Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huacai Chen | 3806 | 99.97% | 2 | 66.67% |
Wang Xuerui | 1 | 0.03% | 1 | 33.33% |
Total | 3807 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Linux performance counter support for LoongArch. * * Copyright (C) 2022 Loongson Technology Corporation Limited * * Derived from MIPS: * Copyright (C) 2010 MIPS Technologies, Inc. * Copyright (C) 2011 Cavium Networks, Inc. * Author: Deng-Cheng Zhu */ #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <linux/kernel.h> #include <linux/perf_event.h> #include <linux/uaccess.h> #include <linux/sched/task_stack.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/stacktrace.h> #include <asm/unwind.h> /* * Get the return address for a single stackframe and return a pointer to the * next frame tail. */ static unsigned long user_backtrace(struct perf_callchain_entry_ctx *entry, unsigned long fp) { unsigned long err; unsigned long __user *user_frame_tail; struct stack_frame buftail; user_frame_tail = (unsigned long __user *)(fp - sizeof(struct stack_frame)); /* Also check accessibility of one struct frame_tail beyond */ if (!access_ok(user_frame_tail, sizeof(buftail))) return 0; pagefault_disable(); err = __copy_from_user_inatomic(&buftail, user_frame_tail, sizeof(buftail)); pagefault_enable(); if (err || (unsigned long)user_frame_tail >= buftail.fp) return 0; perf_callchain_store(entry, buftail.ra); return buftail.fp; } void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) { unsigned long fp; if (perf_guest_state()) { /* We don't support guest os callchain now */ return; } perf_callchain_store(entry, regs->csr_era); fp = regs->regs[22]; while (entry->nr < entry->max_stack && fp && !((unsigned long)fp & 0xf)) fp = user_backtrace(entry, fp); } void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) { struct unwind_state state; unsigned long addr; for (unwind_start(&state, current, regs); !unwind_done(&state); unwind_next_frame(&state)) { addr = unwind_get_return_address(&state); if (!addr || perf_callchain_store(entry, addr)) return; } } #define LOONGARCH_MAX_HWEVENTS 32 struct cpu_hw_events { /* Array of events on this cpu. */ struct perf_event *events[LOONGARCH_MAX_HWEVENTS]; /* * Set the bit (indexed by the counter number) when the counter * is used for an event. */ unsigned long used_mask[BITS_TO_LONGS(LOONGARCH_MAX_HWEVENTS)]; /* * Software copy of the control register for each performance counter. */ unsigned int saved_ctrl[LOONGARCH_MAX_HWEVENTS]; }; static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .saved_ctrl = {0}, }; /* The description of LoongArch performance events. */ struct loongarch_perf_event { unsigned int event_id; }; static struct loongarch_perf_event raw_event; static DEFINE_MUTEX(raw_event_mutex); #define C(x) PERF_COUNT_HW_CACHE_##x #define HW_OP_UNSUPPORTED 0xffffffff #define CACHE_OP_UNSUPPORTED 0xffffffff #define PERF_MAP_ALL_UNSUPPORTED \ [0 ... PERF_COUNT_HW_MAX - 1] = {HW_OP_UNSUPPORTED} #define PERF_CACHE_MAP_ALL_UNSUPPORTED \ [0 ... C(MAX) - 1] = { \ [0 ... C(OP_MAX) - 1] = { \ [0 ... C(RESULT_MAX) - 1] = {CACHE_OP_UNSUPPORTED}, \ }, \ } struct loongarch_pmu { u64 max_period; u64 valid_count; u64 overflow; const char *name; unsigned int num_counters; u64 (*read_counter)(unsigned int idx); void (*write_counter)(unsigned int idx, u64 val); const struct loongarch_perf_event *(*map_raw_event)(u64 config); const struct loongarch_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; const struct loongarch_perf_event (*cache_event_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; }; static struct loongarch_pmu loongarch_pmu; #define M_PERFCTL_EVENT(event) (event & CSR_PERFCTRL_EVENT) #define M_PERFCTL_COUNT_EVENT_WHENEVER (CSR_PERFCTRL_PLV0 | \ CSR_PERFCTRL_PLV1 | \ CSR_PERFCTRL_PLV2 | \ CSR_PERFCTRL_PLV3 | \ CSR_PERFCTRL_IE) #define M_PERFCTL_CONFIG_MASK 0x1f0000 static void pause_local_counters(void); static void resume_local_counters(void); static u64 loongarch_pmu_read_counter(unsigned int idx) { u64 val = -1; switch (idx) { case 0: val = read_csr_perfcntr0(); break; case 1: val = read_csr_perfcntr1(); break; case 2: val = read_csr_perfcntr2(); break; case 3: val = read_csr_perfcntr3(); break; default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } return val; } static void loongarch_pmu_write_counter(unsigned int idx, u64 val) { switch (idx) { case 0: write_csr_perfcntr0(val); return; case 1: write_csr_perfcntr1(val); return; case 2: write_csr_perfcntr2(val); return; case 3: write_csr_perfcntr3(val); return; default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return; } } static unsigned int loongarch_pmu_read_control(unsigned int idx) { unsigned int val = -1; switch (idx) { case 0: val = read_csr_perfctrl0(); break; case 1: val = read_csr_perfctrl1(); break; case 2: val = read_csr_perfctrl2(); break; case 3: val = read_csr_perfctrl3(); break; default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } return val; } static void loongarch_pmu_write_control(unsigned int idx, unsigned int val) { switch (idx) { case 0: write_csr_perfctrl0(val); return; case 1: write_csr_perfctrl1(val); return; case 2: write_csr_perfctrl2(val); return; case 3: write_csr_perfctrl3(val); return; default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return; } } static int loongarch_pmu_alloc_counter(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc) { int i; for (i = 0; i < loongarch_pmu.num_counters; i++) { if (!test_and_set_bit(i, cpuc->used_mask)) return i; } return -EAGAIN; } static void loongarch_pmu_enable_event(struct hw_perf_event *evt, int idx) { unsigned int cpu; struct perf_event *event = container_of(evt, struct perf_event, hw); struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters); /* Make sure interrupt enabled. */ cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base) | (evt->config_base & M_PERFCTL_CONFIG_MASK) | CSR_PERFCTRL_IE; cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id(); /* * We do not actually let the counter run. Leave it until start(). */ pr_debug("Enabling perf counter for CPU%d\n", cpu); } static void loongarch_pmu_disable_event(int idx) { unsigned long flags; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters); local_irq_save(flags); cpuc->saved_ctrl[idx] = loongarch_pmu_read_control(idx) & ~M_PERFCTL_COUNT_EVENT_WHENEVER; loongarch_pmu_write_control(idx, cpuc->saved_ctrl[idx]); local_irq_restore(flags); } static int loongarch_pmu_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx) { int ret = 0; u64 left = local64_read(&hwc->period_left); u64 period = hwc->sample_period; if (unlikely((left + period) & (1ULL << 63))) { /* left underflowed by more than period. */ left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } else if (unlikely((left + period) <= period)) { /* left underflowed by less than period. */ left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > loongarch_pmu.max_period) { left = loongarch_pmu.max_period; local64_set(&hwc->period_left, left); } local64_set(&hwc->prev_count, loongarch_pmu.overflow - left); loongarch_pmu.write_counter(idx, loongarch_pmu.overflow - left); perf_event_update_userpage(event); return ret; } static void loongarch_pmu_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { u64 delta; u64 prev_raw_count, new_raw_count; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = loongarch_pmu.read_counter(idx); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = new_raw_count - prev_raw_count; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); } static void loongarch_pmu_start(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* Set the period for the event. */ loongarch_pmu_event_set_period(event, hwc, hwc->idx); /* Enable the event. */ loongarch_pmu_enable_event(hwc, hwc->idx); } static void loongarch_pmu_stop(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (!(hwc->state & PERF_HES_STOPPED)) { /* We are working on a local event. */ loongarch_pmu_disable_event(hwc->idx); barrier(); loongarch_pmu_event_update(event, hwc, hwc->idx); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static int loongarch_pmu_add(struct perf_event *event, int flags) { int idx, err = 0; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; perf_pmu_disable(event->pmu); /* To look for a free counter for this event. */ idx = loongarch_pmu_alloc_counter(cpuc, hwc); if (idx < 0) { err = idx; goto out; } /* * If there is an event in the counter we are going to use then * make sure it is disabled. */ event->hw.idx = idx; loongarch_pmu_disable_event(idx); cpuc->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) loongarch_pmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static void loongarch_pmu_del(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters); loongarch_pmu_stop(event, PERF_EF_UPDATE); cpuc->events[idx] = NULL; clear_bit(idx, cpuc->used_mask); perf_event_update_userpage(event); } static void loongarch_pmu_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* Don't read disabled counters! */ if (hwc->idx < 0) return; loongarch_pmu_event_update(event, hwc, hwc->idx); } static void loongarch_pmu_enable(struct pmu *pmu) { resume_local_counters(); } static void loongarch_pmu_disable(struct pmu *pmu) { pause_local_counters(); } static DEFINE_MUTEX(pmu_reserve_mutex); static atomic_t active_events = ATOMIC_INIT(0); static int get_pmc_irq(void) { struct irq_domain *d = irq_find_matching_fwnode(cpuintc_handle, DOMAIN_BUS_ANY); if (d) return irq_create_mapping(d, INT_PCOV); return -EINVAL; } static void reset_counters(void *arg); static int __hw_perf_event_init(struct perf_event *event); static void hw_perf_event_destroy(struct perf_event *event) { if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) { on_each_cpu(reset_counters, NULL, 1); free_irq(get_pmc_irq(), &loongarch_pmu); mutex_unlock(&pmu_reserve_mutex); } } static void handle_associated_event(struct cpu_hw_events *cpuc, int idx, struct perf_sample_data *data, struct pt_regs *regs) { struct perf_event *event = cpuc->events[idx]; struct hw_perf_event *hwc = &event->hw; loongarch_pmu_event_update(event, hwc, idx); data->period = event->hw.last_period; if (!loongarch_pmu_event_set_period(event, hwc, idx)) return; if (perf_event_overflow(event, data, regs)) loongarch_pmu_disable_event(idx); } static irqreturn_t pmu_handle_irq(int irq, void *dev) { int n; int handled = IRQ_NONE; uint64_t counter; struct pt_regs *regs; struct perf_sample_data data; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); /* * First we pause the local counters, so that when we are locked * here, the counters are all paused. When it gets locked due to * perf_disable(), the timer interrupt handler will be delayed. * * See also loongarch_pmu_start(). */ pause_local_counters(); regs = get_irq_regs(); perf_sample_data_init(&data, 0, 0); for (n = 0; n < loongarch_pmu.num_counters; n++) { if (test_bit(n, cpuc->used_mask)) { counter = loongarch_pmu.read_counter(n); if (counter & loongarch_pmu.overflow) { handle_associated_event(cpuc, n, &data, regs); handled = IRQ_HANDLED; } } } resume_local_counters(); /* * Do all the work for the pending perf events. We can do this * in here because the performance counter interrupt is a regular * interrupt, not NMI. */ if (handled == IRQ_HANDLED) irq_work_run(); return handled; } static int loongarch_pmu_event_init(struct perf_event *event) { int r, irq; unsigned long flags; /* does not support taken branch sampling */ if (has_branch_stack(event)) return -EOPNOTSUPP; switch (event->attr.type) { case PERF_TYPE_RAW: case PERF_TYPE_HARDWARE: case PERF_TYPE_HW_CACHE: break; default: /* Init it to avoid false validate_group */ event->hw.event_base = 0xffffffff; return -ENOENT; } if (event->cpu >= 0 && !cpu_online(event->cpu)) return -ENODEV; irq = get_pmc_irq(); flags = IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD | IRQF_NO_SUSPEND | IRQF_SHARED; if (!atomic_inc_not_zero(&active_events)) { mutex_lock(&pmu_reserve_mutex); if (atomic_read(&active_events) == 0) { r = request_irq(irq, pmu_handle_irq, flags, "Perf_PMU", &loongarch_pmu); if (r < 0) { mutex_unlock(&pmu_reserve_mutex); pr_warn("PMU IRQ request failed\n"); return -ENODEV; } } atomic_inc(&active_events); mutex_unlock(&pmu_reserve_mutex); } return __hw_perf_event_init(event); } static struct pmu pmu = { .pmu_enable = loongarch_pmu_enable, .pmu_disable = loongarch_pmu_disable, .event_init = loongarch_pmu_event_init, .add = loongarch_pmu_add, .del = loongarch_pmu_del, .start = loongarch_pmu_start, .stop = loongarch_pmu_stop, .read = loongarch_pmu_read, }; static unsigned int loongarch_pmu_perf_event_encode(const struct loongarch_perf_event *pev) { return M_PERFCTL_EVENT(pev->event_id); } static const struct loongarch_perf_event *loongarch_pmu_map_general_event(int idx) { const struct loongarch_perf_event *pev; pev = &(*loongarch_pmu.general_event_map)[idx]; if (pev->event_id == HW_OP_UNSUPPORTED) return ERR_PTR(-ENOENT); return pev; } static const struct loongarch_perf_event *loongarch_pmu_map_cache_event(u64 config) { unsigned int cache_type, cache_op, cache_result; const struct loongarch_perf_event *pev; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return ERR_PTR(-EINVAL); cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return ERR_PTR(-EINVAL); cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return ERR_PTR(-EINVAL); pev = &((*loongarch_pmu.cache_event_map) [cache_type] [cache_op] [cache_result]); if (pev->event_id == CACHE_OP_UNSUPPORTED) return ERR_PTR(-ENOENT); return pev; } static int validate_group(struct perf_event *event) { struct cpu_hw_events fake_cpuc; struct perf_event *sibling, *leader = event->group_leader; memset(&fake_cpuc, 0, sizeof(fake_cpuc)); if (loongarch_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0) return -EINVAL; for_each_sibling_event(sibling, leader) { if (loongarch_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0) return -EINVAL; } if (loongarch_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0) return -EINVAL; return 0; } static void reset_counters(void *arg) { int n; int counters = loongarch_pmu.num_counters; for (n = 0; n < counters; n++) { loongarch_pmu_write_control(n, 0); loongarch_pmu.write_counter(n, 0); } } static const struct loongarch_perf_event loongson_event_map[PERF_COUNT_HW_MAX] = { PERF_MAP_ALL_UNSUPPORTED, [PERF_COUNT_HW_CPU_CYCLES] = { 0x00 }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01 }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x08 }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x09 }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02 }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x03 }, }; static const struct loongarch_perf_event loongson_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x8 }, [C(RESULT_MISS)] = { 0x9 }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x8 }, [C(RESULT_MISS)] = { 0x9 }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0xaa }, [C(RESULT_MISS)] = { 0xa9 }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x6 }, [C(RESULT_MISS)] = { 0x7 }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0xc }, [C(RESULT_MISS)] = { 0xd }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0xc }, [C(RESULT_MISS)] = { 0xd }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x3b }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x4 }, [C(RESULT_MISS)] = { 0x3c }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x4 }, [C(RESULT_MISS)] = { 0x3c }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x02 }, [C(RESULT_MISS)] = { 0x03 }, }, }, }; static int __hw_perf_event_init(struct perf_event *event) { int err; struct hw_perf_event *hwc = &event->hw; struct perf_event_attr *attr = &event->attr; const struct loongarch_perf_event *pev; /* Returning LoongArch event descriptor for generic perf event. */ if (PERF_TYPE_HARDWARE == event->attr.type) { if (event->attr.config >= PERF_COUNT_HW_MAX) return -EINVAL; pev = loongarch_pmu_map_general_event(event->attr.config); } else if (PERF_TYPE_HW_CACHE == event->attr.type) { pev = loongarch_pmu_map_cache_event(event->attr.config); } else if (PERF_TYPE_RAW == event->attr.type) { /* We are working on the global raw event. */ mutex_lock(&raw_event_mutex); pev = loongarch_pmu.map_raw_event(event->attr.config); } else { /* The event type is not (yet) supported. */ return -EOPNOTSUPP; } if (IS_ERR(pev)) { if (PERF_TYPE_RAW == event->attr.type) mutex_unlock(&raw_event_mutex); return PTR_ERR(pev); } /* * We allow max flexibility on how each individual counter shared * by the single CPU operates (the mode exclusion and the range). */ hwc->config_base = CSR_PERFCTRL_IE; hwc->event_base = loongarch_pmu_perf_event_encode(pev); if (PERF_TYPE_RAW == event->attr.type) mutex_unlock(&raw_event_mutex); if (!attr->exclude_user) { hwc->config_base |= CSR_PERFCTRL_PLV3; hwc->config_base |= CSR_PERFCTRL_PLV2; } if (!attr->exclude_kernel) { hwc->config_base |= CSR_PERFCTRL_PLV0; } if (!attr->exclude_hv) { hwc->config_base |= CSR_PERFCTRL_PLV1; } hwc->config_base &= M_PERFCTL_CONFIG_MASK; /* * The event can belong to another cpu. We do not assign a local * counter for it for now. */ hwc->idx = -1; hwc->config = 0; if (!hwc->sample_period) { hwc->sample_period = loongarch_pmu.max_period; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } err = 0; if (event->group_leader != event) err = validate_group(event); event->destroy = hw_perf_event_destroy; if (err) event->destroy(event); return err; } static void pause_local_counters(void) { unsigned long flags; int ctr = loongarch_pmu.num_counters; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); local_irq_save(flags); do { ctr--; cpuc->saved_ctrl[ctr] = loongarch_pmu_read_control(ctr); loongarch_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] & ~M_PERFCTL_COUNT_EVENT_WHENEVER); } while (ctr > 0); local_irq_restore(flags); } static void resume_local_counters(void) { int ctr = loongarch_pmu.num_counters; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); do { ctr--; loongarch_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]); } while (ctr > 0); } static const struct loongarch_perf_event *loongarch_pmu_map_raw_event(u64 config) { raw_event.event_id = M_PERFCTL_EVENT(config); return &raw_event; } static int __init init_hw_perf_events(void) { int counters; if (!cpu_has_pmp) return -ENODEV; pr_info("Performance counters: "); counters = ((read_cpucfg(LOONGARCH_CPUCFG6) & CPUCFG6_PMNUM) >> 4) + 1; loongarch_pmu.num_counters = counters; loongarch_pmu.max_period = (1ULL << 63) - 1; loongarch_pmu.valid_count = (1ULL << 63) - 1; loongarch_pmu.overflow = 1ULL << 63; loongarch_pmu.name = "loongarch/loongson64"; loongarch_pmu.read_counter = loongarch_pmu_read_counter; loongarch_pmu.write_counter = loongarch_pmu_write_counter; loongarch_pmu.map_raw_event = loongarch_pmu_map_raw_event; loongarch_pmu.general_event_map = &loongson_event_map; loongarch_pmu.cache_event_map = &loongson_cache_map; on_each_cpu(reset_counters, NULL, 1); pr_cont("%s PMU enabled, %d %d-bit counters available to each CPU.\n", loongarch_pmu.name, counters, 64); perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); return 0; } early_initcall(init_hw_perf_events);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1