Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anju T | 882 | 70.22% | 3 | 9.38% |
Christophe Leroy | 127 | 10.11% | 6 | 18.75% |
Balbir Singh | 100 | 7.96% | 1 | 3.12% |
Jordan Niethe | 88 | 7.01% | 6 | 18.75% |
Naveen N. Rao | 30 | 2.39% | 6 | 18.75% |
Masami Hiramatsu | 10 | 0.80% | 4 | 12.50% |
Anil S Keshavamurthy | 6 | 0.48% | 1 | 3.12% |
Nicholas Piggin | 4 | 0.32% | 1 | 3.12% |
Will Schmidt | 4 | 0.32% | 1 | 3.12% |
Thomas Gleixner | 2 | 0.16% | 1 | 3.12% |
Michael Ellerman | 2 | 0.16% | 1 | 3.12% |
Cédric Le Goater | 1 | 0.08% | 1 | 3.12% |
Total | 1256 | 32 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Code for Kernel probes Jump optimization. * * Copyright 2017, Anju T, IBM Corp. */ #include <linux/kprobes.h> #include <linux/jump_label.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/list.h> #include <asm/kprobes.h> #include <asm/ptrace.h> #include <asm/cacheflush.h> #include <asm/code-patching.h> #include <asm/sstep.h> #include <asm/ppc-opcode.h> #include <asm/inst.h> #define TMPL_CALL_HDLR_IDX (optprobe_template_call_handler - optprobe_template_entry) #define TMPL_EMULATE_IDX (optprobe_template_call_emulate - optprobe_template_entry) #define TMPL_RET_IDX (optprobe_template_ret - optprobe_template_entry) #define TMPL_OP_IDX (optprobe_template_op_address - optprobe_template_entry) #define TMPL_INSN_IDX (optprobe_template_insn - optprobe_template_entry) #define TMPL_END_IDX (optprobe_template_end - optprobe_template_entry) static bool insn_page_in_use; void *alloc_optinsn_page(void) { if (insn_page_in_use) return NULL; insn_page_in_use = true; return &optinsn_slot; } void free_optinsn_page(void *page) { insn_page_in_use = false; } /* * Check if we can optimize this probe. Returns NIP post-emulation if this can * be optimized and 0 otherwise. */ static unsigned long can_optimize(struct kprobe *p) { struct pt_regs regs; struct instruction_op op; unsigned long nip = 0; unsigned long addr = (unsigned long)p->addr; /* * kprobe placed for kretprobe during boot time * has a 'nop' instruction, which can be emulated. * So further checks can be skipped. */ if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline) return addr + sizeof(kprobe_opcode_t); /* * We only support optimizing kernel addresses, but not * module addresses. * * FIXME: Optimize kprobes placed in module addresses. */ if (!is_kernel_addr(addr)) return 0; memset(®s, 0, sizeof(struct pt_regs)); regs.nip = addr; regs.trap = 0x0; regs.msr = MSR_KERNEL; /* * Kprobe placed in conditional branch instructions are * not optimized, as we can't predict the nip prior with * dummy pt_regs and can not ensure that the return branch * from detour buffer falls in the range of address (i.e 32MB). * A branch back from trampoline is set up in the detour buffer * to the nip returned by the analyse_instr() here. * * Ensure that the instruction is not a conditional branch, * and that can be emulated. */ if (!is_conditional_branch(ppc_inst_read(p->ainsn.insn)) && analyse_instr(&op, ®s, ppc_inst_read(p->ainsn.insn)) == 1) { emulate_update_regs(®s, &op); nip = regs.nip; } return nip; } static void optimized_callback(struct optimized_kprobe *op, struct pt_regs *regs) { /* This is possible if op is under delayed unoptimizing */ if (kprobe_disabled(&op->kp)) return; preempt_disable(); if (kprobe_running()) { kprobes_inc_nmissed_count(&op->kp); } else { __this_cpu_write(current_kprobe, &op->kp); regs_set_return_ip(regs, (unsigned long)op->kp.addr); get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; opt_pre_handler(&op->kp, regs); __this_cpu_write(current_kprobe, NULL); } preempt_enable(); } NOKPROBE_SYMBOL(optimized_callback); void arch_remove_optimized_kprobe(struct optimized_kprobe *op) { if (op->optinsn.insn) { free_optinsn_slot(op->optinsn.insn, 1); op->optinsn.insn = NULL; } } static void patch_imm32_load_insns(unsigned long val, int reg, kprobe_opcode_t *addr) { patch_instruction(addr++, ppc_inst(PPC_RAW_LIS(reg, PPC_HI(val)))); patch_instruction(addr, ppc_inst(PPC_RAW_ORI(reg, reg, PPC_LO(val)))); } /* * Generate instructions to load provided immediate 64-bit value * to register 'reg' and patch these instructions at 'addr'. */ static void patch_imm64_load_insns(unsigned long long val, int reg, kprobe_opcode_t *addr) { patch_instruction(addr++, ppc_inst(PPC_RAW_LIS(reg, PPC_HIGHEST(val)))); patch_instruction(addr++, ppc_inst(PPC_RAW_ORI(reg, reg, PPC_HIGHER(val)))); patch_instruction(addr++, ppc_inst(PPC_RAW_SLDI(reg, reg, 32))); patch_instruction(addr++, ppc_inst(PPC_RAW_ORIS(reg, reg, PPC_HI(val)))); patch_instruction(addr, ppc_inst(PPC_RAW_ORI(reg, reg, PPC_LO(val)))); } static void patch_imm_load_insns(unsigned long val, int reg, kprobe_opcode_t *addr) { if (IS_ENABLED(CONFIG_PPC64)) patch_imm64_load_insns(val, reg, addr); else patch_imm32_load_insns(val, reg, addr); } int arch_prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) { ppc_inst_t branch_op_callback, branch_emulate_step, temp; unsigned long op_callback_addr, emulate_step_addr; kprobe_opcode_t *buff; long b_offset; unsigned long nip, size; int rc, i; nip = can_optimize(p); if (!nip) return -EILSEQ; /* Allocate instruction slot for detour buffer */ buff = get_optinsn_slot(); if (!buff) return -ENOMEM; /* * OPTPROBE uses 'b' instruction to branch to optinsn.insn. * * The target address has to be relatively nearby, to permit use * of branch instruction in powerpc, because the address is specified * in an immediate field in the instruction opcode itself, ie 24 bits * in the opcode specify the address. Therefore the address should * be within 32MB on either side of the current instruction. */ b_offset = (unsigned long)buff - (unsigned long)p->addr; if (!is_offset_in_branch_range(b_offset)) goto error; /* Check if the return address is also within 32MB range */ b_offset = (unsigned long)(buff + TMPL_RET_IDX) - nip; if (!is_offset_in_branch_range(b_offset)) goto error; /* Setup template */ /* We can optimize this via patch_instruction_window later */ size = (TMPL_END_IDX * sizeof(kprobe_opcode_t)) / sizeof(int); pr_devel("Copying template to %p, size %lu\n", buff, size); for (i = 0; i < size; i++) { rc = patch_instruction(buff + i, ppc_inst(*(optprobe_template_entry + i))); if (rc < 0) goto error; } /* * Fixup the template with instructions to: * 1. load the address of the actual probepoint */ patch_imm_load_insns((unsigned long)op, 3, buff + TMPL_OP_IDX); /* * 2. branch to optimized_callback() and emulate_step() */ op_callback_addr = ppc_kallsyms_lookup_name("optimized_callback"); emulate_step_addr = ppc_kallsyms_lookup_name("emulate_step"); if (!op_callback_addr || !emulate_step_addr) { WARN(1, "Unable to lookup optimized_callback()/emulate_step()\n"); goto error; } rc = create_branch(&branch_op_callback, buff + TMPL_CALL_HDLR_IDX, op_callback_addr, BRANCH_SET_LINK); rc |= create_branch(&branch_emulate_step, buff + TMPL_EMULATE_IDX, emulate_step_addr, BRANCH_SET_LINK); if (rc) goto error; patch_instruction(buff + TMPL_CALL_HDLR_IDX, branch_op_callback); patch_instruction(buff + TMPL_EMULATE_IDX, branch_emulate_step); /* * 3. load instruction to be emulated into relevant register, and */ temp = ppc_inst_read(p->ainsn.insn); patch_imm_load_insns(ppc_inst_as_ulong(temp), 4, buff + TMPL_INSN_IDX); /* * 4. branch back from trampoline */ patch_branch(buff + TMPL_RET_IDX, nip, 0); flush_icache_range((unsigned long)buff, (unsigned long)(&buff[TMPL_END_IDX])); op->optinsn.insn = buff; return 0; error: free_optinsn_slot(buff, 0); return -ERANGE; } int arch_prepared_optinsn(struct arch_optimized_insn *optinsn) { return optinsn->insn != NULL; } /* * On powerpc, Optprobes always replaces one instruction (4 bytes * aligned and 4 bytes long). It is impossible to encounter another * kprobe in this address range. So always return 0. */ int arch_check_optimized_kprobe(struct optimized_kprobe *op) { return 0; } void arch_optimize_kprobes(struct list_head *oplist) { ppc_inst_t instr; struct optimized_kprobe *op; struct optimized_kprobe *tmp; list_for_each_entry_safe(op, tmp, oplist, list) { /* * Backup instructions which will be replaced * by jump address */ memcpy(op->optinsn.copied_insn, op->kp.addr, RELATIVEJUMP_SIZE); create_branch(&instr, op->kp.addr, (unsigned long)op->optinsn.insn, 0); patch_instruction(op->kp.addr, instr); list_del_init(&op->list); } } void arch_unoptimize_kprobe(struct optimized_kprobe *op) { arch_arm_kprobe(&op->kp); } void arch_unoptimize_kprobes(struct list_head *oplist, struct list_head *done_list) { struct optimized_kprobe *op; struct optimized_kprobe *tmp; list_for_each_entry_safe(op, tmp, oplist, list) { arch_unoptimize_kprobe(op); list_move(&op->list, done_list); } } int arch_within_optimized_kprobe(struct optimized_kprobe *op, kprobe_opcode_t *addr) { return (op->kp.addr <= addr && op->kp.addr + (RELATIVEJUMP_SIZE / sizeof(kprobe_opcode_t)) > addr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1