Contributors: 19
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Christophe Leroy |
382 |
27.56% |
44 |
43.14% |
Aneesh Kumar K.V |
283 |
20.42% |
16 |
15.69% |
Anton Blanchard |
209 |
15.08% |
6 |
5.88% |
David Gibson |
181 |
13.06% |
4 |
3.92% |
Benjamin Herrenschmidt |
174 |
12.55% |
11 |
10.78% |
David Hildenbrand |
28 |
2.02% |
1 |
0.98% |
David S. Miller |
26 |
1.88% |
2 |
1.96% |
Scott Wood |
18 |
1.30% |
3 |
2.94% |
Andrew Morton |
16 |
1.15% |
2 |
1.96% |
Linus Torvalds |
16 |
1.15% |
2 |
1.96% |
Paul Mackerras |
14 |
1.01% |
3 |
2.94% |
Nicholas Piggin |
13 |
0.94% |
1 |
0.98% |
Geoff Thorpe |
8 |
0.58% |
1 |
0.98% |
Andy Whitcroft |
6 |
0.43% |
1 |
0.98% |
Tudor Laurentiu |
5 |
0.36% |
1 |
0.98% |
Kumar Gala |
2 |
0.14% |
1 |
0.98% |
Rick Edgecombe |
2 |
0.14% |
1 |
0.98% |
Dave Kleikamp |
2 |
0.14% |
1 |
0.98% |
Greg Kroah-Hartman |
1 |
0.07% |
1 |
0.98% |
Total |
1386 |
|
102 |
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
#define _ASM_POWERPC_NOHASH_PGTABLE_H
#ifndef __ASSEMBLY__
static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
unsigned long clr, unsigned long set, int huge);
#endif
#if defined(CONFIG_PPC64)
#include <asm/nohash/64/pgtable.h>
#else
#include <asm/nohash/32/pgtable.h>
#endif
/*
* _PAGE_CHG_MASK masks of bits that are to be preserved across
* pgprot changes.
*/
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
/* Permission masks used for kernel mappings */
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
#ifndef __ASSEMBLY__
extern int icache_44x_need_flush;
/*
* PTE updates. This function is called whenever an existing
* valid PTE is updated. This does -not- include set_pte_at()
* which nowadays only sets a new PTE.
*
* Depending on the type of MMU, we may need to use atomic updates
* and the PTE may be either 32 or 64 bit wide. In the later case,
* when using atomic updates, only the low part of the PTE is
* accessed atomically.
*
* In addition, on 44x, we also maintain a global flag indicating
* that an executable user mapping was modified, which is needed
* to properly flush the virtually tagged instruction cache of
* those implementations.
*/
#ifndef pte_update
static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
unsigned long clr, unsigned long set, int huge)
{
pte_basic_t old = pte_val(*p);
pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
if (new == old)
return old;
*p = __pte(new);
if (IS_ENABLED(CONFIG_44x) && !is_kernel_addr(addr) && (old & _PAGE_EXEC))
icache_44x_need_flush = 1;
/* huge pages use the old page table lock */
if (!huge)
assert_pte_locked(mm, addr);
return old;
}
#endif
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
old = pte_update(vma->vm_mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#ifndef ptep_set_wrprotect
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
}
#endif
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
return __pte(pte_update(mm, addr, ptep, ~0UL, 0, 0));
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
pte_update(mm, addr, ptep, ~0UL, 0, 0);
}
/* Set the dirty and/or accessed bits atomically in a linux PTE */
#ifndef __ptep_set_access_flags
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
pte_t *ptep, pte_t entry,
unsigned long address,
int psize)
{
unsigned long set = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
int huge = psize > mmu_virtual_psize ? 1 : 0;
pte_update(vma->vm_mm, address, ptep, 0, set, huge);
flush_tlb_page(vma, address);
}
#endif
/* Generic accessors to PTE bits */
#ifndef pte_mkwrite_novma
static inline pte_t pte_mkwrite_novma(pte_t pte)
{
/*
* write implies read, hence set both
*/
return __pte(pte_val(pte) | _PAGE_RW);
}
#endif
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
#ifndef pte_wrprotect
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_WRITE);
}
#endif
#ifndef pte_mkexec
static inline pte_t pte_mkexec(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_EXEC);
}
#endif
#ifndef pte_write
static inline int pte_write(pte_t pte)
{
return pte_val(pte) & _PAGE_WRITE;
}
#endif
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
static inline bool pte_hashpte(pte_t pte) { return false; }
static inline bool pte_ci(pte_t pte) { return pte_val(pte) & _PAGE_NO_CACHE; }
static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
static inline int pte_present(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
static inline bool pte_hw_valid(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & _PAGE_ACCESSED;
}
/*
* Don't just check for any non zero bits in __PAGE_READ, since for book3e
* and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in
* _PAGE_READ. Need to explicitly match _PAGE_BAP_UR bit in that case too.
*/
#ifndef pte_read
static inline bool pte_read(pte_t pte)
{
return (pte_val(pte) & _PAGE_READ) == _PAGE_READ;
}
#endif
/*
* We only find page table entry in the last level
* Hence no need for other accessors
*/
#define pte_access_permitted pte_access_permitted
static inline bool pte_access_permitted(pte_t pte, bool write)
{
/*
* A read-only access is controlled by _PAGE_READ bit.
* We have _PAGE_READ set for WRITE
*/
if (!pte_present(pte) || !pte_read(pte))
return false;
if (write && !pte_write(pte))
return false;
return true;
}
/* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
* long for now.
*/
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
pgprot_val(pgprot)); }
/* Generic modifiers for PTE bits */
static inline pte_t pte_exprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_EXEC);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
#ifndef pte_mkhuge
static inline pte_t pte_mkhuge(pte_t pte)
{
return __pte(pte_val(pte));
}
#endif
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
static inline int pte_swp_exclusive(pte_t pte)
{
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
}
static inline pte_t pte_swp_mkexclusive(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
}
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
}
/* This low level function performs the actual PTE insertion
* Setting the PTE depends on the MMU type and other factors. It's
* an horrible mess that I'm not going to try to clean up now but
* I'm keeping it in one place rather than spread around
*/
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
/* Second case is 32-bit with 64-bit PTE. In this case, we
* can just store as long as we do the two halves in the right order
* with a barrier in between.
* In the percpu case, we also fallback to the simple update
*/
if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) {
__asm__ __volatile__("\
stw%X0 %2,%0\n\
mbar\n\
stw%X1 %L2,%1"
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
: "r" (pte) : "memory");
return;
}
/* Anything else just stores the PTE normally. That covers all 64-bit
* cases, and 32-bit non-hash with 32-bit PTEs.
*/
#if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES)
ptep->pte3 = ptep->pte2 = ptep->pte1 = ptep->pte = pte_val(pte);
#else
*ptep = pte;
#endif
/*
* With hardware tablewalk, a sync is needed to ensure that
* subsequent accesses see the PTE we just wrote. Unlike userspace
* mappings, we can't tolerate spurious faults, so make sure
* the new PTE will be seen the first time.
*/
if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr))
mb();
}
/*
* Macro to mark a page protection value as "uncacheable".
*/
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
_PAGE_WRITETHRU)
#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
_PAGE_NO_CACHE | _PAGE_GUARDED))
#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
_PAGE_NO_CACHE))
#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
_PAGE_COHERENT))
#if _PAGE_WRITETHRU != 0
#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
_PAGE_COHERENT | _PAGE_WRITETHRU))
#else
#define pgprot_cached_wthru(prot) pgprot_noncached(prot)
#endif
#define pgprot_cached_noncoherent(prot) \
(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
#define pgprot_writecombine pgprot_noncached_wc
#ifdef CONFIG_HUGETLB_PAGE
static inline int hugepd_ok(hugepd_t hpd)
{
#ifdef CONFIG_PPC_8xx
return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M);
#else
/* We clear the top bit to indicate hugepd */
return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0);
#endif
}
static inline int pmd_huge(pmd_t pmd)
{
return 0;
}
static inline int pud_huge(pud_t pud)
{
return 0;
}
#define is_hugepd(hpd) (hugepd_ok(hpd))
#endif
int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
void unmap_kernel_page(unsigned long va);
#endif /* __ASSEMBLY__ */
#endif