Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 1789 | 51.14% | 51 | 64.56% |
Ivan Kokshaysky | 1426 | 40.77% | 4 | 5.06% |
Richard Henderson | 168 | 4.80% | 9 | 11.39% |
Jay Estabrook | 47 | 1.34% | 1 | 1.27% |
Greg Kroah-Hartman | 17 | 0.49% | 2 | 2.53% |
Andrew Morton | 15 | 0.43% | 2 | 2.53% |
Linus Torvalds | 11 | 0.31% | 3 | 3.80% |
Julia Lawall | 8 | 0.23% | 1 | 1.27% |
Matt Turner | 5 | 0.14% | 1 | 1.27% |
Al Viro | 4 | 0.11% | 1 | 1.27% |
Harvey Harrison | 3 | 0.09% | 1 | 1.27% |
Mike Rapoport | 3 | 0.09% | 2 | 2.53% |
Jeff Wiedemeier | 2 | 0.06% | 1 | 1.27% |
Total | 3498 | 79 |
// SPDX-License-Identifier: GPL-2.0 /* * linux/arch/alpha/kernel/core_titan.c * * Code common to all TITAN core logic chips. */ #define __EXTERN_INLINE inline #include <asm/io.h> #include <asm/core_titan.h> #undef __EXTERN_INLINE #include <linux/module.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/vmalloc.h> #include <linux/memblock.h> #include <asm/ptrace.h> #include <asm/smp.h> #include <asm/tlbflush.h> #include <asm/vga.h> #include "proto.h" #include "pci_impl.h" /* Save Titan configuration data as the console had it set up. */ struct { unsigned long wsba[4]; unsigned long wsm[4]; unsigned long tba[4]; } saved_config[4] __attribute__((common)); /* * Is PChip 1 present? No need to query it more than once. */ static int titan_pchip1_present; /* * BIOS32-style PCI interface: */ #define DEBUG_CONFIG 0 #if DEBUG_CONFIG # define DBG_CFG(args) printk args #else # define DBG_CFG(args) #endif /* * Routines to access TIG registers. */ static inline volatile unsigned long * mk_tig_addr(int offset) { return (volatile unsigned long *)(TITAN_TIG_SPACE + (offset << 6)); } static inline u8 titan_read_tig(int offset, u8 value) { volatile unsigned long *tig_addr = mk_tig_addr(offset); return (u8)(*tig_addr & 0xff); } static inline void titan_write_tig(int offset, u8 value) { volatile unsigned long *tig_addr = mk_tig_addr(offset); *tig_addr = (unsigned long)value; } /* * Given a bus, device, and function number, compute resulting * configuration space address * accordingly. It is therefore not safe to have concurrent * invocations to configuration space access routines, but there * really shouldn't be any need for this. * * Note that all config space accesses use Type 1 address format. * * Note also that type 1 is determined by non-zero bus number. * * Type 1: * * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * 31:24 reserved * 23:16 bus number (8 bits = 128 possible buses) * 15:11 Device number (5 bits) * 10:8 function number * 7:2 register number * * Notes: * The function number selects which function of a multi-function device * (e.g., SCSI and Ethernet). * * The register selects a DWORD (32 bit) register offset. Hence it * doesn't get shifted by 2 bits as we want to "drop" the bottom two * bits. */ static int mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where, unsigned long *pci_addr, unsigned char *type1) { struct pci_controller *hose = pbus->sysdata; unsigned long addr; u8 bus = pbus->number; DBG_CFG(("mk_conf_addr(bus=%d ,device_fn=0x%x, where=0x%x, " "pci_addr=0x%p, type1=0x%p)\n", bus, device_fn, where, pci_addr, type1)); if (!pbus->parent) /* No parent means peer PCI bus. */ bus = 0; *type1 = (bus != 0); addr = (bus << 16) | (device_fn << 8) | where; addr |= hose->config_space_base; *pci_addr = addr; DBG_CFG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr)); return 0; } static int titan_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { unsigned long addr; unsigned char type1; if (mk_conf_addr(bus, devfn, where, &addr, &type1)) return PCIBIOS_DEVICE_NOT_FOUND; switch (size) { case 1: *value = __kernel_ldbu(*(vucp)addr); break; case 2: *value = __kernel_ldwu(*(vusp)addr); break; case 4: *value = *(vuip)addr; break; } return PCIBIOS_SUCCESSFUL; } static int titan_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { unsigned long addr; unsigned char type1; if (mk_conf_addr(bus, devfn, where, &addr, &type1)) return PCIBIOS_DEVICE_NOT_FOUND; switch (size) { case 1: __kernel_stb(value, *(vucp)addr); mb(); __kernel_ldbu(*(vucp)addr); break; case 2: __kernel_stw(value, *(vusp)addr); mb(); __kernel_ldwu(*(vusp)addr); break; case 4: *(vuip)addr = value; mb(); *(vuip)addr; break; } return PCIBIOS_SUCCESSFUL; } struct pci_ops titan_pci_ops = { .read = titan_read_config, .write = titan_write_config, }; void titan_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end) { titan_pachip *pachip = (hose->index & 1) ? TITAN_pachip1 : TITAN_pachip0; titan_pachip_port *port; volatile unsigned long *csr; unsigned long value; /* Get the right hose. */ port = &pachip->g_port; if (hose->index & 2) port = &pachip->a_port; /* We can invalidate up to 8 tlb entries in a go. The flush matches against <31:16> in the pci address. Note that gtlbi* and atlbi* are in the same place in the g_port and a_port, respectively, so the g_port offset can be used even if hose is an a_port */ csr = &port->port_specific.g.gtlbia.csr; if (((start ^ end) & 0xffff0000) == 0) csr = &port->port_specific.g.gtlbiv.csr; /* For TBIA, it doesn't matter what value we write. For TBI, it's the shifted tag bits. */ value = (start & 0xffff0000) >> 12; wmb(); *csr = value; mb(); *csr; } static int titan_query_agp(titan_pachip_port *port) { union TPAchipPCTL pctl; /* set up APCTL */ pctl.pctl_q_whole = port->pctl.csr; return pctl.pctl_r_bits.apctl_v_agp_present; } static void __init titan_init_one_pachip_port(titan_pachip_port *port, int index) { struct pci_controller *hose; hose = alloc_pci_controller(); if (index == 0) pci_isa_hose = hose; hose->io_space = alloc_resource(); hose->mem_space = alloc_resource(); /* * This is for userland consumption. The 40-bit PIO bias that we * use in the kernel through KSEG doesn't work in the page table * based user mappings. (43-bit KSEG sign extends the physical * address from bit 40 to hit the I/O bit - mapped addresses don't). * So make sure we get the 43-bit PIO bias. */ hose->sparse_mem_base = 0; hose->sparse_io_base = 0; hose->dense_mem_base = (TITAN_MEM(index) & 0xffffffffffUL) | 0x80000000000UL; hose->dense_io_base = (TITAN_IO(index) & 0xffffffffffUL) | 0x80000000000UL; hose->config_space_base = TITAN_CONF(index); hose->index = index; hose->io_space->start = TITAN_IO(index) - TITAN_IO_BIAS; hose->io_space->end = hose->io_space->start + TITAN_IO_SPACE - 1; hose->io_space->name = pci_io_names[index]; hose->io_space->flags = IORESOURCE_IO; hose->mem_space->start = TITAN_MEM(index) - TITAN_MEM_BIAS; hose->mem_space->end = hose->mem_space->start + 0xffffffff; hose->mem_space->name = pci_mem_names[index]; hose->mem_space->flags = IORESOURCE_MEM; if (request_resource(&ioport_resource, hose->io_space) < 0) printk(KERN_ERR "Failed to request IO on hose %d\n", index); if (request_resource(&iomem_resource, hose->mem_space) < 0) printk(KERN_ERR "Failed to request MEM on hose %d\n", index); /* * Save the existing PCI window translations. SRM will * need them when we go to reboot. */ saved_config[index].wsba[0] = port->wsba[0].csr; saved_config[index].wsm[0] = port->wsm[0].csr; saved_config[index].tba[0] = port->tba[0].csr; saved_config[index].wsba[1] = port->wsba[1].csr; saved_config[index].wsm[1] = port->wsm[1].csr; saved_config[index].tba[1] = port->tba[1].csr; saved_config[index].wsba[2] = port->wsba[2].csr; saved_config[index].wsm[2] = port->wsm[2].csr; saved_config[index].tba[2] = port->tba[2].csr; saved_config[index].wsba[3] = port->wsba[3].csr; saved_config[index].wsm[3] = port->wsm[3].csr; saved_config[index].tba[3] = port->tba[3].csr; /* * Set up the PCI to main memory translation windows. * * Note: Window 3 on Titan is Scatter-Gather ONLY. * * Window 0 is scatter-gather 8MB at 8MB (for isa) * Window 1 is direct access 1GB at 2GB * Window 2 is scatter-gather 1GB at 3GB */ hose->sg_isa = iommu_arena_new(hose, 0x00800000, 0x00800000, SMP_CACHE_BYTES); hose->sg_isa->align_entry = 8; /* 64KB for ISA */ hose->sg_pci = iommu_arena_new(hose, 0xc0000000, 0x40000000, SMP_CACHE_BYTES); hose->sg_pci->align_entry = 4; /* Titan caches 4 PTEs at a time */ port->wsba[0].csr = hose->sg_isa->dma_base | 3; port->wsm[0].csr = (hose->sg_isa->size - 1) & 0xfff00000; port->tba[0].csr = virt_to_phys(hose->sg_isa->ptes); port->wsba[1].csr = __direct_map_base | 1; port->wsm[1].csr = (__direct_map_size - 1) & 0xfff00000; port->tba[1].csr = 0; port->wsba[2].csr = hose->sg_pci->dma_base | 3; port->wsm[2].csr = (hose->sg_pci->size - 1) & 0xfff00000; port->tba[2].csr = virt_to_phys(hose->sg_pci->ptes); port->wsba[3].csr = 0; /* Enable the Monster Window to make DAC pci64 possible. */ port->pctl.csr |= pctl_m_mwin; /* * If it's an AGP port, initialize agplastwr. */ if (titan_query_agp(port)) port->port_specific.a.agplastwr.csr = __direct_map_base; titan_pci_tbi(hose, 0, -1); } static void __init titan_init_pachips(titan_pachip *pachip0, titan_pachip *pachip1) { titan_pchip1_present = TITAN_cchip->csc.csr & 1L<<14; /* Init the ports in hose order... */ titan_init_one_pachip_port(&pachip0->g_port, 0); /* hose 0 */ if (titan_pchip1_present) titan_init_one_pachip_port(&pachip1->g_port, 1);/* hose 1 */ titan_init_one_pachip_port(&pachip0->a_port, 2); /* hose 2 */ if (titan_pchip1_present) titan_init_one_pachip_port(&pachip1->a_port, 3);/* hose 3 */ } void __init titan_init_arch(void) { #if 0 printk("%s: titan_init_arch()\n", __func__); printk("%s: CChip registers:\n", __func__); printk("%s: CSR_CSC 0x%lx\n", __func__, TITAN_cchip->csc.csr); printk("%s: CSR_MTR 0x%lx\n", __func__, TITAN_cchip->mtr.csr); printk("%s: CSR_MISC 0x%lx\n", __func__, TITAN_cchip->misc.csr); printk("%s: CSR_DIM0 0x%lx\n", __func__, TITAN_cchip->dim0.csr); printk("%s: CSR_DIM1 0x%lx\n", __func__, TITAN_cchip->dim1.csr); printk("%s: CSR_DIR0 0x%lx\n", __func__, TITAN_cchip->dir0.csr); printk("%s: CSR_DIR1 0x%lx\n", __func__, TITAN_cchip->dir1.csr); printk("%s: CSR_DRIR 0x%lx\n", __func__, TITAN_cchip->drir.csr); printk("%s: DChip registers:\n", __func__); printk("%s: CSR_DSC 0x%lx\n", __func__, TITAN_dchip->dsc.csr); printk("%s: CSR_STR 0x%lx\n", __func__, TITAN_dchip->str.csr); printk("%s: CSR_DREV 0x%lx\n", __func__, TITAN_dchip->drev.csr); #endif boot_cpuid = __hard_smp_processor_id(); /* With multiple PCI busses, we play with I/O as physical addrs. */ ioport_resource.end = ~0UL; iomem_resource.end = ~0UL; /* PCI DMA Direct Mapping is 1GB at 2GB. */ __direct_map_base = 0x80000000; __direct_map_size = 0x40000000; /* Init the PA chip(s). */ titan_init_pachips(TITAN_pachip0, TITAN_pachip1); /* Check for graphic console location (if any). */ find_console_vga_hose(); } static void titan_kill_one_pachip_port(titan_pachip_port *port, int index) { port->wsba[0].csr = saved_config[index].wsba[0]; port->wsm[0].csr = saved_config[index].wsm[0]; port->tba[0].csr = saved_config[index].tba[0]; port->wsba[1].csr = saved_config[index].wsba[1]; port->wsm[1].csr = saved_config[index].wsm[1]; port->tba[1].csr = saved_config[index].tba[1]; port->wsba[2].csr = saved_config[index].wsba[2]; port->wsm[2].csr = saved_config[index].wsm[2]; port->tba[2].csr = saved_config[index].tba[2]; port->wsba[3].csr = saved_config[index].wsba[3]; port->wsm[3].csr = saved_config[index].wsm[3]; port->tba[3].csr = saved_config[index].tba[3]; } static void titan_kill_pachips(titan_pachip *pachip0, titan_pachip *pachip1) { if (titan_pchip1_present) { titan_kill_one_pachip_port(&pachip1->g_port, 1); titan_kill_one_pachip_port(&pachip1->a_port, 3); } titan_kill_one_pachip_port(&pachip0->g_port, 0); titan_kill_one_pachip_port(&pachip0->a_port, 2); } void titan_kill_arch(int mode) { titan_kill_pachips(TITAN_pachip0, TITAN_pachip1); } /* * IO map support. */ void __iomem * titan_ioportmap(unsigned long addr) { FIXUP_IOADDR_VGA(addr); return (void __iomem *)(addr + TITAN_IO_BIAS); } void __iomem * titan_ioremap(unsigned long addr, unsigned long size) { int h = (addr & TITAN_HOSE_MASK) >> TITAN_HOSE_SHIFT; unsigned long baddr = addr & ~TITAN_HOSE_MASK; unsigned long last = baddr + size - 1; struct pci_controller *hose; struct vm_struct *area; unsigned long vaddr; unsigned long *ptes; unsigned long pfn; #ifdef CONFIG_VGA_HOSE /* * Adjust the address and hose, if necessary. */ if (pci_vga_hose && __is_mem_vga(addr)) { h = pci_vga_hose->index; addr += pci_vga_hose->mem_space->start; } #endif /* * Find the hose. */ for (hose = hose_head; hose; hose = hose->next) if (hose->index == h) break; if (!hose) return NULL; /* * Is it direct-mapped? */ if ((baddr >= __direct_map_base) && ((baddr + size - 1) < __direct_map_base + __direct_map_size)) { vaddr = addr - __direct_map_base + TITAN_MEM_BIAS; return (void __iomem *) vaddr; } /* * Check the scatter-gather arena. */ if (hose->sg_pci && baddr >= (unsigned long)hose->sg_pci->dma_base && last < (unsigned long)hose->sg_pci->dma_base + hose->sg_pci->size){ /* * Adjust the limits (mappings must be page aligned) */ baddr -= hose->sg_pci->dma_base; last -= hose->sg_pci->dma_base; baddr &= PAGE_MASK; size = PAGE_ALIGN(last) - baddr; /* * Map it */ area = get_vm_area(size, VM_IOREMAP); if (!area) { printk("ioremap failed... no vm_area...\n"); return NULL; } ptes = hose->sg_pci->ptes; for (vaddr = (unsigned long)area->addr; baddr <= last; baddr += PAGE_SIZE, vaddr += PAGE_SIZE) { pfn = ptes[baddr >> PAGE_SHIFT]; if (!(pfn & 1)) { printk("ioremap failed... pte not valid...\n"); vfree(area->addr); return NULL; } pfn >>= 1; /* make it a true pfn */ if (__alpha_remap_area_pages(vaddr, pfn << PAGE_SHIFT, PAGE_SIZE, 0)) { printk("FAILED to remap_area_pages...\n"); vfree(area->addr); return NULL; } } flush_tlb_all(); vaddr = (unsigned long)area->addr + (addr & ~PAGE_MASK); return (void __iomem *) vaddr; } /* Assume a legacy (read: VGA) address, and return appropriately. */ return (void __iomem *)(addr + TITAN_MEM_BIAS); } void titan_iounmap(volatile void __iomem *xaddr) { unsigned long addr = (unsigned long) xaddr; if (addr >= VMALLOC_START) vfree((void *)(PAGE_MASK & addr)); } int titan_is_mmio(const volatile void __iomem *xaddr) { unsigned long addr = (unsigned long) xaddr; if (addr >= VMALLOC_START) return 1; else return (addr & 0x100000000UL) == 0; } #ifndef CONFIG_ALPHA_GENERIC EXPORT_SYMBOL(titan_ioportmap); EXPORT_SYMBOL(titan_ioremap); EXPORT_SYMBOL(titan_iounmap); EXPORT_SYMBOL(titan_is_mmio); #endif /* * AGP GART Support. */ #include <linux/agp_backend.h> #include <asm/agp_backend.h> #include <linux/slab.h> #include <linux/delay.h> struct titan_agp_aperture { struct pci_iommu_arena *arena; long pg_start; long pg_count; }; static int titan_agp_setup(alpha_agp_info *agp) { struct titan_agp_aperture *aper; if (!alpha_agpgart_size) return -ENOMEM; aper = kmalloc(sizeof(struct titan_agp_aperture), GFP_KERNEL); if (aper == NULL) return -ENOMEM; aper->arena = agp->hose->sg_pci; aper->pg_count = alpha_agpgart_size / PAGE_SIZE; aper->pg_start = iommu_reserve(aper->arena, aper->pg_count, aper->pg_count - 1); if (aper->pg_start < 0) { printk(KERN_ERR "Failed to reserve AGP memory\n"); kfree(aper); return -ENOMEM; } agp->aperture.bus_base = aper->arena->dma_base + aper->pg_start * PAGE_SIZE; agp->aperture.size = aper->pg_count * PAGE_SIZE; agp->aperture.sysdata = aper; return 0; } static void titan_agp_cleanup(alpha_agp_info *agp) { struct titan_agp_aperture *aper = agp->aperture.sysdata; int status; status = iommu_release(aper->arena, aper->pg_start, aper->pg_count); if (status == -EBUSY) { printk(KERN_WARNING "Attempted to release bound AGP memory - unbinding\n"); iommu_unbind(aper->arena, aper->pg_start, aper->pg_count); status = iommu_release(aper->arena, aper->pg_start, aper->pg_count); } if (status < 0) printk(KERN_ERR "Failed to release AGP memory\n"); kfree(aper); kfree(agp); } static int titan_agp_configure(alpha_agp_info *agp) { union TPAchipPCTL pctl; titan_pachip_port *port = agp->private; pctl.pctl_q_whole = port->pctl.csr; /* Side-Band Addressing? */ pctl.pctl_r_bits.apctl_v_agp_sba_en = agp->mode.bits.sba; /* AGP Rate? */ pctl.pctl_r_bits.apctl_v_agp_rate = 0; /* 1x */ if (agp->mode.bits.rate & 2) pctl.pctl_r_bits.apctl_v_agp_rate = 1; /* 2x */ #if 0 if (agp->mode.bits.rate & 4) pctl.pctl_r_bits.apctl_v_agp_rate = 2; /* 4x */ #endif /* RQ Depth? */ pctl.pctl_r_bits.apctl_v_agp_hp_rd = 2; pctl.pctl_r_bits.apctl_v_agp_lp_rd = 7; /* * AGP Enable. */ pctl.pctl_r_bits.apctl_v_agp_en = agp->mode.bits.enable; /* Tell the user. */ printk("Enabling AGP: %dX%s\n", 1 << pctl.pctl_r_bits.apctl_v_agp_rate, pctl.pctl_r_bits.apctl_v_agp_sba_en ? " - SBA" : ""); /* Write it. */ port->pctl.csr = pctl.pctl_q_whole; /* And wait at least 5000 66MHz cycles (per Titan spec). */ udelay(100); return 0; } static int titan_agp_bind_memory(alpha_agp_info *agp, off_t pg_start, struct agp_memory *mem) { struct titan_agp_aperture *aper = agp->aperture.sysdata; return iommu_bind(aper->arena, aper->pg_start + pg_start, mem->page_count, mem->pages); } static int titan_agp_unbind_memory(alpha_agp_info *agp, off_t pg_start, struct agp_memory *mem) { struct titan_agp_aperture *aper = agp->aperture.sysdata; return iommu_unbind(aper->arena, aper->pg_start + pg_start, mem->page_count); } static unsigned long titan_agp_translate(alpha_agp_info *agp, dma_addr_t addr) { struct titan_agp_aperture *aper = agp->aperture.sysdata; unsigned long baddr = addr - aper->arena->dma_base; unsigned long pte; if (addr < agp->aperture.bus_base || addr >= agp->aperture.bus_base + agp->aperture.size) { printk("%s: addr out of range\n", __func__); return -EINVAL; } pte = aper->arena->ptes[baddr >> PAGE_SHIFT]; if (!(pte & 1)) { printk("%s: pte not valid\n", __func__); return -EINVAL; } return (pte >> 1) << PAGE_SHIFT; } struct alpha_agp_ops titan_agp_ops = { .setup = titan_agp_setup, .cleanup = titan_agp_cleanup, .configure = titan_agp_configure, .bind = titan_agp_bind_memory, .unbind = titan_agp_unbind_memory, .translate = titan_agp_translate }; alpha_agp_info * titan_agp_info(void) { alpha_agp_info *agp; struct pci_controller *hose; titan_pachip_port *port; int hosenum = -1; union TPAchipPCTL pctl; /* * Find the AGP port. */ port = &TITAN_pachip0->a_port; if (titan_query_agp(port)) hosenum = 2; if (hosenum < 0 && titan_pchip1_present && titan_query_agp(port = &TITAN_pachip1->a_port)) hosenum = 3; /* * Find the hose the port is on. */ for (hose = hose_head; hose; hose = hose->next) if (hose->index == hosenum) break; if (!hose || !hose->sg_pci) return NULL; /* * Allocate the info structure. */ agp = kmalloc(sizeof(*agp), GFP_KERNEL); if (!agp) return NULL; /* * Fill it in. */ agp->hose = hose; agp->private = port; agp->ops = &titan_agp_ops; /* * Aperture - not configured until ops.setup(). * * FIXME - should we go ahead and allocate it here? */ agp->aperture.bus_base = 0; agp->aperture.size = 0; agp->aperture.sysdata = NULL; /* * Capabilities. */ agp->capability.lw = 0; agp->capability.bits.rate = 3; /* 2x, 1x */ agp->capability.bits.sba = 1; agp->capability.bits.rq = 7; /* 8 - 1 */ /* * Mode. */ pctl.pctl_q_whole = port->pctl.csr; agp->mode.lw = 0; agp->mode.bits.rate = 1 << pctl.pctl_r_bits.apctl_v_agp_rate; agp->mode.bits.sba = pctl.pctl_r_bits.apctl_v_agp_sba_en; agp->mode.bits.rq = 7; /* RQ Depth? */ agp->mode.bits.enable = pctl.pctl_r_bits.apctl_v_agp_en; return agp; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1