Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huacai Chen | 1700 | 96.92% | 7 | 77.78% |
Binbin Zhou | 53 | 3.02% | 1 | 11.11% |
Bibo Mao | 1 | 0.06% | 1 | 11.11% |
Total | 1754 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* * Author: Xiang Gao <gaoxiang@loongson.cn> * Huacai Chen <chenhuacai@loongson.cn> * * Copyright (C) 2020-2022 Loongson Technology Corporation Limited */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/export.h> #include <linux/nodemask.h> #include <linux/swap.h> #include <linux/memblock.h> #include <linux/pfn.h> #include <linux/acpi.h> #include <linux/efi.h> #include <linux/irq.h> #include <linux/pci.h> #include <asm/bootinfo.h> #include <asm/loongson.h> #include <asm/numa.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/sections.h> #include <asm/time.h> int numa_off; struct pglist_data *node_data[MAX_NUMNODES]; unsigned char node_distances[MAX_NUMNODES][MAX_NUMNODES]; EXPORT_SYMBOL(node_data); EXPORT_SYMBOL(node_distances); static struct numa_meminfo numa_meminfo; cpumask_t cpus_on_node[MAX_NUMNODES]; cpumask_t phys_cpus_on_node[MAX_NUMNODES]; EXPORT_SYMBOL(cpus_on_node); /* * apicid, cpu, node mappings */ s16 __cpuid_to_node[CONFIG_NR_CPUS] = { [0 ... CONFIG_NR_CPUS - 1] = NUMA_NO_NODE }; EXPORT_SYMBOL(__cpuid_to_node); nodemask_t numa_nodes_parsed __initdata; #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; EXPORT_SYMBOL(__per_cpu_offset); static int __init pcpu_cpu_to_node(int cpu) { return early_cpu_to_node(cpu); } static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) { if (early_cpu_to_node(from) == early_cpu_to_node(to)) return LOCAL_DISTANCE; else return REMOTE_DISTANCE; } void __init pcpu_populate_pte(unsigned long addr) { populate_kernel_pte(addr); } void __init setup_per_cpu_areas(void) { unsigned long delta; unsigned int cpu; int rc = -EINVAL; if (pcpu_chosen_fc == PCPU_FC_AUTO) { if (nr_node_ids >= 8) pcpu_chosen_fc = PCPU_FC_PAGE; else pcpu_chosen_fc = PCPU_FC_EMBED; } /* * Always reserve area for module percpu variables. That's * what the legacy allocator did. */ if (pcpu_chosen_fc != PCPU_FC_PAGE) { rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, PMD_SIZE, pcpu_cpu_distance, pcpu_cpu_to_node); if (rc < 0) pr_warn("%s allocator failed (%d), falling back to page size\n", pcpu_fc_names[pcpu_chosen_fc], rc); } if (rc < 0) rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_cpu_to_node); if (rc < 0) panic("cannot initialize percpu area (err=%d)", rc); delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; for_each_possible_cpu(cpu) __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; } #endif /* * Get nodeid by logical cpu number. * __cpuid_to_node maps phyical cpu id to node, so we * should use cpu_logical_map(cpu) to index it. * * This routine is only used in early phase during * booting, after setup_per_cpu_areas calling and numa_node * initialization, cpu_to_node will be used instead. */ int early_cpu_to_node(int cpu) { int physid = cpu_logical_map(cpu); if (physid < 0) return NUMA_NO_NODE; return __cpuid_to_node[physid]; } void __init early_numa_add_cpu(int cpuid, s16 node) { int cpu = __cpu_number_map[cpuid]; if (cpu < 0) return; cpumask_set_cpu(cpu, &cpus_on_node[node]); cpumask_set_cpu(cpuid, &phys_cpus_on_node[node]); } void numa_add_cpu(unsigned int cpu) { int nid = cpu_to_node(cpu); cpumask_set_cpu(cpu, &cpus_on_node[nid]); } void numa_remove_cpu(unsigned int cpu) { int nid = cpu_to_node(cpu); cpumask_clear_cpu(cpu, &cpus_on_node[nid]); } static int __init numa_add_memblk_to(int nid, u64 start, u64 end, struct numa_meminfo *mi) { /* ignore zero length blks */ if (start == end) return 0; /* whine about and ignore invalid blks */ if (start > end || nid < 0 || nid >= MAX_NUMNODES) { pr_warn("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", nid, start, end - 1); return 0; } if (mi->nr_blks >= NR_NODE_MEMBLKS) { pr_err("NUMA: too many memblk ranges\n"); return -EINVAL; } mi->blk[mi->nr_blks].start = PFN_ALIGN(start); mi->blk[mi->nr_blks].end = PFN_ALIGN(end - PAGE_SIZE + 1); mi->blk[mi->nr_blks].nid = nid; mi->nr_blks++; return 0; } /** * numa_add_memblk - Add one numa_memblk to numa_meminfo * @nid: NUMA node ID of the new memblk * @start: Start address of the new memblk * @end: End address of the new memblk * * Add a new memblk to the default numa_meminfo. * * RETURNS: * 0 on success, -errno on failure. */ int __init numa_add_memblk(int nid, u64 start, u64 end) { return numa_add_memblk_to(nid, start, end, &numa_meminfo); } static void __init alloc_node_data(int nid) { void *nd; unsigned long nd_pa; size_t nd_sz = roundup(sizeof(pg_data_t), PAGE_SIZE); nd_pa = memblock_phys_alloc_try_nid(nd_sz, SMP_CACHE_BYTES, nid); if (!nd_pa) { pr_err("Cannot find %zu Byte for node_data (initial node: %d)\n", nd_sz, nid); return; } nd = __va(nd_pa); node_data[nid] = nd; memset(nd, 0, sizeof(pg_data_t)); } static void __init node_mem_init(unsigned int node) { unsigned long start_pfn, end_pfn; unsigned long node_addrspace_offset; node_addrspace_offset = nid_to_addrbase(node); pr_info("Node%d's addrspace_offset is 0x%lx\n", node, node_addrspace_offset); get_pfn_range_for_nid(node, &start_pfn, &end_pfn); pr_info("Node%d: start_pfn=0x%lx, end_pfn=0x%lx\n", node, start_pfn, end_pfn); alloc_node_data(node); } #ifdef CONFIG_ACPI_NUMA /* * Sanity check to catch more bad NUMA configurations (they are amazingly * common). Make sure the nodes cover all memory. */ static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) { int i; u64 numaram, biosram; numaram = 0; for (i = 0; i < mi->nr_blks; i++) { u64 s = mi->blk[i].start >> PAGE_SHIFT; u64 e = mi->blk[i].end >> PAGE_SHIFT; numaram += e - s; numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); if ((s64)numaram < 0) numaram = 0; } max_pfn = max_low_pfn; biosram = max_pfn - absent_pages_in_range(0, max_pfn); BUG_ON((s64)(biosram - numaram) >= (1 << (20 - PAGE_SHIFT))); return true; } static void __init add_node_intersection(u32 node, u64 start, u64 size, u32 type) { static unsigned long num_physpages; num_physpages += (size >> PAGE_SHIFT); pr_info("Node%d: mem_type:%d, mem_start:0x%llx, mem_size:0x%llx Bytes\n", node, type, start, size); pr_info(" start_pfn:0x%llx, end_pfn:0x%llx, num_physpages:0x%lx\n", start >> PAGE_SHIFT, (start + size) >> PAGE_SHIFT, num_physpages); memblock_set_node(start, size, &memblock.memory, node); } /* * add_numamem_region * * Add a uasable memory region described by BIOS. The * routine gets each intersection between BIOS's region * and node's region, and adds them into node's memblock * pool. * */ static void __init add_numamem_region(u64 start, u64 end, u32 type) { u32 i; u64 ofs = start; if (start >= end) { pr_debug("Invalid region: %016llx-%016llx\n", start, end); return; } for (i = 0; i < numa_meminfo.nr_blks; i++) { struct numa_memblk *mb = &numa_meminfo.blk[i]; if (ofs > mb->end) continue; if (end > mb->end) { add_node_intersection(mb->nid, ofs, mb->end - ofs, type); ofs = mb->end; } else { add_node_intersection(mb->nid, ofs, end - ofs, type); break; } } } static void __init init_node_memblock(void) { u32 mem_type; u64 mem_end, mem_start, mem_size; efi_memory_desc_t *md; /* Parse memory information and activate */ for_each_efi_memory_desc(md) { mem_type = md->type; mem_start = md->phys_addr; mem_size = md->num_pages << EFI_PAGE_SHIFT; mem_end = mem_start + mem_size; switch (mem_type) { case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_PERSISTENT_MEMORY: case EFI_CONVENTIONAL_MEMORY: add_numamem_region(mem_start, mem_end, mem_type); break; case EFI_PAL_CODE: case EFI_UNUSABLE_MEMORY: case EFI_ACPI_RECLAIM_MEMORY: add_numamem_region(mem_start, mem_end, mem_type); fallthrough; case EFI_RESERVED_TYPE: case EFI_RUNTIME_SERVICES_CODE: case EFI_RUNTIME_SERVICES_DATA: case EFI_MEMORY_MAPPED_IO: case EFI_MEMORY_MAPPED_IO_PORT_SPACE: pr_info("Resvd: mem_type:%d, mem_start:0x%llx, mem_size:0x%llx Bytes\n", mem_type, mem_start, mem_size); break; } } } static void __init numa_default_distance(void) { int row, col; for (row = 0; row < MAX_NUMNODES; row++) for (col = 0; col < MAX_NUMNODES; col++) { if (col == row) node_distances[row][col] = LOCAL_DISTANCE; else /* We assume that one node per package here! * * A SLIT should be used for multiple nodes * per package to override default setting. */ node_distances[row][col] = REMOTE_DISTANCE; } } /* * fake_numa_init() - For Non-ACPI systems * Return: 0 on success, -errno on failure. */ static int __init fake_numa_init(void) { phys_addr_t start = memblock_start_of_DRAM(); phys_addr_t end = memblock_end_of_DRAM() - 1; node_set(0, numa_nodes_parsed); pr_info("Faking a node at [mem %pap-%pap]\n", &start, &end); return numa_add_memblk(0, start, end + 1); } int __init init_numa_memory(void) { int i; int ret; int node; for (i = 0; i < NR_CPUS; i++) set_cpuid_to_node(i, NUMA_NO_NODE); numa_default_distance(); nodes_clear(numa_nodes_parsed); nodes_clear(node_possible_map); nodes_clear(node_online_map); memset(&numa_meminfo, 0, sizeof(numa_meminfo)); /* Parse SRAT and SLIT if provided by firmware. */ ret = acpi_disabled ? fake_numa_init() : acpi_numa_init(); if (ret < 0) return ret; node_possible_map = numa_nodes_parsed; if (WARN_ON(nodes_empty(node_possible_map))) return -EINVAL; init_node_memblock(); if (numa_meminfo_cover_memory(&numa_meminfo) == false) return -EINVAL; for_each_node_mask(node, node_possible_map) { node_mem_init(node); node_set_online(node); } max_low_pfn = PHYS_PFN(memblock_end_of_DRAM()); setup_nr_node_ids(); loongson_sysconf.nr_nodes = nr_node_ids; loongson_sysconf.cores_per_node = cpumask_weight(&phys_cpus_on_node[0]); return 0; } #endif void __init paging_init(void) { unsigned int node; unsigned long zones_size[MAX_NR_ZONES] = {0, }; for_each_online_node(node) { unsigned long start_pfn, end_pfn; get_pfn_range_for_nid(node, &start_pfn, &end_pfn); if (end_pfn > max_low_pfn) max_low_pfn = end_pfn; } #ifdef CONFIG_ZONE_DMA32 zones_size[ZONE_DMA32] = MAX_DMA32_PFN; #endif zones_size[ZONE_NORMAL] = max_low_pfn; free_area_init(zones_size); } void __init mem_init(void) { high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); memblock_free_all(); } int pcibus_to_node(struct pci_bus *bus) { return dev_to_node(&bus->dev); } EXPORT_SYMBOL(pcibus_to_node);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1