct neofb_par *par) { int i; vga_w(NULL, VGA_MIS_W, par->MiscOutReg); for (i = 1; i < 5; i++) vga_wseq(NULL, i, par->Sequencer[i]); /* Ensure CRTC registers 0-7 are unlocked by clearing bit 7 or CRTC[17] */ vga_wcrt(NULL, 17, par->CRTC[17] & ~0x80); for (i = 0; i < 25; i++) vga_wcrt(NULL, i, par->CRTC[i]); for (i = 0; i < 9; i++) vga_wgfx(NULL, i, par->Graphics[i]); VGAenablePalette(); for (i = 0; i < 21; i++) VGAwATTR(i, par->Attribute[i]); VGAdisablePalette(); } /* -------------------- Hardware specific routines ------------------------- */ /* * Hardware Acceleration for Neo2200+ */ static inline int neo2200_sync(struct fb_info *info) { struct neofb_par *par = info->par; while (readl(&par->neo2200->bltStat) & 1) cpu_relax(); return 0; } static inline void neo2200_wait_fifo(struct fb_info *info, int requested_fifo_space) { // ndev->neo.waitfifo_calls++; // ndev->neo.waitfifo_sum += requested_fifo_space; /* FIXME: does not work if (neo_fifo_space < requested_fifo_space) { neo_fifo_waitcycles++; while (1) { neo_fifo_space = (neo2200->bltStat >> 8); if (neo_fifo_space >= requested_fifo_space) break; } } else { neo_fifo_cache_hits++; } neo_fifo_space -= requested_fifo_space; */ neo2200_sync(info); } static inline void neo2200_accel_init(struct fb_info *info, struct fb_var_screeninfo *var) { struct neofb_par *par = info->par; Neo2200 __iomem *neo2200 = par->neo2200; u32 bltMod, pitch; neo2200_sync(info); switch (var->bits_per_pixel) { case 8: bltMod = NEO_MODE1_DEPTH8; pitch = var->xres_virtual; break; case 15: case 16: bltMod = NEO_MODE1_DEPTH16; pitch = var->xres_virtual * 2; break; case 24: bltMod = NEO_MODE1_DEPTH24; pitch = var->xres_virtual * 3; break; default: printk(KERN_ERR "neofb: neo2200_accel_init: unexpected bits per pixel!\n"); return; } writel(bltMod << 16, &neo2200->bltStat); writel((pitch << 16) | pitch, &neo2200->pitch); } /* --------------------------------------------------------------------- */ static int neofb_open(struct fb_info *info, int user) { struct neofb_par *par = info->par; if (!par->ref_count) { memset(&par->state, 0, sizeof(struct vgastate)); par->state.flags = VGA_SAVE_MODE | VGA_SAVE_FONTS; save_vga(&par->state); } par->ref_count++; return 0; } static int neofb_release(struct fb_info *info, int user) { struct neofb_par *par = info->par; if (!par->ref_count) return -EINVAL; if (par->ref_count == 1) { restore_vga(&par->state); } par->ref_count--; return 0; } static int neofb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct neofb_par *par = info->par; int memlen, vramlen; int mode_ok = 0; DBG("neofb_check_var"); if (!var->pixclock || PICOS2KHZ(var->pixclock) > par->maxClock) return -EINVAL; /* Is the mode larger than the LCD panel? */ if (par->internal_display && ((var->xres > par->NeoPanelWidth) || (var->yres > par->NeoPanelHeight))) { printk(KERN_INFO "Mode (%dx%d) larger than the LCD panel (%dx%d)\n", var->xres, var->yres, par->NeoPanelWidth, par->NeoPanelHeight); return -EINVAL; } /* Is the mode one of the acceptable sizes? */ if (!par->internal_display) mode_ok = 1; else { switch (var->xres) { case 1280: if (var->yres == 1024) mode_ok = 1; break; case 1024: if (var->yres == 768) mode_ok = 1; break; case 800: if (var->yres == (par->libretto ? 480 : 600)) mode_ok = 1; break; case 640: if (var->yres == 480) mode_ok = 1; break; } } if (!mode_ok) { printk(KERN_INFO "Mode (%dx%d) won't display properly on LCD\n", var->xres, var->yres); return -EINVAL; } var->red.msb_right = 0; var->green.msb_right = 0; var->blue.msb_right = 0; var->transp.msb_right = 0; var->transp.offset = 0; var->transp.length = 0; switch (var->bits_per_pixel) { case 8: /* PSEUDOCOLOUR, 256 */ var->red.offset = 0; var->red.length = 8; var->green.offset = 0; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; break; case 16: /* DIRECTCOLOUR, 64k */ var->red.offset = 11; var->red.length = 5; var->green.offset = 5; var->green.length = 6; var->blue.offset = 0; var->blue.length = 5; break; case 24: /* TRUECOLOUR, 16m */ var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; break; #ifdef NO_32BIT_SUPPORT_YET case 32: /* TRUECOLOUR, 16m */ var->transp.offset = 24; var->transp.length = 8; var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; break; #endif default: printk(KERN_WARNING "neofb: no support for %dbpp\n", var->bits_per_pixel); return -EINVAL; } vramlen = info->fix.smem_len; if (vramlen > 4 * 1024 * 1024) vramlen = 4 * 1024 * 1024; if (var->xres_virtual < var->xres) var->xres_virtual = var->xres; memlen = var->xres_virtual * var->bits_per_pixel * var->yres_virtual >> 3; if (memlen > vramlen) { var->yres_virtual = vramlen * 8 / (var->xres_virtual * var->bits_per_pixel); memlen = var->xres_virtual * var->bits_per_pixel * var->yres_virtual / 8; } /* we must round yres/xres down, we already rounded y/xres_virtual up if it was possible. We should return -EINVAL, but I disagree */ if (var->yres_virtual < var->yres) var->yres = var->yres_virtual; if (var->xoffset + var->xres > var->xres_virtual) var->xoffset = var->xres_virtual - var->xres; if (var->yoffset + var->yres > var->yres_virtual) var->yoffset = var->yres_virtual - var->yres; var->nonstd = 0; var->height = -1; var->width = -1; if (var->bits_per_pixel >= 24 || !par->neo2200) var->accel_flags &= ~FB_ACCELF_TEXT; return 0; } static int neofb_set_par(struct fb_info *info) { struct neofb_par *par = info->par; unsigned char temp; int i, clock_hi = 0; int lcd_stretch; int hoffset, voffset; int vsync_start, vtotal; DBG("neofb_set_par"); neoUnlock(); vgaHWProtect(1); /* Blank the screen */ vsync_start = info->var.yres + info->var.lower_margin; vtotal = vsync_start + info->var.vsync_len + info->var.upper_margin; /* * This will allocate the datastructure and initialize all of the * generic VGA registers. */ if (vgaHWInit(&info->var, par)) return -EINVAL; /* * The default value assigned by vgaHW.c is 0x41, but this does * not work for NeoMagic. */ par->Attribute[16] = 0x01; switch (info->var.bits_per_pixel) { case 8: par->CRTC[0x13] = info->var.xres_virtual >> 3; par->ExtCRTOffset = info->var.xres_virtual >> 11; par->ExtColorModeSelect = 0x11; break; case 16: par->CRTC[0x13] = info->var.xres_virtual >> 2; par->ExtCRTOffset = info->var.xres_virtual >> 10; par->ExtColorModeSelect = 0x13; break; case 24: par->CRTC[0x13] = (info->var.xres_virtual * 3) >> 3; par->ExtCRTOffset = (info->var.xres_virtual * 3) >> 11; par->ExtColorModeSelect = 0x14; break; #ifdef NO_32BIT_SUPPORT_YET case 32: /* FIXME: guessed values */ par->CRTC[0x13] = info->var.xres_virtual >> 1; par->ExtCRTOffset = info->var.xres_virtual >> 9; par->ExtColorModeSelect = 0x15; break; #endif default: break; } par->ExtCRTDispAddr = 0x10; /* Vertical Extension */ par->VerticalExt = (((vtotal - 2) & 0x400) >> 10) | (((info->var.yres - 1) & 0x400) >> 9) | (((vsync_start) & 0x400) >> 8) | (((vsync_start) & 0x400) >> 7); /* Fast write bursts on unless disabled. */ if (par->pci_burst) par->SysIfaceCntl1 = 0x30; else par->SysIfaceCntl1 = 0x00; par->SysIfaceCntl2 = 0xc0; /* VESA Bios sets this to 0x80! */ /* Initialize: by default, we want display config register to be read */ par->PanelDispCntlRegRead = 1; /* Enable any user specified display devices. */ par->PanelDispCntlReg1 = 0x00; if (par->internal_display) par->PanelDispCntlReg1 |= 0x02; if (par->external_display) par->PanelDispCntlReg1 |= 0x01; /* If the user did not specify any display devices, then... */ if (par->PanelDispCntlReg1 == 0x00) { /* Default to internal (i.e., LCD) only. */ par->PanelDispCntlReg1 = vga_rgfx(NULL, 0x20) & 0x03; } /* If we are using a fixed mode, then tell the chip we are. */ switch (info->var.xres) { case 1280: par->PanelDispCntlReg1 |= 0x60; break; case 1024: par->PanelDispCntlReg1 |= 0x40; break; case 800: par->PanelDispCntlReg1 |= 0x20; break; case 640: default: break; } /* Setup shadow register locking. */ switch (par->PanelDispCntlReg1 & 0x03) { case 0x01: /* External CRT only mode: */ par->GeneralLockReg = 0x00; /* We need to program the VCLK for external display only mode. */ par->ProgramVCLK = 1; break; case 0x02: /* Internal LCD only mode: */ case 0x03: /* Simultaneous internal/external (LCD/CRT) mode: */ par->GeneralLockReg = 0x01; /* Don't program the VCLK when using the LCD. */ par->ProgramVCLK = 0; break; } /* * If the screen is to be stretched, turn on stretching for the * various modes. * * OPTION_LCD_STRETCH means stretching should be turned off! */ par->PanelDispCntlReg2 = 0x00; par->PanelDispCntlReg3 = 0x00; if (par->lcd_stretch && (par->PanelDispCntlReg1 == 0x02) && /* LCD only */ (info->var.xres != par->NeoPanelWidth)) { switch (info->var.xres) { case 320: /* Needs testing. KEM -- 24 May 98 */ case 400: /* Needs testing. KEM -- 24 May 98 */ case 640: case 800: case 1024: lcd_stretch = 1; par->PanelDispCntlReg2 |= 0xC6; break; default: lcd_stretch = 0; /* No stretching in these modes. */ } } else lcd_stretch = 0; /* * If the screen is to be centerd, turn on the centering for the * various modes. */ par->PanelVertCenterReg1 = 0x00; par->PanelVertCenterReg2 = 0x00; par->PanelVertCenterReg3 = 0x00; par->PanelVertCenterReg4 = 0x00; par->PanelVertCenterReg5 = 0x00; par->PanelHorizCenterReg1 = 0x00; par->PanelHorizCenterReg2 = 0x00; par->PanelHorizCenterReg3 = 0x00; par->PanelHorizCenterReg4 = 0x00; par->PanelHorizCenterReg5 = 0x00; if (par->PanelDispCntlReg1 & 0x02) { if (info->var.xres == par->NeoPanelWidth) { /* * No centering required when the requested display width * equals the panel width. */ } else { par->PanelDispCntlReg2 |= 0x01; par->PanelDispCntlReg3 |= 0x10; /* Calculate the horizontal and vertical offsets. */ if (!lcd_stretch) { hoffset = ((par->NeoPanelWidth - info->var.xres) >> 4) - 1; voffset = ((par->NeoPanelHeight - info->var.yres) >> 1) - 2; } else { /* Stretched modes cannot be centered. */ hoffset = 0; voffset = 0; } switch (info->var.xres) { case 320: /* Needs testing. KEM -- 24 May 98 */ par->PanelHorizCenterReg3 = hoffset; par->PanelVertCenterReg2 = voffset; break; case 400: /* Needs testing. KEM -- 24 May 98 */ par->PanelHorizCenterReg4 = hoffset; par->PanelVertCenterReg1 = voffset; break; case 640: par->PanelHorizCenterReg1 = hoffset; par->PanelVertCenterReg3 = voffset; break; case 800: par->PanelHorizCenterReg2 = hoffset; par->PanelVertCenterReg4 = voffset; break; case 1024: par->PanelHorizCenterReg5 = hoffset; par->PanelVertCenterReg5 = voffset; break; case 1280: default: /* No centering in these modes. */ break; } } } par->biosMode = neoFindMode(info->var.xres, info->var.yres, info->var.bits_per_pixel); /* * Calculate the VCLK that most closely matches the requested dot * clock. */ neoCalcVCLK(info, par, PICOS2KHZ(info->var.pixclock)); /* Since we program the clocks ourselves, always use VCLK3. */ par->MiscOutReg |= 0x0C; /* alread unlocked above */ /* BOGUS vga_wgfx(NULL, 0x09, 0x26); */ /* don't know what this is, but it's 0 from bootup anyway */ vga_wgfx(NULL, 0x15, 0x00); /* was set to 0x01 by my bios in text and vesa modes */ vga_wgfx(NULL, 0x0A, par->GeneralLockReg); /* * The color mode needs to be set before calling vgaHWRestore * to ensure the DAC is initialized properly. * * NOTE: Make sure we don't change bits make sure we don't change * any reserved bits. */ temp = vga_rgfx(NULL, 0x90); switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2070: temp &= 0xF0; /* Save bits 7:4 */ temp |= (par->ExtColorModeSelect & ~0xF0); break; case FB_ACCEL_NEOMAGIC_NM2090: case FB_ACCEL_NEOMAGIC_NM2093: case FB_ACCEL_NEOMAGIC_NM2097: case FB_ACCEL_NEOMAGIC_NM2160: case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: temp &= 0x70; /* Save bits 6:4 */ temp |= (par->ExtColorModeSelect & ~0x70); break; } vga_wgfx(NULL, 0x90, temp); /* * In some rare cases a lockup might occur if we don't delay * here. (Reported by Miles Lane) */ //mdelay(200); /* * Disable horizontal and vertical graphics and text expansions so * that vgaHWRestore works properly. */ temp = vga_rgfx(NULL, 0x25); temp &= 0x39; vga_wgfx(NULL, 0x25, temp); /* * Sleep for 200ms to make sure that the two operations above have * had time to take effect. */ mdelay(200); /* * This function handles restoring the generic VGA registers. */ vgaHWRestore(info, par); /* linear colormap for non palettized modes */ switch (info->var.bits_per_pixel) { case 8: /* PseudoColor, 256 */ info->fix.visual = FB_VISUAL_PSEUDOCOLOR; break; case 16: /* TrueColor, 64k */ info->fix.visual = FB_VISUAL_TRUECOLOR; for (i = 0; i < 64; i++) { outb(i, 0x3c8); outb(i << 1, 0x3c9); outb(i, 0x3c9); outb(i << 1, 0x3c9); } break; case 24: #ifdef NO_32BIT_SUPPORT_YET case 32: #endif /* TrueColor, 16m */ info->fix.visual = FB_VISUAL_TRUECOLOR; for (i = 0; i < 256; i++) { outb(i, 0x3c8); outb(i, 0x3c9); outb(i, 0x3c9); outb(i, 0x3c9); } break; } vga_wgfx(NULL, 0x0E, par->ExtCRTDispAddr); vga_wgfx(NULL, 0x0F, par->ExtCRTOffset); temp = vga_rgfx(NULL, 0x10); temp &= 0x0F; /* Save bits 3:0 */ temp |= (par->SysIfaceCntl1 & ~0x0F); /* VESA Bios sets bit 1! */ vga_wgfx(NULL, 0x10, temp); vga_wgfx(NULL, 0x11, par->SysIfaceCntl2); vga_wgfx(NULL, 0x15, 0 /*par->SingleAddrPage */ ); vga_wgfx(NULL, 0x16, 0 /*par->DualAddrPage */ ); temp = vga_rgfx(NULL, 0x20); switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2070: temp &= 0xFC; /* Save bits 7:2 */ temp |= (par->PanelDispCntlReg1 & ~0xFC); break; case FB_ACCEL_NEOMAGIC_NM2090: case FB_ACCEL_NEOMAGIC_NM2093: case FB_ACCEL_NEOMAGIC_NM2097: case FB_ACCEL_NEOMAGIC_NM2160: temp &= 0xDC; /* Save bits 7:6,4:2 */ temp |= (par->PanelDispCntlReg1 & ~0xDC); break; case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: temp &= 0x98; /* Save bits 7,4:3 */ temp |= (par->PanelDispCntlReg1 & ~0x98); break; } vga_wgfx(NULL, 0x20, temp); temp = vga_rgfx(NULL, 0x25); temp &= 0x38; /* Save bits 5:3 */ temp |= (par->PanelDispCntlReg2 & ~0x38); vga_wgfx(NULL, 0x25, temp); if (info->fix.accel != FB_ACCEL_NEOMAGIC_NM2070) { temp = vga_rgfx(NULL, 0x30); temp &= 0xEF; /* Save bits 7:5 and bits 3:0 */ temp |= (par->PanelDispCntlReg3 & ~0xEF); vga_wgfx(NULL, 0x30, temp); } vga_wgfx(NULL, 0x28, par->PanelVertCenterReg1); vga_wgfx(NULL, 0x29, par->PanelVertCenterReg2); vga_wgfx(NULL, 0x2a, par->PanelVertCenterReg3); if (info->fix.accel != FB_ACCEL_NEOMAGIC_NM2070) { vga_wgfx(NULL, 0x32, par->PanelVertCenterReg4); vga_wgfx(NULL, 0x33, par->PanelHorizCenterReg1); vga_wgfx(NULL, 0x34, par->PanelHorizCenterReg2); vga_wgfx(NULL, 0x35, par->PanelHorizCenterReg3); } if (info->fix.accel == FB_ACCEL_NEOMAGIC_NM2160) vga_wgfx(NULL, 0x36, par->PanelHorizCenterReg4); if (info->fix.accel == FB_ACCEL_NEOMAGIC_NM2200 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2230 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2360 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2380) { vga_wgfx(NULL, 0x36, par->PanelHorizCenterReg4); vga_wgfx(NULL, 0x37, par->PanelVertCenterReg5); vga_wgfx(NULL, 0x38, par->PanelHorizCenterReg5); clock_hi = 1; } /* Program VCLK3 if needed. */ if (par->ProgramVCLK && ((vga_rgfx(NULL, 0x9B) != par->VCLK3NumeratorLow) || (vga_rgfx(NULL, 0x9F) != par->VCLK3Denominator) || (clock_hi && ((vga_rgfx(NULL, 0x8F) & ~0x0f) != (par->VCLK3NumeratorHigh & ~0x0F))))) { vga_wgfx(NULL, 0x9B, par->VCLK3NumeratorLow); if (clock_hi) { temp = vga_rgfx(NULL, 0x8F); temp &= 0x0F; /* Save bits 3:0 */ temp |= (par->VCLK3NumeratorHigh & ~0x0F); vga_wgfx(NULL, 0x8F, temp); } vga_wgfx(NULL, 0x9F, par->VCLK3Denominator); } if (par->biosMode) vga_wcrt(NULL, 0x23, par->biosMode); vga_wgfx(NULL, 0x93, 0xc0); /* Gives 5x faster framebuffer writes !!! */ /* Program vertical extension register */ if (info->fix.accel == FB_ACCEL_NEOMAGIC_NM2200 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2230 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2360 || info->fix.accel == FB_ACCEL_NEOMAGIC_NM2380) { vga_wcrt(NULL, 0x70, par->VerticalExt); } vgaHWProtect(0); /* Turn on screen */ /* Calling this also locks offset registers required in update_start */ neoLock(&par->state); info->fix.line_length = info->var.xres_virtual * (info->var.bits_per_pixel >> 3); switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: neo2200_accel_init(info, &info->var); break; default: break; } return 0; } /* * Pan or Wrap the Display */ static int neofb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { struct neofb_par *par = info->par; struct vgastate *state = &par->state; int oldExtCRTDispAddr; int Base; DBG("neofb_update_start"); Base = (var->yoffset * info->var.xres_virtual + var->xoffset) >> 2; Base *= (info->var.bits_per_pixel + 7) / 8; neoUnlock(); /* * These are the generic starting address registers. */ vga_wcrt(state->vgabase, 0x0C, (Base & 0x00FF00) >> 8); vga_wcrt(state->vgabase, 0x0D, (Base & 0x00FF)); /* * Make sure we don't clobber some other bits that might already * have been set. NOTE: NM2200 has a writable bit 3, but it shouldn't * be needed. */ oldExtCRTDispAddr = vga_rgfx(NULL, 0x0E); vga_wgfx(state->vgabase, 0x0E, (((Base >> 16) & 0x0f) | (oldExtCRTDispAddr & 0xf0))); neoLock(state); return 0; } static int neofb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *fb) { if (regno >= fb->cmap.len || regno > 255) return -EINVAL; if (fb->var.bits_per_pixel <= 8) { outb(regno, 0x3c8); outb(red >> 10, 0x3c9); outb(green >> 10, 0x3c9); outb(blue >> 10, 0x3c9); } else if (regno < 16) { switch (fb->var.bits_per_pixel) { case 16: ((u32 *) fb->pseudo_palette)[regno] = ((red & 0xf800)) | ((green & 0xfc00) >> 5) | ((blue & 0xf800) >> 11); break; case 24: ((u32 *) fb->pseudo_palette)[regno] = ((red & 0xff00) << 8) | ((green & 0xff00)) | ((blue & 0xff00) >> 8); break; #ifdef NO_32BIT_SUPPORT_YET case 32: ((u32 *) fb->pseudo_palette)[regno] = ((transp & 0xff00) << 16) | ((red & 0xff00) << 8) | ((green & 0xff00)) | ((blue & 0xff00) >> 8); break; #endif default: return 1; } } return 0; } /* * (Un)Blank the display. */ static int neofb_blank(int blank_mode, struct fb_info *info) { /* * Blank the screen if blank_mode != 0, else unblank. * Return 0 if blanking succeeded, != 0 if un-/blanking failed due to * e.g. a video mode which doesn't support it. Implements VESA suspend * and powerdown modes for monitors, and backlight control on LCDs. * blank_mode == 0: unblanked (backlight on) * blank_mode == 1: blank (backlight on) * blank_mode == 2: suspend vsync (backlight off) * blank_mode == 3: suspend hsync (backlight off) * blank_mode == 4: powerdown (backlight off) * * wms...Enable VESA DPMS compatible powerdown mode * run "setterm -powersave powerdown" to take advantage */ struct neofb_par *par = info->par; int seqflags, lcdflags, dpmsflags, reg, tmpdisp; /* * Read back the register bits related to display configuration. They might * have been changed underneath the driver via Fn key stroke. */ neoUnlock(); tmpdisp = vga_rgfx(NULL, 0x20) & 0x03; neoLock(&par->state); /* In case we blank the screen, we want to store the possibly new * configuration in the driver. During un-blank, we re-apply this setting, * since the LCD bit will be cleared in order to switch off the backlight. */ if (par->PanelDispCntlRegRead) { par->PanelDispCntlReg1 = tmpdisp; } par->PanelDispCntlRegRead = !blank_mode; switch (blank_mode) { case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */ seqflags = VGA_SR01_SCREEN_OFF; /* Disable sequencer */ lcdflags = 0; /* LCD off */ dpmsflags = NEO_GR01_SUPPRESS_HSYNC | NEO_GR01_SUPPRESS_VSYNC; #ifdef CONFIG_TOSHIBA /* Do we still need this ? */ /* attempt to turn off backlight on toshiba; also turns off external */ { SMMRegisters regs; regs.eax = 0xff00; /* HCI_SET */ regs.ebx = 0x0002; /* HCI_BACKLIGHT */ regs.ecx = 0x0000; /* HCI_DISABLE */ tosh_smm(®s); } #endif break; case FB_BLANK_HSYNC_SUSPEND: /* hsync off */ seqflags = VGA_SR01_SCREEN_OFF; /* Disable sequencer */ lcdflags = 0; /* LCD off */ dpmsflags = NEO_GR01_SUPPRESS_HSYNC; break; case FB_BLANK_VSYNC_SUSPEND: /* vsync off */ seqflags = VGA_SR01_SCREEN_OFF; /* Disable sequencer */ lcdflags = 0; /* LCD off */ dpmsflags = NEO_GR01_SUPPRESS_VSYNC; break; case FB_BLANK_NORMAL: /* just blank screen (backlight stays on) */ seqflags = VGA_SR01_SCREEN_OFF; /* Disable sequencer */ /* * During a blank operation with the LID shut, we might store "LCD off" * by mistake. Due to timing issues, the BIOS may switch the lights * back on, and we turn it back off once we "unblank". * * So here is an attempt to implement ">=" - if we are in the process * of unblanking, and the LCD bit is unset in the driver but set in the * register, we must keep it. */ lcdflags = ((par->PanelDispCntlReg1 | tmpdisp) & 0x02); /* LCD normal */ dpmsflags = 0x00; /* no hsync/vsync suppression */ break; case FB_BLANK_UNBLANK: /* unblank */ seqflags = 0; /* Enable sequencer */ lcdflags = ((par->PanelDispCntlReg1 | tmpdisp) & 0x02); /* LCD normal */ dpmsflags = 0x00; /* no hsync/vsync suppression */ #ifdef CONFIG_TOSHIBA /* Do we still need this ? */ /* attempt to re-enable backlight/external on toshiba */ { SMMRegisters regs; regs.eax = 0xff00; /* HCI_SET */ regs.ebx = 0x0002; /* HCI_BACKLIGHT */ regs.ecx = 0x0001; /* HCI_ENABLE */ tosh_smm(®s); } #endif break; default: /* Anything else we don't understand; return 1 to tell * fb_blank we didn't aactually do anything */ return 1; } neoUnlock(); reg = (vga_rseq(NULL, 0x01) & ~0x20) | seqflags; vga_wseq(NULL, 0x01, reg); reg = (vga_rgfx(NULL, 0x20) & ~0x02) | lcdflags; vga_wgfx(NULL, 0x20, reg); reg = (vga_rgfx(NULL, 0x01) & ~0xF0) | 0x80 | dpmsflags; vga_wgfx(NULL, 0x01, reg); neoLock(&par->state); return 0; } static void neo2200_fillrect(struct fb_info *info, const struct fb_fillrect *rect) { struct neofb_par *par = info->par; u_long dst, rop; dst = rect->dx + rect->dy * info->var.xres_virtual; rop = rect->rop ? 0x060000 : 0x0c0000; neo2200_wait_fifo(info, 4); /* set blt control */ writel(NEO_BC3_FIFO_EN | NEO_BC0_SRC_IS_FG | NEO_BC3_SKIP_MAPPING | // NEO_BC3_DST_XY_ADDR | // NEO_BC3_SRC_XY_ADDR | rop, &par->neo2200->bltCntl); switch (info->var.bits_per_pixel) { case 8: writel(rect->color, &par->neo2200->fgColor); break; case 16: case 24: writel(((u32 *) (info->pseudo_palette))[rect->color], &par->neo2200->fgColor); break; } writel(dst * ((info->var.bits_per_pixel + 7) >> 3), &par->neo2200->dstStart); writel((rect->height << 16) | (rect->width & 0xffff), &par->neo2200->xyExt); } static void neo2200_copyarea(struct fb_info *info, const struct fb_copyarea *area) { u32 sx = area->sx, sy = area->sy, dx = area->dx, dy = area->dy; struct neofb_par *par = info->par; u_long src, dst, bltCntl; bltCntl = NEO_BC3_FIFO_EN | NEO_BC3_SKIP_MAPPING | 0x0C0000; if ((dy > sy) || ((dy == sy) && (dx > sx))) { /* Start with the lower right corner */ sy += (area->height - 1); dy += (area->height - 1); sx += (area->width - 1); dx += (area->width - 1); bltCntl |= NEO_BC0_X_DEC | NEO_BC0_DST_Y_DEC | NEO_BC0_SRC_Y_DEC; } src = sx * (info->var.bits_per_pixel >> 3) + sy*info->fix.line_length; dst = dx * (info->var.bits_per_pixel >> 3) + dy*info->fix.line_length; neo2200_wait_fifo(info, 4); /* set blt control */ writel(bltCntl, &par->neo2200->bltCntl); writel(src, &par->neo2200->srcStart); writel(dst, &par->neo2200->dstStart); writel((area->height << 16) | (area->width & 0xffff), &par->neo2200->xyExt); } static void neo2200_imageblit(struct fb_info *info, const struct fb_image *image) { struct neofb_par *par = info->par; int s_pitch = (image->width * image->depth + 7) >> 3; int scan_align = info->pixmap.scan_align - 1; int buf_align = info->pixmap.buf_align - 1; int bltCntl_flags, d_pitch, data_len; // The data is padded for the hardware d_pitch = (s_pitch + scan_align) & ~scan_align; data_len = ((d_pitch * image->height) + buf_align) & ~buf_align; neo2200_sync(info); if (image->depth == 1) { if (info->var.bits_per_pixel == 24 && image->width < 16) { /* FIXME. There is a bug with accelerated color-expanded * transfers in 24 bit mode if the image being transferred * is less than 16 bits wide. This is due to insufficient * padding when writing the image. We need to adjust * struct fb_pixmap. Not yet done. */ cfb_imageblit(info, image); return; } bltCntl_flags = NEO_BC0_SRC_MONO; } else if (image->depth == info->var.bits_per_pixel) { bltCntl_flags = 0; } else { /* We don't currently support hardware acceleration if image * depth is different from display */ cfb_imageblit(info, image); return; } switch (info->var.bits_per_pixel) { case 8: writel(image->fg_color, &par->neo2200->fgColor); writel(image->bg_color, &par->neo2200->bgColor); break; case 16: case 24: writel(((u32 *) (info->pseudo_palette))[image->fg_color], &par->neo2200->fgColor); writel(((u32 *) (info->pseudo_palette))[image->bg_color], &par->neo2200->bgColor); break; } writel(NEO_BC0_SYS_TO_VID | NEO_BC3_SKIP_MAPPING | bltCntl_flags | // NEO_BC3_DST_XY_ADDR | 0x0c0000, &par->neo2200->bltCntl); writel(0, &par->neo2200->srcStart); // par->neo2200->dstStart = (image->dy << 16) | (image->dx & 0xffff); writel(((image->dx & 0xffff) * (info->var.bits_per_pixel >> 3) + image->dy * info->fix.line_length), &par->neo2200->dstStart); writel((image->height << 16) | (image->width & 0xffff), &par->neo2200->xyExt); memcpy_toio(par->mmio_vbase + 0x100000, image->data, data_len); } static void neofb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) { switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: neo2200_fillrect(info, rect); break; default: cfb_fillrect(info, rect); break; } } static void neofb_copyarea(struct fb_info *info, const struct fb_copyarea *area) { switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: neo2200_copyarea(info, area); break; default: cfb_copyarea(info, area); break; } } static void neofb_imageblit(struct fb_info *info, const struct fb_image *image) { switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: neo2200_imageblit(info, image); break; default: cfb_imageblit(info, image); break; } } static int neofb_sync(struct fb_info *info) { switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: neo2200_sync(info); break; default: break; } return 0; } /* static void neofb_draw_cursor(struct fb_info *info, u8 *dst, u8 *src, unsigned int width) { //memset_io(info->sprite.addr, 0xff, 1); } static int neofb_cursor(struct fb_info *info, struct fb_cursor *cursor) { struct neofb_par *par = (struct neofb_par *) info->par; * Disable cursor * write_le32(NEOREG_CURSCNTL, ~NEO_CURS_ENABLE, par); if (cursor->set & FB_CUR_SETPOS) { u32 x = cursor->image.dx; u32 y = cursor->image.dy; info->cursor.image.dx = x; info->cursor.image.dy = y; write_le32(NEOREG_CURSX, x, par); write_le32(NEOREG_CURSY, y, par); } if (cursor->set & FB_CUR_SETSIZE) { info->cursor.image.height = cursor->image.height; info->cursor.image.width = cursor->image.width; } if (cursor->set & FB_CUR_SETHOT) info->cursor.hot = cursor->hot; if (cursor->set & FB_CUR_SETCMAP) { if (cursor->image.depth == 1) { u32 fg = cursor->image.fg_color; u32 bg = cursor->image.bg_color; info->cursor.image.fg_color = fg; info->cursor.image.bg_color = bg; fg = ((fg & 0xff0000) >> 16) | ((fg & 0xff) << 16) | (fg & 0xff00); bg = ((bg & 0xff0000) >> 16) | ((bg & 0xff) << 16) | (bg & 0xff00); write_le32(NEOREG_CURSFGCOLOR, fg, par); write_le32(NEOREG_CURSBGCOLOR, bg, par); } } if (cursor->set & FB_CUR_SETSHAPE) fb_load_cursor_image(info); if (info->cursor.enable) write_le32(NEOREG_CURSCNTL, NEO_CURS_ENABLE, par); return 0; } */ static const struct fb_ops neofb_ops = { .owner = THIS_MODULE, .fb_open = neofb_open, .fb_release = neofb_release, .fb_check_var = neofb_check_var, .fb_set_par = neofb_set_par, .fb_setcolreg = neofb_setcolreg, .fb_pan_display = neofb_pan_display, .fb_blank = neofb_blank, .fb_sync = neofb_sync, .fb_fillrect = neofb_fillrect, .fb_copyarea = neofb_copyarea, .fb_imageblit = neofb_imageblit, }; /* --------------------------------------------------------------------- */ static struct fb_videomode mode800x480 = { .xres = 800, .yres = 480, .pixclock = 25000, .left_margin = 88, .right_margin = 40, .upper_margin = 23, .lower_margin = 1, .hsync_len = 128, .vsync_len = 4, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .vmode = FB_VMODE_NONINTERLACED }; static int neo_map_mmio(struct fb_info *info, struct pci_dev *dev) { struct neofb_par *par = info->par; DBG("neo_map_mmio"); switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2070: info->fix.mmio_start = pci_resource_start(dev, 0)+ 0x100000; break; case FB_ACCEL_NEOMAGIC_NM2090: case FB_ACCEL_NEOMAGIC_NM2093: info->fix.mmio_start = pci_resource_start(dev, 0)+ 0x200000; break; case FB_ACCEL_NEOMAGIC_NM2160: case FB_ACCEL_NEOMAGIC_NM2097: case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: info->fix.mmio_start = pci_resource_start(dev, 1); break; default: info->fix.mmio_start = pci_resource_start(dev, 0); } info->fix.mmio_len = MMIO_SIZE; if (!request_mem_region (info->fix.mmio_start, MMIO_SIZE, "memory mapped I/O")) { printk("neofb: memory mapped IO in use\n"); return -EBUSY; } par->mmio_vbase = ioremap(info->fix.mmio_start, MMIO_SIZE); if (!par->mmio_vbase) { printk("neofb: unable to map memory mapped IO\n"); release_mem_region(info->fix.mmio_start, info->fix.mmio_len); return -ENOMEM; } else printk(KERN_INFO "neofb: mapped io at %p\n", par->mmio_vbase); return 0; } static void neo_unmap_mmio(struct fb_info *info) { struct neofb_par *par = info->par; DBG("neo_unmap_mmio"); iounmap(par->mmio_vbase); par->mmio_vbase = NULL; release_mem_region(info->fix.mmio_start, info->fix.mmio_len); } static int neo_map_video(struct fb_info *info, struct pci_dev *dev, int video_len) { //unsigned long addr; struct neofb_par *par = info->par; DBG("neo_map_video"); info->fix.smem_start = pci_resource_start(dev, 0); info->fix.smem_len = video_len; if (!request_mem_region(info->fix.smem_start, info->fix.smem_len, "frame buffer")) { printk("neofb: frame buffer in use\n"); return -EBUSY; } info->screen_base = ioremap_wc(info->fix.smem_start, info->fix.smem_len); if (!info->screen_base) { printk("neofb: unable to map screen memory\n"); release_mem_region(info->fix.smem_start, info->fix.smem_len); return -ENOMEM; } else printk(KERN_INFO "neofb: mapped framebuffer at %p\n", info->screen_base); par->wc_cookie = arch_phys_wc_add(info->fix.smem_start, pci_resource_len(dev, 0)); /* Clear framebuffer, it's all white in memory after boot */ memset_io(info->screen_base, 0, info->fix.smem_len); /* Allocate Cursor drawing pad. info->fix.smem_len -= PAGE_SIZE; addr = info->fix.smem_start + info->fix.smem_len; write_le32(NEOREG_CURSMEMPOS, ((0x000f & (addr >> 10)) << 8) | ((0x0ff0 & (addr >> 10)) >> 4), par); addr = (unsigned long) info->screen_base + info->fix.smem_len; info->sprite.addr = (u8 *) addr; */ return 0; } static void neo_unmap_video(struct fb_info *info) { struct neofb_par *par = info->par; DBG("neo_unmap_video"); arch_phys_wc_del(par->wc_cookie); iounmap(info->screen_base); info->screen_base = NULL; release_mem_region(info->fix.smem_start, info->fix.smem_len); } static int neo_scan_monitor(struct fb_info *info) { struct neofb_par *par = info->par; unsigned char type, display; int w; // Eventually we will have i2c support. info->monspecs.modedb = kmalloc(sizeof(struct fb_videomode), GFP_KERNEL); if (!info->monspecs.modedb) return -ENOMEM; info->monspecs.modedb_len = 1; /* Determine the panel type */ vga_wgfx(NULL, 0x09, 0x26); type = vga_rgfx(NULL, 0x21); display = vga_rgfx(NULL, 0x20); if (!par->internal_display && !par->external_display) { par->internal_display = display & 2 || !(display & 3) ? 1 : 0; par->external_display = display & 1; printk (KERN_INFO "Autodetected %s display\n", par->internal_display && par->external_display ? "simultaneous" : par->internal_display ? "internal" : "external"); } /* Determine panel width -- used in NeoValidMode. */ w = vga_rgfx(NULL, 0x20); vga_wgfx(NULL, 0x09, 0x00); switch ((w & 0x18) >> 3) { case 0x00: // 640x480@60 par->NeoPanelWidth = 640; par->NeoPanelHeight = 480; memcpy(info->monspecs.modedb, &vesa_modes[3], sizeof(struct fb_videomode)); break; case 0x01: par->NeoPanelWidth = 800; if (par->libretto) { par->NeoPanelHeight = 480; memcpy(info->monspecs.modedb, &mode800x480, sizeof(struct fb_videomode)); } else { // 800x600@60 par->NeoPanelHeight = 600; memcpy(info->monspecs.modedb, &vesa_modes[8], sizeof(struct fb_videomode)); } break; case 0x02: // 1024x768@60 par->NeoPanelWidth = 1024; par->NeoPanelHeight = 768; memcpy(info->monspecs.modedb, &vesa_modes[13], sizeof(struct fb_videomode)); break; case 0x03: /* 1280x1024@60 panel support needs to be added */ #ifdef NOT_DONE par->NeoPanelWidth = 1280; par->NeoPanelHeight = 1024; memcpy(info->monspecs.modedb, &vesa_modes[20], sizeof(struct fb_videomode)); break; #else printk(KERN_ERR "neofb: Only 640x480, 800x600/480 and 1024x768 panels are currently supported\n"); kfree(info->monspecs.modedb); return -1; #endif default: // 640x480@60 par->NeoPanelWidth = 640; par->NeoPanelHeight = 480; memcpy(info->monspecs.modedb, &vesa_modes[3], sizeof(struct fb_videomode)); break; } printk(KERN_INFO "Panel is a %dx%d %s %s display\n", par->NeoPanelWidth, par->NeoPanelHeight, (type & 0x02) ? "color" : "monochrome", (type & 0x10) ? "TFT" : "dual scan"); return 0; } static int neo_init_hw(struct fb_info *info) { struct neofb_par *par = info->par; int videoRam = 896; int maxClock = 65000; int CursorOff = 0x100; DBG("neo_init_hw"); neoUnlock(); #if 0 printk(KERN_DEBUG "--- Neo extended register dump ---\n"); for (int w = 0; w < 0x85; w++) printk(KERN_DEBUG "CR %p: %p\n", (void *) w, (void *) vga_rcrt(NULL, w)); for (int w = 0; w < 0xC7; w++) printk(KERN_DEBUG "GR %p: %p\n", (void *) w, (void *) vga_rgfx(NULL, w)); #endif switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2070: videoRam = 896; maxClock = 65000; break; case FB_ACCEL_NEOMAGIC_NM2090: case FB_ACCEL_NEOMAGIC_NM2093: case FB_ACCEL_NEOMAGIC_NM2097: videoRam = 1152; maxClock = 80000; break; case FB_ACCEL_NEOMAGIC_NM2160: videoRam = 2048; maxClock = 90000; break; case FB_ACCEL_NEOMAGIC_NM2200: videoRam = 2560; maxClock = 110000; break; case FB_ACCEL_NEOMAGIC_NM2230: videoRam = 3008; maxClock = 110000; break; case FB_ACCEL_NEOMAGIC_NM2360: videoRam = 4096; maxClock = 110000; break; case FB_ACCEL_NEOMAGIC_NM2380: videoRam = 6144; maxClock = 110000; break; } switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2070: case FB_ACCEL_NEOMAGIC_NM2090: case FB_ACCEL_NEOMAGIC_NM2093: CursorOff = 0x100; break; case FB_ACCEL_NEOMAGIC_NM2097: case FB_ACCEL_NEOMAGIC_NM2160: CursorOff = 0x100; break; case FB_ACCEL_NEOMAGIC_NM2200: case FB_ACCEL_NEOMAGIC_NM2230: case FB_ACCEL_NEOMAGIC_NM2360: case FB_ACCEL_NEOMAGIC_NM2380: CursorOff = 0x1000; par->neo2200 = (Neo2200 __iomem *) par->mmio_vbase; break; } /* info->sprite.size = CursorMem; info->sprite.scan_align = 1; info->sprite.buf_align = 1; info->sprite.flags = FB_PIXMAP_IO; info->sprite.outbuf = neofb_draw_cursor; */ par->maxClock = maxClock; par->cursorOff = CursorOff; return videoRam * 1024; } static struct fb_info *neo_alloc_fb_info(struct pci_dev *dev, const struct pci_device_id *id) { struct fb_info *info; struct neofb_par *par; info = framebuffer_alloc(sizeof(struct neofb_par), &dev->dev); if (!info) return NULL; par = info->par; info->fix.accel = id->driver_data; par->pci_burst = !nopciburst; par->lcd_stretch = !nostretch; par->libretto = libretto; par->internal_display = internal; par->external_display = external; info->flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN; switch (info->fix.accel) { case FB_ACCEL_NEOMAGIC_NM2070: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 128"); break; case FB_ACCEL_NEOMAGIC_NM2090: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 128V"); break; case FB_ACCEL_NEOMAGIC_NM2093: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 128ZV"); break; case FB_ACCEL_NEOMAGIC_NM2097: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 128ZV+"); break; case FB_ACCEL_NEOMAGIC_NM2160: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 128XD"); break; case FB_ACCEL_NEOMAGIC_NM2200: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 256AV"); info->flags |= FBINFO_HWACCEL_IMAGEBLIT | FBINFO_HWACCEL_COPYAREA | FBINFO_HWACCEL_FILLRECT; break; case FB_ACCEL_NEOMAGIC_NM2230: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 256AV+"); info->flags |= FBINFO_HWACCEL_IMAGEBLIT | FBINFO_HWACCEL_COPYAREA | FBINFO_HWACCEL_FILLRECT; break; case FB_ACCEL_NEOMAGIC_NM2360: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 256ZX"); info->flags |= FBINFO_HWACCEL_IMAGEBLIT | FBINFO_HWACCEL_COPYAREA | FBINFO_HWACCEL_FILLRECT; break; case FB_ACCEL_NEOMAGIC_NM2380: snprintf(info->fix.id, sizeof(info->fix.id), "MagicGraph 256XL+"); info->flags |= FBINFO_HWACCEL_IMAGEBLIT | FBINFO_HWACCEL_COPYAREA | FBINFO_HWACCEL_FILLRECT; break; } info->fix.type = FB_TYPE_PACKED_PIXELS; info->fix.type_aux = 0; info->fix.xpanstep = 0; info->fix.ypanstep = 4; info->fix.ywrapstep = 0; info->fix.accel = id->driver_data; info->fbops = &neofb_ops; info->pseudo_palette = par->palette; return info; } static void neo_free_fb_info(struct fb_info *info) { if (info) { /* * Free the colourmap */ fb_dealloc_cmap(&info->cmap); framebuffer_release(info); } } /* --------------------------------------------------------------------- */ static int neofb_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct fb_info *info; u_int h_sync, v_sync; int video_len, err; DBG("neofb_probe"); err = aperture_remove_conflicting_pci_devices(dev, "neofb"); if (err) return err; err = pci_enable_device(dev); if (err) return err; err = -ENOMEM; info = neo_alloc_fb_info(dev, id); if (!info) return err; err = neo_map_mmio(info, dev); if (err) goto err_map_mmio; err = neo_scan_monitor(info); if (err) goto err_scan_monitor; video_len = neo_init_hw(info); if (video_len < 0) { err = video_len; goto err_init_hw; } err = neo_map_video(info, dev, video_len); if (err) goto err_init_hw; if (!fb_find_mode(&info->var, info, mode_option, NULL, 0, info->monspecs.modedb, 16)) { printk(KERN_ERR "neofb: Unable to find usable video mode.\n"); err = -EINVAL; goto err_map_video; } /* * Calculate the hsync and vsync frequencies. Note that * we split the 1e12 constant up so that we can preserve * the precision and fit the results into 32-bit registers. * (1953125000 * 512 = 1e12) */ h_sync = 1953125000 / info->var.pixclock; h_sync = h_sync * 512 / (info->var.xres + info->var.left_margin + info->var.right_margin + info->var.hsync_len); v_sync = h_sync / (info->var.yres + info->var.upper_margin + info->var.lower_margin + info->var.vsync_len); printk(KERN_INFO "neofb v" NEOFB_VERSION ": %dkB VRAM, using %dx%d, %d.%03dkHz, %dHz\n", info->fix.smem_len >> 10, info->var.xres, info->var.yres, h_sync / 1000, h_sync % 1000, v_sync); err = fb_alloc_cmap(&info->cmap, 256, 0); if (err < 0) goto err_map_video; err = register_framebuffer(info); if (err < 0) goto err_reg_fb; fb_info(info, "%s frame buffer device\n", info->fix.id); /* * Our driver data */ pci_set_drvdata(dev, info); return 0; err_reg_fb: fb_dealloc_cmap(&info->cmap); err_map_video: neo_unmap_video(info); err_init_hw: fb_destroy_modedb(info->monspecs.modedb); err_scan_monitor: neo_unmap_mmio(info); err_map_mmio: neo_free_fb_info(info); return err; } static void neofb_remove(struct pci_dev *dev) { struct fb_info *info = pci_get_drvdata(dev); DBG("neofb_remove"); if (info) { unregister_framebuffer(info); neo_unmap_video(info); fb_destroy_modedb(info->monspecs.modedb); neo_unmap_mmio(info); neo_free_fb_info(info); } } static const struct pci_device_id neofb_devices[] = { {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2070, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2070}, {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2090, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2090}, {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2093, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2093}, {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2097, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2097}, {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2160, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2160}, {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2200}, {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2230, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2230}, {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2360}, {PCI_VENDOR_ID_NEOMAGIC, PCI_CHIP_NM2380, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_NEOMAGIC_NM2380}, {0, 0, 0, 0, 0, 0, 0} }; MODULE_DEVICE_TABLE(pci, neofb_devices); static struct pci_driver neofb_driver = { .name = "neofb", .id_table = neofb_devices, .probe = neofb_probe, .remove = neofb_remove, }; /* ************************* init in-kernel code ************************** */ #ifndef MODULE static int __init neofb_setup(char *options) { char *this_opt; DBG("neofb_setup"); if (!options || !*options) return 0; while ((this_opt = strsep(&options, ",")) != NULL) { if (!*this_opt) continue; if (!strncmp(this_opt, "internal", 8)) internal = 1; else if (!strncmp(this_opt, "external", 8)) external = 1; else if (!strncmp(this_opt, "nostretch", 9)) nostretch = 1; else if (!strncmp(this_opt, "nopciburst", 10)) nopciburst = 1; else if (!strncmp(this_opt, "libretto", 8)) libretto = 1; else mode_option = this_opt; } return 0; } #endif /* MODULE */ static int __init neofb_init(void) { #ifndef MODULE char *option = NULL; #endif if (fb_modesetting_disabled("neofb")) return -ENODEV; #ifndef MODULE if (fb_get_options("neofb", &option)) return -ENODEV; neofb_setup(option); #endif return pci_register_driver(&neofb_driver); } module_init(neofb_init); #ifdef MODULE static void __exit neofb_exit(void) { pci_unregister_driver(&neofb_driver); } module_exit(neofb_exit); #endif /* MODULE */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1